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Abstract 

Over the past decades labour productivity in 

construction has been declining. The prevalent 

approach to estimating labour productivity is 

through an analysis of the trajectories of the 

construction entities. This analysis typically exploits 

four types of trajectory data: a) walking path 

trajectories, b) dense trajectories (posture), c) 

physiological rates such as heart rate (beats/minute) 

and respiratory rate (breaths/minute), and d) sound 

signals. The output of this analysis is the number of 

work cycles performed by construction workers. The 

total duration of these cycles is equal to the labour 

input of a task. However, all such methods do not 

meet the requirements for proactive monitoring of 

labour productivity in an accurate, non-obtrusive, 

time and cost efficient way for multiple workers. 

This paper proposes a method to address this 

shortcoming. It features a promising accuracy in 

terms of calculating the labour input.  
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1 Introduction 

In general, productivity is defined as the ratio of 

output to input [1]. Productivity rates are used by 

project managers during planning and scheduling in 

order to reduce the labour cost and improve the 

performance of workers. The construction sector has 

gradually created a significant labour productivity gap 

compared to other industries over the past five decades. 

It is estimated that only 50% of the total construction 

time is productive [2,3]. This is due to factors that affect 

on-site construction tasks negatively. Almost all of them 

are related to the way that productivity is monitored. 

Construction project managers currently evaluate 

worker performance based on questionnaires, manual 

observations, and work sampling practices [4–7]. 

Construction requires proactive monitoring of labour 

productivity in order to detect issues sufficiently early. 

However, this is not feasible as current practices are 

labour intensive and time consuming due to the large 

number of employees and the long lasting tasks. This 

paper presents a method to address this issue.  

The remainder of this paper is structured as follows. 

Sections 2 analyses the current state of research in 

monitoring of labour productivity in construction. 

Section 3 presents an overview of the overall proposed 

method presented in this paper. Section 4 summarizes 

the outcomes of this paper.  

2 Background  

This paper reviews the latest studies that focus on 

monitoring of labour productivity. Current studies are 

divided in two main categories based on the methods 

they employ to infer productivity. The first contains the 

region-based studies that link the location of workers to 

regions of management interest (work zones) such as 

steel fixing zone, concrete pouring zone. The second 

consists of the activity-based studies that detect and link 

activities such as bending, hammering, and drilling to 

specific tasks. 

Region-based studies monitor labour productivity 

through the time construction entities spend at zones of 

management interest (e.g. excavation zone, concrete 

pouring zone). In order to achieve this, the location of 

monitored entities is tracked across the jobsite. The 

studies of this category are sub-divided into tagged and 

tag-less. The tagged (RF tagged) studies employ tags 

which are physically attached on workers and 

earthmoving equipment. The most frequently used tags 

are the Global Positioning System (GPS), the Radio 

Frequency Identification system (RFID), and the Ultra-

Wide band system (UWB). The above systems provide 

the input data of tagged studies. On this basis, the speed 

and the location of a haul truck were both combined for 

monitoring its productivity while performing an 

earthmoving operation [8]. If the haul truck's location 

was within the range of fixed known distances from 

specific work zones (e.g. load and dump zones), then 

the time during which its speed was equal to zero was 

converted into labour input. On the other hand, the 

labour productivity of workers, was monitored by 

linking their presence at predefined work zones [9–13]. 

For instance, if a concrete worker is located at zones “A” 

and “B” which are scheduled for concrete pouring, then 

the total time the worker spent in these zones is 
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considered productive and equal to his/her labour input. 

The studies of this category also sub-divide the areas 

between the actual work zones into waiting and 

travelling zones, for a more detailed insight of worker 

productivity. The most important disadvantage of the 

tagged studies is that they can neither identify the 

unproductive time (idle time) nor the low productivity 

pace. For example, even if a worker is located in the 

correct work zone, but without performing any task due 

to shortage of materials or congestion he/she will be still 

considered productive. This is due to the fact that labour 

productivity is monitored only based on the presence of 

workers at work zones. The tagged studies do not 

provide any extra information about what really 

happens within these work zones. In addition, the 

purchase and maintenance of multiple tags impose a 

regular cost in the long term [14]. Last but not least, the 

physical attachment of tags creates a feeling of 

discomfort to workers [15]. The tag-less studies rely on 

computer vision-based 2D tracking methods in order to 

calculate the location of workers. This location is 2D 

instead of 3D. Therefore, entities are tracked only 

within the range of a camera's view. This type of 

tracking is non-obtrusive as it processes video data 

collected through surveillance cameras used for security 

purposes. The studies in this category convert the 

location data into labour productivity through two 

approaches. The first, links the presence of tracked 

entities (workers, earthmoving equipment) to specific 

work zones similar to tagged studies [16]. For this 

reason, the ambiguity about what really happens within 

these zones arises again. The second, fits the monitored 

entities to operation process models [17–19]. Such 

models [20,21]: a) break down the construction tasks 

into sub-tasks (semantic context), b) describe how the 

sub-tasks relate to specific work zones across the jobsite 

(spatial context), and c) define the sequential order (i.e. 

workflow) between the sub-tasks (temporal context). 

However, such approach relies on human intervention in 

order to adjust the appropriate process model to each 

entity. It takes 5-10minutes for an operator to achieve 

this. Such adjustments should be repeated for every 

entity on a daily basis. The large numbers of workers 

and earthmoving equipment entails that such type of 

studies will be labour intensive if applied in practice.  

The activity-based studies firstly detect and secondly 

link activities to specific construction tasks in order to 

monitor labour productivity. These activities are the 

physical description of tasks. For example, a brick layer 

bends to pick up bricks and stretches his arms to place 

them. Bending and stretching are both activities that 

describe the brick laying task. This type of studies 

exploit posture, physiological (e.g. heart, breathing rate) 

and audio data. The posture-based studies have been 

used for monitoring both the labour productivity of 

earthmoving equipment [22,23] and construction 

workers [22–26]. Posture data are detected via feature 

descriptors such as the Histogram of Oriented Gradients 

[27] and skeletisation algorithms [28]. Machine 

learning-based algorithms such as Support Vector 

Machine Classifiers (SVMs) [29] and Artificial Neural 

Networks (ANNs) [30] are then trained to link (label) 

the detected activities to construction tasks. The highest 

achieved accuracy so far is equal to 59% [24]. In 

particular, this study was tested on workers while 

performing 11 types of tasks i.e. brick laying, 

transporting, plate cutting, drilling, re-bars fixing, 

nailing, plastering, shovelling, bolting, welding, and 

sawing. The authors admitted that this low accuracy was 

due to the fact that most of these tasks were not 

distinguishably described by posture data. On the other 

hand, posture-based studies perform very well 

(accuracy >80%) for the case of earthmoving equipment, 

as such entities have a small but well defined range of 

postures. For example, an excavation task performed by 

a dump truck is described only by two postures. The 

first depicts the unloading of materials and the second 

the transportation of materials. In addition, earthmoving 

equipment is used for only one type of tasks whereas 

workers perform a much larger variety. Physiological 

data such as heart rate (beats/minute), breathe rate 

(breaths/minute), body's force and angular rate [31–33] 

are acquired through physiological status monitoring 

(PSMs) and inertial measurement unit (IMU) wearable 

sensors. The physiological data are used for training 

machine learning-based classification methods similarly 

to the studies that exploit posture data. However, it has 

been proven that heart and breathe rates cannot establish 

any relationship with individual’s labour productivity 

[31]. On the other hand, body's force and angular rate, 

extracted with accelerometers and gyroscopes of IMUs 

sensors, achieved a promising performance (≈80% 

accuracy) in terms of detecting and labelling activities 

such as hammering, sawing, turning a wrench, 

loading/unloading/pushing a wheelbarrow [32]. 

Physiological-based studies have been also successfully 

used for identifying abnormalities in the performance of 

workers (awkward postures) for health and safety 

purposes [33]. Their main limitation is that they rely on 

data collected with wearable sensors that give rise to 

privacy issues. Lastly, audio data which are recorded by 

microphones placed at construction jobsites have also 

been exploited for monitoring the productivity of 

construction entities [34,35]. These audio-based studies 

are applicable only to tasks that produce discrete sounds 

such as nailing, hammering, excavating, and drilling. 

Although they have managed to successfully remove 

background noise, they are still not designed to monitor 

the labour productivity of multiple entities that perform 

similar tasks simultaneously.  
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3 Methodology  

Figure 1 illustrates a method for monitoring labour 

productivity of multiple workers at the same time. The 

skewed parallelogram shapes refer to methods and the 

circular to inputs/outputs. The method consists of two 

main sub-methods illustrated with black coloured 

skewed parallelogram shapes. The output of the first is 

the input for the second. The inputs of the method are 

video data streamed from multiple cameras, whilst the 

output of the method is the total productive and 

unproductive time spent by each worker. This paper 

hypothesizes that task productivity of construction 

workers can be monitored through their trajectory data.  

 

 
Figure 1. Method for automated construction 

worker task productivity monitoring.  

 

The labour productivity is calculated by dividing a 

worker’s total output over the total input [5]. The 

determination of output is quite straightforward through 

visual inspections (e.g. number of pipes installed, 

number of m3 being excavated). Hence, this paper 

focuses only on the input. The main assumption of this 

paper is that all construction-related tasks fit to the same 

pattern. This pattern dictates that if a worker’s “move” 

is followed sequentially by one “stop” and a second 

“move”, then these three semantic events define a work 

cycle. This assumption is based on the fact that workers 

“stop” in order to perform a construction-related task 

and they “move” to start another. In construction, a 

work cycle is defined as the total time a worker spends 

on a task [4]. Hence, the duration of a work cycle is 

equal to the duration of the semantic “stop” event. 

Sequentially, the duration of all work cycles is equal to 

the labour input of a worker. Therefore, the labour input 

can be extracted by detecting these work cycles.  

The first method of the proposed method is a 

computer vision-based method for 4D tracking of 

construction workers. This type of tracking is 

unobtrusive as it is tag-less. The input data are videos 

collected through the cameras of jobsites’ surveillance 

systems. It returns one 4D trajectory for every worker as 

output. These 4D trajectories depict the 3D (X, Y, and Z) 

location of workers across the entire range of a jobsite 

over time. This 4D localization overcomes the limitation 

of previous tag-less studies that monitored workers only 

within a camera’s view. An intra and an inter camera 

tracking are performed sequentially in order to achieve 

this 4D tracking [36]. The former matches workers 

under the same unique ID across subsequent frames of a 

camera, whilst the latter matches workers across 

multiple cameras. Then, a triangulation method [37], is 

applied in order to convert the 2D trajectories into 4D.  

The second method of the proposed method is 

productivity monitoring. It uses the output of the 4D 

tracking method as input. Initially, a smoothing method 

removes the noise from the 4D trajectories. Then, the 

4D trajectory of each worker is partitioned into smaller 

4D sub-trajectories. The 3D speed values of these 

partitions are exploited to cluster them into work cycles 

based on the main assumption of this paper. The 

accurate detection of these work cycles addresses the 

second aim of this paper as their total duration is equal 

to the labour input of construction workers. The 3D 

speed values depict the motion of workers along the 

floor (XZ) and the vertical plane (Y). The detected work 

cycles are classified as: a) unproductive, b) normal 

productive, and c) abnormal productive. Initially, they 

are classified as either productive or unproductive 

through region-based classification that splits the jobsite 

into two types of areas, “active” and “inactive”. The 

former contains the areas of the jobsite where tasks such 

as excavation, brick laying are performed. The latter 

consists of areas where no construction-related tasks 

take place. These are the: a) rest areas, b) materials’ 

storage areas, and c) office areas. The work cycles that 

take place at “active” areas are classified as productive 

while those that take place at “inactive” areas are 

classified as unproductive. Then, the productive work 

cycles are further classified in order to detect potential 

abnormalities in the pace of the labour input. The 

durations of the productive work cycles are compared 

for this purpose. Those with the highest duration are 

classified as potentially abnormal and the rest as normal. 

This second classification is used as an indicator. It 

shows project managers whether something appears to 
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be “wrong” with workers’ productivity pace. Managers 

can then look into the video data at the time of the day 

the abnormalities occurred and check whether 

something was actually incorrect with these work cycles. 

This way problems are identified and treated fast. The 

productivity monitoring method does not need any prior 

knowledge about the type or the number of tasks 

workers perform. Therefore, labour productivity of 

multiple workers can be monitored at the same time. 

This entails proactivity. 

4 Results 

This section evaluates the performance of the 

method presented in this paper in terms of translating 

the trajectory data into labour input. This is achieved 

with a C# implementation in Microsoft Visual 

Studio.Net framework running in a Windows 8.1 

operating system. The integrated development 

environment is Visual Studio 2013, using Windows 

Forms (WinForms). A desktop PC with the following 

specs is used: Intel core i7 CPU, 4.0GHz, and 32 GB 

RAM. The cameras used in the experiments are two 

GoPro cameras, black edition 4 with a 1920x1080 frame 

size, and selected 900 narrow field of view to reduce the 

distortion of camera fish eye effect. Both cameras are 

mounted in such a way that monitored workers are 

captured within their overlapping field of views.  

Precision, recall, and accuracy metrics are used for 

the evaluation of this chapter’s proposed method. 

Precision is the fraction of the total number of correctly 

detected work cycles (TP, True Positive) over the total 

number of incorrectly and correctly detected work 

cycles (TP + FP, True Positive + False Positive). Recall 

depicts the detection completion level and is equal to 

the total number of correctly detected work cycles (TP) 

divided by the total number of correctly detected and 

incorrectly not detected work cycles (TP + FN, True 

Positive + False Negative). Lastly, accuracy is defined 

by the number of correctly detected work cycles (TP) 

and the number of work cycles which were correctly not 

detected (TN, True Negative), over the total sum of 

work cycles.  

The proposed method is tested on an electrical task 

(see Figure 2). This data set consists of two recordings 

(part A, B) with a duration of approximately 17minutes 

each. Both recordings were collected the same day. In 

total, steel worker performed 29 work cycles that depict 

the following sub-tasks: a) fixing steel re-bars, b) 

picking re-bars or equipment, and c) reading drawings. 

Only one is unproductive, whilst none of the productive 

work cycles corresponds to idle time.  

 

 

Figure 2. Tested data set. 

 

This section colours red the unproductive, yellow 

the abnormal productive and green the normal 

productive work cycles. Figure 3 illustrates the 4D 

trajectories of part B.   

 

 

Figure 3. X, Y, Z trajectories over time (part B).  

 

The proposed method detects 9 TP, 1 TN, 0 FP and 

0 FN work cycles in part A, and 10 TP, 2 TN, 7 FN and 

1FP work cycles in part B. Table 1 shows the ground 

truth of the manually collected work cycles vs the 

automated detected ones. The 3 TN results (#1, #11, and 

#12) result from the way trajectories are smoothed. The 

smoothing step k is equal to 19sec if divided by camera 

frame rate i.e. 
𝑘

𝑓𝑝𝑠
=

570

30
. Hence, all smoothed time 

series are 19sec shorter in length at the beginning 

compared to the unsmoothed. Hence, work cycles that 

fall within the initial 19sec cannot be detected. All TN 

results occur at the beginning of each recording. The 

missed #17 and the 1FP work cycles of part B are due to 

instabilities of the implemented computer vision-based 

2D tracking method. All the rest FN work cycles are of 

short duration (< 4sec). This shows that that the 

proposed method does not perform well in terms of 

detecting work cycles of such short duration.  
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Table 1: Manually collected ground truth of 

semantic “stops”. 

Part A (GT) 

#         Start - End 

1. 00:00:033-0:05:105(TN) 

2. 00:12:645-03:37:884(TP) 

3. 03:39:153-07:48:035(TP) 

4. 07:50:036-11:41:067(TP) 

5. 11:42:268-11:44:070(TP) 

6. 11:52:545-15:31:798(TP) 

7. 15:35:101-15:40:273(TP) 

8. 15:45:645-16:49:609(TP) 

9. 15:57:317-17:02:989(TP) 

10. 17:11:131-17:42:962(TP) 

Part B (GT) 

# Start - End 

11. 00:00:033-00:13:680(TN) 

12. 00:19:919-00:21:287(TN) 

13. 00:25:258-00:30:697(TP) 

14. 00:33:867-00:34:768(FN) 

15. 00:37:771-01:24:150(TP) 

16. 01:28:855-02:36:322(TP) 

17. 02:40:293-02:47:667(FN) 

18. 02:49:202-02:51:071(FN) 

19. 02:52:205-05:53:687(FN) 

20. 05:55:021-14:14:087(TP) 

21. 14:15:388-15:02:268(FN) 

22. 15:03:670-16:15:175(TP) 

23. 16:18:645-16:28:988(TP) 

24. 16:32:359-16:42:102(TP) 

25. 16:47:173-17:02:422(TP) 

26. 17:05:658-17:08:628(FN) 

27. 17:09:896-17:18:171(TP) 

28. 17:23:943-17:29:416(FN) 

29. 17:30:517-17:41:227(TP) 

 

In Part A, the work cycle #3 shows that steel worker 

was unproductive i.e. definitely not performing the steel 

fixing task, for 4.15minutes. Work cycles #5, and #7 to 

#10 are all classified as normal productive whilst the 

work cycles with the largest duration #2, #4, and #6, are 

all classified as abnormal productive (see  (a) Figure 4). 

In part B, nine out of ten work cycles of this recording, 

are returned as normal (#13, #15, #16, #22 to #25, #27 

and #29) and only one is classified as abnormal (#20) 

(see (b) in  Figure 4). The interesting observation about 

the recording of part A, is that the abnormal cycle has a 

duration of 11.56minutes which is by far the largest 

compared to the rest cycles of both parts A and B. This 

raises an ambiguity about the performance of steel 

worker during this time. It can be easily observed, if we 

check the video footages at the exact time the abnormal 

cycle #20 occurred, that steel worker could not fit a 

reinforcing steel bar in the formwork due to complexity 

of drawings. This is a common issue that affects labour 

productivity. If we sum all the TP normal and abnormal 

work cycles, then the labour input of the steel worker is 

equal to 28.29minutes for both parts (A, B). The 

manually calculated labour input is equal to 

30.62minutes. Therefore, the proposed method 

measured the total labour input of the steel worker with 

an accuracy of 92%.   

 

 
Figure 4: Detected work cycles of steel worker (red: 

unproductive, yellow: abnormal productive and 

green: normal productive).  

 

5 Conclusions  

The current state of research has not yet proposed a 

method that performs a non-obtrusive, accurate, cost 

efficient and generalized monitoring of labour 

productivity for construction workers. This paper 

presents a method that addresses these issues in order to 

detect repetitive patterns in the trajectories of 

construction workers that depict work cycles. The total 

duration of these work cycles is equal to the labour 

input of workers. The novelty of the proposed method 

lies in clustering. Firstly, the 4D trajectories of workers 

are smoothed in order to remove noise. Then, they are 

segmented into 4D sub-trajectories and classified as 

either “move” or “stop” semantic events. The former 

event depicts the motion of workers along the floor 

plane, whilst the latter depicts the motion of workers 

along the vertical plane. The classified 4D sub-

trajectories are finally grouped into clusters based on the 

main assumption of this paper that: every work cycle is 

described by two semantic “move” events and one 

semantic “stop” event. 

The main limitations of the method presented in this 

paper are the following. Firstly, work cycles that depict 

workers who while at “stop” do not perform any task 

(idle time) are mistakenly detected as productive. 

However, as previous studies [38–43] stated “idle” time 



35th International Symposium on Automation and Robotics in Construction (ISARC 2018) 

 

is not of the main causes behind low labour productivity.  

Secondly, the productivity of workers who perform 

tasks mainly characterized by motion such as 

transferring materials, supervising work progress etc. 

cannot be monitored. This is because the “move” events 

depict the actual labour input instead of the “stop” 

events in such cases. This second limitation indicates 

that the automated monitoring of workers presented in 

this paper cannot be applied to the entire range of 

construction related tasks. Only if the proposed method 

was updated with the type of tasks of workers it would 

be possible to turn also the detected “move” events into 

labour input.  
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