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Abstract – 

Construction work involves a number of repetitive 
and physically demanding tasks. Exposure to these 
labor intensive tasks with awkward postures result in 
an increase in biomechanical risk factors that may 
lead to work-related musculoskeletal disorders 
(WMSDs).  Thus, it is essential to provide training for 
apprentice-level workers to adopt safe working 
postures. Recent advancements in sensing 
technologies have enabled us to automatically collect 
body motion data and analyze posture. The present 
work presents an automated posture assessment 
method using inertial measurement units (IMUs) 
allowing for in-depth ergonomic analysis via 
kinematic data. A case study on masonry work was 
performed and body motion data from masons with 
varying experience levels were collected. For the 
posture analysis, we first investigated the risk of 
working posture between experience groups using 
observation-based posture assessment methods 
(RULA and REBA), then compared the assessment 
scores between experience groups. Finally, a 
prototype training tool based on working posture was 
introduced. The experimental results show that the 
automated collection and analysis of motion data can 
provide greater understanding of working postures 
adopted by workers with different experience levels 
with the potential to be used as a training tool in 
apprenticeship programs. 
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1 Introduction 
In the construction industry, workers are frequently 

exposed to tasks that contribute to work-related 
musculoskeletal disorders (WMSDs), including 
overexertion during lifting, repetitive tasks, and awkward 
postures [1, 2]. Among construction workers, masons are 

more prone to WMSDs due to frequent lifting and static 
postures used while handling heavy building materials 
[3]. In 2010, the masonry trade was found to have the 
highest rate of overexertion injuries (66.5 per 10,000 full-
time equivalent workers) and the second highest rate of 
back injuries (45.3 per 10,000 full-time equivalent 
workers) within selected construction subsectors [1]. 
Furthermore, repetitive tasks have shown to be related to 
an increase in physical fatigue levels, which can result in 
greater incidence of accidents and lowered productivity. 
Hence, it is of great importance to analyze ergonomic 
risks associated with construction tasks to mitigate the 
prevalence of WMSDs among construction workers.   

Observation-based posture assessment methods 
have been widely used to identify and monitor potential 
ergonomic risks associated with WMSDs [4]. These 
methods include the Rapid Entire Body Assessment 
(REBA) [5], Rapid Upper Limb Assessment (RULA) [6], 
and Ovako Working posture Analyzing System (OWAS) 
[7], which produces risk levels based on input elements 
such as posture, work duration, and repetition [8]. 
Traditionally, observation-based assessments require an 
ergonomist or task analyst to visually assess a worker’s 
posture during an activity in real-time or post-evaluate 
using a video recording [9]. Body joint angles are the 
primary input element to describe posture; however, is 
difficult to obtain precise and reliable input values due to 
human errors in visual assessments [10].  

Recent advancements in motion capture systems 
have spurred their use in several applications from visual 
effects in entertainment to biomechanics and sports 
performance. Motion capture systems based on wearable 
inertial measurement units (IMUs) can automatically and 
accurately track motion data. Wearable IMUs are less 
expensive compared to other motion capture systems, can 
be used in most site conditions, and do not obstruct the 
natural motion of wearers. Thus, these wearable IMUs 
can be used to collect input elements (i.e. body joint 
angles) with greater accuracy for observation-based 
assessment methods. 

Previous research efforts reported that less 
experienced workers showed higher lost-workday claims 
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[1] and significantly lower productivity than experienced 
workers [11]. Specifically, Alwasel et al. [11] 
investigated the joint force and moments of masons who 
were grouped based on experience level, during a 
bricklaying task. The results showed that joint forces and 
moments were lowest in the group with the highest level 
of experience compared to the groups with less 
experience. Given that the experienced masons adopted 
safer and more productive methods in their work, it is 
possible to identify proper, task-specific working 
postures to develop training tools for inexperienced, 
apprentice-level workers.  

This paper first compares WMSD risk levels of 
masons with varying levels of experience using existing 
posture assessment methods (i.e. RULA and REBA). 
Secondly, a prototype training tool based on working 
posture is introduced. A case study on masonry work was 
performed to demonstrate the motion data collection 
process during a bricklaying task. Based on the motion 
data, working postures were determined and used as 
inputs to the RULA and REBA posture assessment 
methods. Potential issues about the posture assessment 
methods are discussed. 

2 Literature Review 
Many ergonomic assessment methods require inputs 

that describe posture since they are associated with joint 
force and moment generation contributing to the risk of 
WMSDs [12, 13]. Posture-based ergonomic assessment 
methods such as the RULA and REBA posture 
assessment methods evaluate the stresses on the 
musculoskeletal system and risk for WMSDs primarily 
using joint angles with reference to movement planes. 
RULA and REBA have been commonly applied in the 
construction industry to study the movement of workers. 
McGorry and Lin [14] used the RULA method to 
compare and demonstrate the utility of a proposed 
methodology that evaluates arm posture and grip strength 
in tool handling. Kim et al. [15] used the REBA method 
to estimate the risk of WMSDs in panel erection to 
improve panel specifications and workplace design. 
Using the RULA and REBA body part diagrams, a risk 
score and its prescribed action level for ergonomic 
intervention can be found. However, since these 
assessments are traditionally based on visual 
observations of joint angle, the results are prone to 
inaccuracies across different observers [10].    

Due to the development of sensing technologies, 
various types of motion sensing systems have been 
introduced to improve the efficiency and accuracy of 
posture assessments. Popular among these sensing 
technologies are vision-based assessments, which use 
video cameras for object identification and tracking, and 
inertial measurement units (IMUs), which obtain motion 

data with accelerometers, gyroscopes, and 
magnetometers. For example, Ray and Teizer [16] used 
a Kinect range camera to classify work tasks as 
ergonomic or non-ergonomic. Alwasel et al. [11] used an 
IMU-based sensor suit and 3D Static Strength Prediction 
Program [17] to estimate joint forces and moments in a 
bricklaying task. Research efforts in WMSDs in the 
construction industry utilizing sensing technologies, to 
date, have been focused on posture detection, posture 
classification, and comparison of working posture to 
ergonomic standards. However, few studies have 
examined the differences in working postures adopted by 
workers with growing levels of experience. In this 
research, we investigate risk levels associated with 
working postures adopted by masons of varying levels of 
expertise using an automated risk assessment tool. 

3 Methodology  
In Ontario, Canada, the three-year masonry 

apprenticeship consists of on-site and in-school training. 
Upon completion, the apprentice can apply to become 
certified as a journeyman. Forty-five participants were 
recruited from the Brick and Stone Masonry 
Apprenticeship Program offered by the Ontario Masonry 
Training Centre. The experiment was conducted at two 
institutions: Conestoga College in Waterloo, Ontario, 
and the Canadian Masonry Design Centre (CMDC) in 
Mississauga, Ontario. The participants were separated 
into four cohorts based on years of experience: novice 
with no experience, apprentice with 1-year experience, 
apprentice with 3-years of experience, and journeyman 
with 5 or more years of experience (Table 1). 

Table 1. Number of participants 

  Novice 1 Year 3 Years Journeymen Total 
Conestoga 5 4 7 5 21 

CMDC 12 5 6 1 24 
Total 17 9 13 6 45 

 
Wireless motion capture suits, MVN Awinda from 

Xsense [18] and Perception neuron from Noitom Ltd. [19] 
were used to collect participants’ motion data. The suits 
contain seventeen inertial measurement units (IMUs), 
and each sensor is composed of a three-axis 
accelerometer, three-axis gyroscope, and three-axis 
magnetometer. The suits collected motion data at a 125 
Hz sampling frequency. The experiments were recorded 
using camcorders to label and segment the data in the 
data processing phase. Prior to the experiment, a 
calibration session was performed for each participant to 
ensure conformity between the models generated from 
the motion data and the participant’s body. Each 
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participant was instructed to complete a pre-built lead 
wall using forty-five concrete masonry units (CMUs), 
thus each bricklaying task consisted of forty-five 
individual lifts. Figure 1 shows the experimental setup 
with the lead wall. The pre-built lead wall was six-
courses high and consisted of twenty-seven blocks. The 
participants completed the wall using CMUs from the 
second course to the sixth course. The CMU blocks were 
placed on three pallets approximately 1 meter away from 
the lead wall. Two panels of mortar were positioned 
between the three pallets and were continuously supplied 
by helpers. The CMUs are CSA”A” - Type “A” concrete 
units and each weigh 16.6 kg with dimensions of 390 x 
190 x 100 mm (Canadian Concrete Masonry Producer 
Association). 

 

 
Figure 1. Experimental setup. 

After the completion of the bricklaying task, motion 
data from the IMU suits were extracted as Biovision 
Hierarchy (BVH) type files containing 3D joint 
orientation over time. Then, joint angles required for the 
RULA and REBA posture assessment methods were 
calculated using the International Society of 
Biomechanics (ISB) recommendations [20, 21]. As 
shown in Figure 2, a local coordinate system is defined 
for each body segment using joint centers, then the Euler 
angles between adjoining segments’ coordinate systems 
were calculated [22]. 

 

 
Figure 2. Joint angle based on Local coordinate 
system 
 

The calculated joint angles were used to assign 
posture scores in both assessment methods. The RULA 
and REBA assessment methods consist of two body 
region sections to obtain a final score representing the 
risk for MSDs: 1) arm and wrist analysis, 2) neck, trunk, 

and leg analysis. The posture score according to the 
segment angle is first obtained, and then the score of each 
section is calculated considering additional adjustments 
such as external force and frequency. A final score is 
assigned by combining the previous two posture scores. 
The final RULA score ranges from 1 to 7 and final REBA 
score ranges from 1 to 15, which correspond to four and 
five risk levels respectively. Table 2 shows the final score 
range and corresponding risk level. 

Table 2. Score range of RULA and REBA 

RULA 

Score Level of MSD risk 

1-2 Acceptable posture 

3-4 Further investigation, change may be needed 

5-6 Further investigation, change soon 

7 Investigate and implement change  

REBA 

Score Level of MSD risk 

1 Negligible risk, no action required 

2-3 Low risk, change may be needed 

4-7 Medium risk, further investigation, change 

soon 

8-10 High risk, investigate and implement change 

11+ Very high risk, implement change 
 
In this study, both the right- and left-side of body 

segment angles were obtained, however only the side 
with the higher score contributed to the final score. Since 
the wearable IMU suits collected 125 frames of motion 
data per second, a RULA and REBA score was assigned 
to each frame. Since each lift varies in duration, the 
maximum assessment score was selected for each lift. 
Considering more than 70% of all lift motions were two-
handed lifts, the assessment scores were analyzed by 
selecting only two-handed lifts. Finally, the average final 
scores of each experience group were used for 
comparison. 

4 Result and Discussion 

4.1 Average RULA and REBA scores 
Table 3 shows the average RULA and REBA score 

of four groups with different levels of experience. The 
overall average score of RULA is 6.95 and of REBA is 
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10.94, both indicating high risk for MSDs. In the score 
comparison between experience groups, the average 
RULA score was highest in the 3-years group, while the 
average REBA score was the highest in the journeymen 
group. The novice group showed the lowest score in both 
assessment tools. It is important to note that the variance 
of average scores among experience groups were not 
significant in both assessment tools. Specifically, the 
difference between the highest score and the lowest score 
is only 0.11 and 0.35. 

Table 3. Average final score of RULA and REBA 

Group RULA REBA 
Average SD Average SD 

Novice 6.88 0.39 10.74 0.97 
1 Year 6.96 0.22 10.89 0.97 
3 Years 6.99 0.11 11.02 0.81 

Journeymen 6.98 0.14 11.09 0.78 

 
 To build the lead wall, participants placed forty-five 
CMUs in five courses, from the second course to the sixth 
course. A detailed risk assessment score by course is 
shown in Table 4. Both assessment tools showed a lower 
final score when placing CMUs in the third and fourth 
courses in all groups. Since the third and fourth course 
are approximately at hip-height, the result may be due to 
less back- and arm-bending.    

Table 4. Average score of RULA and REBA by course 

Groups Average RULA score by courses 
2 3 4 5 6 

Novice 6.94 6.84 6.80 6.89 6.92 
1 Year 7.00 6.94 6.90 6.95 7.00 
3 Years 7.00 6.99 6.97 7.00 6.99 

Journeymen 7.00 7.00 6.92 6.98 7.00 

Groups Average REBA score by courses 
2 3 4 5 6 

Novice 10.98 10.62 10.44 10.67 10.99 
1 Year 10.72 10.71 10.95 10.93 11.07 
3 Years 11.18 10.90 10.90 10.89 11.21 

Journeymen 11.07 10.67 10.92 11.22 11.34 

 
The added external load in RULA and REBA is one 

of the important adjustment factors for the final score. In 
particular, when an external load greater than 22 lbs (10 
kg) is applied, an additional 2 or 3 scores were applied 
resulting in a higher final score. The CMUs used in this 
study was 16.6 kg, and both assessment tools showed a 

very high-risk final score regardless of the various 
segment angles obtained by the participants. Therefore, 
in the case of heavy material handling tasks such as 
masonry work, the practicality of posture assessment 
methods may be limited since they do not provide 
significant results to differentiate between experience 
groups. 

4.2 Prototype training tool 
Although the average RULA and REBA scores were 

not able to provide results with significant differences 
between experience groups, the tools can indicate the risk 
of each body segment according to the joint angles. Thus, 
we developed a prototype training tool that provides 
independent joint scores and adopts the joint angle ranges 
used in the REBA scoring system since it provides whole 
body postural risk reflecting both upper- and lower-limbs 
joint angles. The training tool uses a color-map to reflect 
risk levels at selected joints. The angle range and risk 
level indicator is shown in Table 5. 

Table 5. REBA Score-based Tool - Risk Level Indicator 

Body 
Segment Angle (degree) Score Risk Level 

Indicator 

Shoulder 

0 – 20 
20 – 45 
45 – 90 
> 90 

1 
2 
3 
4 

 
 
 
 

 

    

Elbow 60 – 100  
0 – 60 or > 100 

1 
2 

 
 

 

    

Wrist 0 – 15 
> 15 

1 
2 

 
 

 

    

Neck 0 – 10 
10 – 20 or 0 < 

1 
2 

 
 

 

    

Truck 

0 
0 – 20 or 0 <  
20 – 60  
> 60 

1 
2 
3 
4 

 
 
 
 

 

    

Leg 
0 
30 – 60  
> 60  

1 
2 
3 

 
 
 

 

Figure 3 shows a snapshot of the training tool applied 
to Participant #2 in the journeymen group. As shown in 
Figure 3, the red color indicates that the back and arm 
angles are unsafe for the participant. To correct the 
posture and maintain low risk levels, the participant must 
reduce the flexion angle of the back and shoulder by 
bending more at the knees and reduce the flexion angle 
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of the arm by keeping the CMU block closer to the body. 
 

 
Figure 3. The snapshot of prototype training tool 

As demonstrated, the training tool which 
continuously collects motion data, can inform its user of 
safe and unsafe working postures for the entire work 
duration. This allows the user to proactively correct 
unsafe postures and reduce the risk of WMSDs. The 
training tool has the potential to be used in apprenticeship 
programs to establish safe working postures. 

5 Conclusion 
The practice of safe working postures in construction 

work help workers maintain good health and productivity 
levels. Current observation-based posture assessment 
methods are subject to human error and lack precision. 
Recent developments of IMUs allow for the continuous 
collection of motion data which are more reliable for use 
in posture assessments. In this paper, motion data was 
collected from forty-five participants with different 
experience levels ranging from novice to more than 5-
years of masonry experience. We analyzed the working 
postures of the participants while performing a 
bricklaying task using IMU suits.  

Risk levels for WMSDs were determined and 
compared for each group using posture assessment 
methods, RULA and REBA. The results showed that the 
average maximum assessment scores across experience 
groups for RULA is between 6.88 and 6.99, and REBA is 
between 10.74 and 11.09. The results of the assessment 
methods showed that the assessments may not be able to 
differentiate between the working postures of workers 
with different levels of experience. Both assessment 
methods indicated that the risk levels for WMSDs were 
lowest when the participants were handling CMUs 
between the knee and hip level. We also presented a 
prototype training tool that was developed based on joint 
angle inputs used in the REBA scoring system. The 
training tool identifies unsafe postures using motion data 
collected during a work task so that its user can make 
necessary adjustments.  

Future work will compare results obtained from the 
posture assessment tools presented in this study, with 
those obtained using biomechanical analysis (e.g., using 
3D Static Strength Prediction Program). The 
biomechanical analysis will be used to determine joint 
forces and moments generated during the bricklaying 
task and to develop a biomechanical-based training tool. 
In addition, studies on work proficiency and productivity 
using training methods will be conducted. 
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