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Abstract -
Recent research on facility management has focused on

leveraging location-based services(LBS) to assist on-demand
access to model information and on-site documentation. Re-
searchers highlight that fast and robust indoor localization is
of great importance for location-based facility management
services, especially considering when using facility manage-
ment services in a mobile computing context. Despite the
importance of location data, most existing facility manage-
ment systems do not support LBS due to the following rea-
sons: 1) Signal-based indoor localization methods, such as
WIFI, RFID, Bluetooth and Ultrasound, require installa-
tion of extra infrastructure in a building to support local-
ization, 2) Visual-based indoor localization methods, such as
LiDAR and camera, still depend on feature point detection
and matching that require heavy computation and can be
impacted by environmental conditions. In this paper, the au-
thors present an end-to-end image-based localization frame-
work to support facility operation and management using a
convolutional neural network (CNN). The proposed frame-
work contains two modules: mapping and localization. The
mappingmodule takes a set of training imageswith their pose
as input and trains a CNN model for the localization mod-
ule. The localization module takes a single image and the
trained model as input and outputs estimated camera pose
(position and view angle). Compared to conventional meth-
ods, theproposed end-to-end image-based indoor localization
framework does not require any infrastructure installed in a
building and can achieve real-time 6-DoF localization that is
robust to different lighting conditions and scenes with poor
texture. The proposed framework was evaluated on pub-
licly available datasets and the results show that end-to-end
imaged-based method can achieve real-time 6-DoF localiza-
tion with acceptable accuracy and a small map size.

Keywords -
Facility Operation and Management; Image; Indoor Lo-

calization; Convolutional Neural Network; Deep Learning

1 Introduction
In this section, the authors give a brief introduction

to location-based facility management and the status of

current research.

1.1 Background

Locating and tracking people, equipment, and facil-
ity components within building supports many novel
facility management applications such as asset moni-
toring [1, 2, 3], infrastructure inspection [4], cross-
registration with BIM [5], and field reporting usingmobile
devices [6]. A location-based facility management system
(LB-FMS) has a central geospatial database that stores fa-
cility information and allows all possible users to access or
potentially change the data conveniently. LB-FMS is ex-
pected to streamline building operation activities, such as
updating infrastructure status, documenting repair needs,
managing work orders and inspection, through automati-
cally linking the data collected by a mobile device at the
scene to the facility management model. However, given
the location of mobile device only, it’s still challenging
finding the correspondence at a component level, e.g, link-
ing a window captured at the scene with its corresponding
window element in the model. The primary concern that
limits component-level registration is the lack of complete
pose information (location and view angle). With location
information only, there is an infinite number of possible
ways to register a facility component to its model due to
the freedom of rotation (Figure 1a). In comparison, with
complete pose information, the correspondence could be
easily established through ray tracing (Figure 1b). The
resulting component-level correspondence can reduce the
need for manually finding the corresponding component
at the scene. In other words, an LB-FMS with complete
pose information can be used for automating many of the
aforementioned applications.

1.2 Previous Research

Current indoor localization approaches adopted in an
LB-FMS can be generally divided into two categories:
1) Signal-based methods and 2) Visual-based methods.
Signal-based methods, such as WIFI [7], RFID [8], Blue-
tooth [9] and Ultrasound [10], estimate locations by com-
paring recorded signal signatures with signals captured
on site. For example, WIFI-based localization leverages
the prior known router positions to estimate the signal
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Figure 1. Finding corresponding as-built model for
the object in a scene with locations only (a) vs. with
poses (b)

.

strength at different locations within a building. When
the client device receives signals from multiple routers,
the position can then be estimated using triangulation.
Other signal-based methods employ similar mechanisms
as well. According to [11], signal-based methods have
two primary limitations when applied in facility manage-
ment applications: 1) They need to have the corresponding
infrastructure, such as routers, beacons, RFID tags, or ul-
trasound receivers, installed in building to facilitate the
localization service. 2) They can only output the location
(X, Y, Z coordinates) but not the view angle (pitch, yaw,
roll angles). Without the view angle information, locating
facility components in the as-built model would be more
difficult compared to the one with view angle information.
Figure 1 demonstrates how pose information can reduce
the search space for correspondence.
The visual-based localization methods, especially the

image-based ones, are proposed to address the two limi-
tations stated above. First of all, image-based methods do
not need extra infrastructure to locate a person. Moreover,
image-based localization methods can output location and
view angle at the same time, making it much easier to
estimate the location of what is being seen in a scene and
linking it to what exists in a digital information model
(such a 3D building information model). Typical image-
based localization methods include image retrieval [12],
direct 2D-3D feature matching [13], and end-to-end learn-
ing [14]. Image retrieval methods build a spatial database
of a facility from geo-referenced images during mapping

and retrieve the image that is most similar to the queried
image for localization. Since the queried image is not
likely to have identical poses (location and view angle)
as the images in a database, image retrieval localization
can only provide a rough estimation of the pose. Direct
2D-3D matching method reconstructs the 3D model us-
ing Structure-from-Motion (SfM) from images, and stores
extracted feature points, such as Scale-Invariant Feature
Transform (SIFT) in map (Figure 1). During localization,
it compares the extracted feature points from the queried
image to the ones in the database and estimates the camera
pose using epipolar geometry. The localization accuracy
can be very accurate (10-20 cm[10]) when feature point
matching is successful. However, due to camera intrinsic
differences, change of lighting condition and motion blur,
direct 2D-3D matching could fail ungracefully even when
a small subset of mismatched feature points exist. Another
limitation of the 2D-3D matching method is computation
complexity. An image usually has 300 to 500 feature points
while a map is usually reconstructed from thousands of
images. Therefore, locating one image requires finding
the best match from millions of feature points which can
take several seconds. Hence, existing 2D-3D matching
method is also not scalable and might not be applicable
for real-time localization needs.

Figure 2. Feature-based Localization using SIFT
Matching

.

Considering these limitations, the authors explored a
new approach that learns to automatically extract useful
features from images according to the desired objective
(in our case, the objective is to minimize localization er-
ror), and that uses extracted features to estimate image
poses. This approach is being referred to as end-to-end
learning-based localization and Section 2 gives a brief in-
troduction to it. Section 3 overviews how the proposed
end-to-end image-based localization acts as an important
module within a facility management system. Sections 4
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and 5 describe the evaluation of the proposed approach
with respect to its performance on a publicly available
dataset and show the corresponding results obtained.

2 End-to-end Learning-based Localization
Convolutional Neural Network (CNN) [15] was origi-

nally proposed to address the image classification problem
that can output a discrete label such as door and window
given an image as input. CNN also works well in regres-
sion problems that require estimating continuous variables
such as locations and view angles. In general, CNN is a
powerful tool that can automatically learn how to extract
useful features with respect to different objectives. End-
to-end learning-based localization aims at training a CNN
that maps an image to a pose. The localization process
consists of two stages: mapping and localization. Basi-
cally, in the training (mapping) stage, the system takes a
set of training images with ground truth pose and trains a
Convolutional Neural Network(CNN) by minimizing the
mean squared error(MSE) between the predicted pose and
the ground truth pose. In the testing (localization) stage,
the trained network takes an image as input and predicts
the 6-DoF pose. The problem can be formally written as:
given a set of images and their corresponding poses, find
a function f that maps the input image X to its pose y
through y = f (X) with the lowest localization error. The
function f is defined by all the parameters of a CNN.

2.1 CNN Layers

A typical CNN architecture consists of several layers
such as convolution, activation, transition, batch normal-
ization (BN), and fully connection (FC). Below is a brief
description of the functionality of each kind of layer.

2.1.1 Convolution

Convolution layers play a role of extracting features
from input images in CNN. Given an image X (a tensor
with size width × height × color channel), a convolution
layer transforms the input by computing linear combina-
tion as below:

conv(X) = wTx + b (1)

where w is the weight vector of a convolution layer, x is
the vector obtained from unrolling the input tensor X, and
b is the bias vector. With different weights, convolution
layers are able to extract different features from the input
that are useful for achieving the objective.

2.1.2 Activation

Activation layer provides non-linearity between two
convolution layers so that the function model is not limited

to linear space. A common choice of activation function
is Rectified Linear Units(ReLU):

ReLU(x) = max(x, 0) (2)

where x is the output from last layer.

2.1.3 Transition

Transition layer reduces the input size by averaging.
For example, a 2 × 2 transition layer will average reduce
an image with size 56× 56× 3 to 28× 28× 3. This is used
for reducing the number of parameters the system needs
to learn.

2.1.4 Batch Normalization

Batch normalization normalizes the input by subtracting
its mean from the input and dividing it by the standard
deviation. The goal of batch normalization is to improve
the generalizability of the model.

2.2 CNN Architecture

In the proposed approach, the authors employ the
DenseNet [16] structure for pose regression because of its
strong capability of extracting visual features. Depending
on the loss function, the extracted features can be used for
both classification and regression task. In this problem, we
changed the last FC layer to a Sigmoid layer for regression
purpose. The adjusted FC layer contains 7 outputs, cor-
responding to 3 location coordinates(x,y,z) and 4 rotation
coordinates(q1, q2, q3, q4 represented in quaternion for-
mat). Table 2.2 shows the DenseNet architecture. Notice
that each conv layer listed in the table actually corresponds
to a BN-ReLU activation-Conv sequence. The details of
each layer can be found in [16].

2.3 Objective

One possible objective is to minimize the mean squared
error (MSE) between the predicted pose and the ground
truth pose as discussed in [14]. Specifically, denote the
ground truth location as a translation vector t = [x, y, z]
and the ground truth view angle as a rotation quaternion
q = [q1, q2, q3, q4]. Notice that the rotation quaternion
can be converted back to the axis angle representation.
Similarly, denote the predicted location and view angle as
t̂ and q̂. TheMSE loss of a single imageI to beminimized
can be represented as:

L(I) = ‖t − t̂‖2 + β‖
q
‖q‖
− q̂‖2 (3)

where β is a hyperparameter that balances the rotation and
translation error.
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Table 1. DenseNet Architecture for Localiza-
tion [16].

Layers Output Size DenseNet-121
Convolution 112 × 112 7 × 7 × 2 conv
Pooling 56 × 56 3 × 3 × 2 max

Dense Block(1) 56 × 56
[
1 × 1
3 × 3

]
× 6 conv

Transition Layer(1) 56 × 56 1 × 1 conv
28 × 28 2 × 2 × 2 avg

Dense Block(2) 28 × 28
[
1 × 1
3 × 3

]
× 12 conv

Transition Layer(2) 28 × 28 1 × 1 conv
14 × 14 2 × 2 × 2 avg

Dense Block(3) 14 × 14
[
1 × 1
3 × 3

]
× 24 conv

Transition Layer(3) 14 × 14 1 × 1 conv
7 × 7 2 × 2 × 2 avg

Dense Block(4) 7 × 7
[
1 × 1
3 × 3

]
× 16 conv

Regression Layer 7 × 7 average pooling
7D fully-connected layer

An alternative of the objective is to minimize the repro-
jection error [17]. Denote the ground truth 3D point as P,
the reprojected 2D point as p, camera intrinsic (aperture,
focal length, etc) as K , and the camera model as a trans-
formation T . The relationship between 3D points and 2D
points can be represented as:

p = TK,t,q(P) (4)
= K[Q |t]P

where Q is the corresponding rotation matrix of q and N
is the number of known 3D-2D matching pairs. The loss
is then defined as:

L(I) =
1
N

∑
P∈P

‖TK, t̂,q̂(P) − TK,t,q(P)‖2 (5)

which aims at minimizing the reprojected error between
the ground truth pose and the predicted pose. Though the
second objective does not need the hyperparameter β, it
requires a set of 3D points of the scene as prior, which is
usually not available. Therefore, the authors employed the
first objective in the proposed approach.

3 Overview of the Proposed Approach
To leverage the end-to-end learning-based localization

in facility management, the authors propose an approach
that contains four modules: mapping, localization, facility
detection, and model update. The pipeline of the proposed
approach is shown in Figure 3.

3.1 Mapping

The image-based mapping module takes images and
their poses as the primary input but also accepts other

Figure 3. The Proposed Approach with Four Mod-
ules: (1) Mapping, (2) Localization, (3) Facility
detection, (4) Model update.

.
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data sources such as point cloud, 3D models, and a depth
map. The output of the module is a trained network that
can predict the camera pose given an image. As stated in
Section 2, the goal of mapping is to find a function f with
parameters w∗ that minimizes the localization error on the
training set:

w∗ = argmin
w

1
M

M∑
i=1

L(Ii |w) (6)

where M is the number of images in the training set and
L(Ii |w) is the error of the prediction on the i-th image Ii
given parameters w.

Figure 4. Simplified Representation of Mapping and
Localization

.

Figure 4 shows a simplified representation of a mapping
model where the x-axis is the image input, and the y-axis
is the camera pose. Since the fitness function is non-
linear, there is no closed-form solution of the optimization
problem. Therefore, to find the optimal weights w∗, we
need to employ optimization methods such as gradient
descend to gradually adjust the weights. The basic idea
of optimization methods is to start from a random weight
and moves along the direction where the loss function
goes down. Usually, the data will be randomly split into
three parts: a training set, a validation set, and a test
set. The model is fit on the training set and usually stops
optimization when the loss of validation set reaches the
minimum. The test set is used for testing purpose only.

3.2 Localization

The image-based localizationmodule (Part (2) in Figure
3) takes an image and the trained model from the mapping
module as input, and outputs the 6-DoF localization result
(x, y, z, pitch, yaw, roll) as shown in Figure 4. In the map-
ping(training) stage, themodel is trained to extract features
from images that are useful for determining image pose. To
understand the mechanism of localization module, we can
compare it with the conventional feature-based localiza-
tion method. In the feature-based localization method, we

manually extract the feature point from the image, match
the feature point with the ones stored in a database, and
estimate the location based on matching as shown in Fig-
ure 2. In contrast, end-to-end localization learns to extract
relevant features by minimizing localization error. It does
not require strict matching. Instead, the trained model
tries to estimate the parameter of the function that maps
an image to its pose.

Using end-to-end learning-based localization, the local-
izer does not need to detect feature points from the query
image and conduct feature point matching. Instead, the
pose is estimated purely by the image itself, which pro-
vides two advantages compared to the 2D-3D matching
localization method. First, since the weights of the model
and the query image have fixed size, the localization time is
independent of themap size (Scalability). Second, CNN is
able to output accurate pose even with downsized images.
For example, to fit the training images into a single GPU
with 11 GB of memory, a typical RGB image size used in
CNN is 224×224×3. In the contrast, the feature point de-
tection requires high-resolution images as its input, such as
RGB images with size 3000×2000×3, to improve the fea-
ture point matching quality. The computation complexity
of end-to-end learning-based localization is much smaller
than the one of direct matching localization. Therefore,
with proper choice of network architecture and image size,
the localizer can provide real-time localization results.

With pose information, if the position of a facility com-
ponent on an image is known, the component can be linked
to a pre-registered as-built model through ray tracing as
shown in Figure 5.

Figure 5. Finding corresponding model for detected
facility components on image using pose informa-
tion

.
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4 Implementation and Experiment
Section 4 discusses the implementation details and

presents preliminary results on two publicly available
datasets. The authors tested both the proposedmethod and
the state-of-art Structure-from-Motion (SfM) methods us-
ing Colmap Library [18] on two datasets and compared
their performance.

4.1 Dataset

The authors tested the end-to-end learning-based local-
ization module on two different datasets. The first one
is the Navvis dataset [19]. The Navvis testbed is located
on the first floor of the main site of Technical University
of Munich(TUM) with an indoor track length of 434m.
The dataset consists of 3146 high-resolution DSLR im-
ages whose size is 3456 × 5184, point cloud model of the
scene, as well as the ground truth camera pose of each im-
age. The ground truth provides the transformation matrix
that can be decomposed into locations and view angles.
The dataset also provides the camera intrinsic for 3D re-
projection. The second dataset is the Baidu IDL indoor
localization dataset [20]. The IDL dataset is captured at a
mall, containing 682 training images captured fromDSLR
camera and more than 2000 query images captured from
other cameras. In the experiment, the authors randomly
split the dataset into three parts: 8/10 for training, 1/10 for
validation, and 1/10 for testing. The training set is used
for optimizing the parameters of the model, while the val-
idation set is used for determining when to stop training as
well as choosing the proper hyperparameter β. Then the
authors evaluate the proposed approach on the test set.

4.2 Implementation

4.2.1 Preprocessing

Before training the model, the authors conducted the
following preprocessing over the data:

1. Downsize all images to 256 × 384 × 3 to accelerate
training and localization. Compared to raw images,
our GPU can process 64 compressed images in par-
allel.

2. Crop the image into four corners and a center using
the size 224 × 224 × 3. The authors did the crop-
ping for two reasons. First, it is an effective way of
data augmentation that allows the network to have
more data for training. Second, the authors used the
weights of a pretrained network on ImageNet to ini-
tialize the model, images on ImageNet uses the same
size as well. Notice that cropping will not change the
ground truth pose.

3. Randomly add 10% lighting noise (AlexNet-style
PCA lighting noise [21]) to make the model more
robust to different lighting conditions.

4. Normalize the image using the mean and standard de-
viation of ImageNet. Normalization guarantees that
the same range of values for each of the inputs to the
model, which can effectively prevent ill-conditioned
model and accelerate optimization process.

4.2.2 Training

The authors implemented the proposed model using Py-
Torch. The pretained densenet-121 model from ImageNet
is employed as the base net in the experiment. The last
layer of DenseNet was replaced by a fully-connected layers
that has 7 outputs where the first 3 outputs are x, y, and z,
while the last 4 outputs are q1, q2, q3, q4. As mentioned
in section 2.2, the objective function has a hyperparameter
β that balances the location and the view angle error. In
the experiment, we follow the suggestion in [14] and set
the β = 150 for indoor scenes. The optimization method
is Adaptive Moment Estimation(Adam) [22] and set the
learning rate as 1e − 4, β1 = 0.9, β2 = 0.999 using the
recommended settings utilized in [22]. The batch size is
64 which uses up to 11 GB of GPU memory. The model
was trained on a desktop with Intel i7-7700k CPU, 32G
RAM, and a Nvidia 1080Ti GPU.

4.3 Results

The performance of the localization module was evalu-
ated from three perspectives: 1) accuracy, 2) robustness,
and 3) efficiency. The average location error is 2.04m and
the average view angle error is 11.3◦ on Navvis dataset,
and 1.02m and 4.2◦ on IDL dataset. Figure ?? shows the
localization result on Navvis dataset. In comparison, the
SfM method failed to reconstruct a 3D model for Navvis
dataset due to poor textures of the scene. On IDL dataset,
the mean displacement and orientation error of the SfM
method are 7.21m and 18◦ respectively due to the recon-
struction ambiguity. Figure 7 shows the localization result
on IDL dataset using SfM (a) and the proposed method
(b). As shown in Figure 7, the SfM localization result has
an ambiguity issue which is caused by incorrect feature
point matching.
Figure 8 shows the translation and orientation error dis-

tribution respectively. On the IDL dataset, about 88%
of the images has a translation error lower than 2m. On
Navvis dataset, about 93.3% images have a location error
lower than 4m. In comparison, the SfM method failed to
reconstruct a 3D model on Navvis dataset and presented
an ambiguity issue on IDL dataset. The reconstruction
failure was due to the poor texture of the scene and low
overlapping between images. In our experiment, the image
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Figure 6. Localization Result using the proposed
method on Navvis dataset.

Figure 7. Localization Result from SfM (a) and the
proposed method (b) on IDL dataset. The blue rect-
angle in (a) shows the reconstruction ambiguity.

registration rate on Navvis dataset is about 15%, which is
not sufficient for 3D reconstruction. The ambiguity issue
comes from the repetitive scenes in the indoor environ-
ment. When a scene presents similar pattern at different
locations, incorrect feature matching will lead to ambigu-
ity issues. According to the experiment results, the pro-
posed method is robust to the aforementioned problems.
Regarding time and storage efficiency, during localiza-

tion, predicting each query image takes averaged 0.04s on
the aforementioned desktop using the proposed method.
The map size of the proposed method is just the network
itself, which is 35MB in total. In comparison, the state-of-
art feature-based image localization method implemented
in [23] needs an averaged 0.3s to finish localization in a

map with only 900 registered images. Also, with 900 reg-
istered images and 400 feature points on each image (Each
feature point is represented by 128 floating point numbers),
the map size of the feature-based method reaches 175 MB
and it will increase as the number of registered image in-
creases. The fixedmap size of the proposedmethodmakes
it more suitable for providing location services in a mo-
bile computing context considering the limited memory
resources of mobile devices.

Figure 8. Translation and orientation error distribu-
tion on the testset of IDL dataset

5 Conclusion
In this paper, the authors explored an end-to-end image-

based indoor localization method and proposed an ap-
proach of integrating it into a general facility manage-
ment framework. Compared to signal-based localization
methods, image-based methods do not require special in-
frastructure installed in the building and can output 6-
DoF poses. Compared to conventional image retrieval
and feature-based localization methods, end-to-end lo-
calization is robust to poor texture and repetitive scenes.
Though feature-based methods can achieve high accuracy
given accurate feature matching results, they are suscepti-
ble to inaccurate registration and reconstruction ambiguity
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as shown in the experiment. Moreover, end-to-end local-
ization has a fixed map size and can provide real-time lo-
cations while the map size of feature-based methods will
grow over time. Therefore, compared to feature-based
methods, the proposed approach is more suitable for run-
ning on mobile devices such as cell phones or tablets.
In conclusion, end-to-end image-based localization is

an alternative of indoor localization methods. It has the
potential of being integrated with a facility component de-
tection module to support facility management. However,
there are also a few challenges when using end-to-end
image-based localization. First, it requires ground truth
poses (usually captured from a laser scanner) as input for
training, which can be hard to capture in the industry due
to the difficulty of cross-sensor calibration. Second, the
performance of the proposed approach might be affected
by image quality, over-lapping between images, texture
richness, lighting conditions, and camera intrinsic differ-
ence. The authors will continue to evaluate the end-to-end
image-based localization considering these variances and
integrate it with the facility component detection module
in future research.
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