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Abstract -
Construction sites are continuously changing environ-

ments where construction workers have to adapt to dynamic
situations while executing their work tasks safely and effi-
ciently. Simultaneously, they are surrounded by heavy con-
structionmachinery andmassive crane loadswhich they have
to be aware of at any time. Frequent interruptions may of-
ten lead to a loss in productivity and also causes hazardous
conditions or even incidents, injuries or fatalities. Track-
ing workers’ paths on site can be used to approach these
issues. Recorded tracks can be used to identify close calls
of inexperienced or distracted workers. To date, pedestrian
workers may participate in customized trainings in order to
overcome individual deficits. Machine operators can be as-
sisted tomitigate hazardous situations by warning them from
construction workers approaching their machines.

Since surveillance cameras are already existent on most
construction sites, a video-based detection and tracking sys-
tem can be implemented at low costs. Relying on video
streams, the detection of workers becomes similar to pedes-
trian detection. Some effort has already been made to elab-
orate those methods to the needs of construction worker de-
tection. However, in contrast to the frontal view supposed
in most pedestrian detection approaches, cameras on con-
struction sites commonly provide oblique or bird’s-eye view
perspectives. This complicates the detection task as most
body parts of a worker are occluded. Hence, we evaluate the
applicability of pedestrian detection approaches in terms of
the camera settings at hand. Ensuing, we propose a concept
for the detection and tracking of construction workers which
allows to improve the productivity and safety on construction
sites.
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1 Introduction
Construction sites constitute highly complex, dynamic

environments. Often, workers execute their working rou-
tines in collaboration with heavy machinery operating in
their own workspace. For example, excavators and other
construction vehicles cross the paths of construction work-

ers and cranes lift massive loads over their heads. A va-
riety of hazardous situations may arise from that such as
incidents involving material and equipment or injuries and
fatalities happening to workers or persons standing nearby.
Hence, construction workers have to be trained to be sen-
sitized for potential hazards. Hazardous situations such
as close calls can directly be identified from the workers’
actual paths across the construction site. Recording these
could facilitate the identification of the necessity of fur-
ther trainings as well as the customization of trainings with
respect to the workers’ deficits.
Concurrently, machine operators should be assisted in

recognizing potential hazards involving workers in ad-
vance so that accidents can be avoided. Augmenting their
field of view with the positions and walking path trajec-
tories of workers as sketched in Figure 1 could further
improve the safety on site as it enables operators to per-
ceive distracted workers even if they are laboring in blind
spots. Warning machine operators of such hazards could
mitigate such situations which otherwise could end fatal.

Figure 1. Augmented field of view of a crane op-
erator. Yellow circles represent detected construc-
tion workers color-coded according to their level of
hazard. Green highlighted workers are in sufficient
distance to the hazard zone of the crane’s load (red
ellipsoid) and are predicted to walk away from it.
Workers are marked orange if they approach the
hazard zone or already stand near to it. Workers
exposed to the hazard are marked red.

The obtainment of the constructionworkers’ trajectories
in construction-related areas of a site and in the surround-
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ing of machinery, thus, allows to significantly decrease
safety issues. Further application areas may also benefit
from this, such as checking workers for wearing appropri-
ate safety equipment, site access control systems, or even
the improvement of productivity. A reasonable tracking
of workers during their working routines tackles multiple
issues on site and is already in the scope of research. De-
pending on the surrounding, common approaches rely on
different radio signal emitters like radio-frequency identi-
fication (RFID), ultra-wideband (UWB), and global navi-
gation satellite system (GNSS) tags. These are attached to
the gear of each construction worker which involves high
costs [1] and causes discomfort [2]. In contrast, a camera
based tracking of workers on construction sites provides a
cost-saving and less obtrusive approach.

Relying on video streams, the task becomes similar to
pedestrian detection which is a well researched topic to-
day. There are already approaches adapting methods of
this field for construction worker detection. Nevertheless,
crucial differences between the application areas have to be
taken into account. Due to the actual scope of application
in advanced driver assistance systems, pedestrian detection
approaches commonly assume a frontal view. In contrast,
surveillance cameras on construction sites as well as cam-
eras for crane operator assistance are usually mounted in
heights to existing structures resulting in bird’s-eye view
perspectives recording the workers sometimes even over
far distances. This complicates detection since most parts
of the bodies are occluded by theworkers’ heads and shoul-
ders or physical obstructions. Therefore, we evaluate pre-
vious pedestrian detection approaches with respect to their
applicability in bird’s-eye view images. Based on this re-
search objective, we propose a conceptual system which
improves over previously made approaches tracking con-
struction workers for safety and productivity issues. For
this purpose, we apply a background subtraction method
which identifies regions of interest in the camera image. A
cascaded classifier investigates these regions and detects
construction workers. In order to track the detected work-
ers through multiple camera frames, we apply Kalman
filtering.

The remainder of this paper is structured as follows: in
Section 2, we motivate our work by surveys and studies
concerning safety and productivity issues. We investi-
gate previously made approaches of pedestrian detection
in Section 3 and discuss thesewith regard to the limitations
in the video data in the field of construction monitoring.
Based on the findings, a conceptual system for tracking
construction workers on sites is proposed (see Sec. 4). Fi-
nally, we discuss the results and conclude on our concept
in Section 5.

2 Motivation
High rates of injuries and fatalities in construction are

often explained by its complex, dynamic, and continuously
changing work environment. Whereas cranes play a cen-
tral role in construction operations, federal labor statistics
inmany countries relate about 15-25%of all fatal construc-
tion workplace accidents to too close proximity of pedes-
trian workers to construction equipment or hazardous ma-
terials [3]. Struck by moving parts of crane equipment or
hit by falling objects are some of the most frequent causes
of crane-related construction accidents [4]. Their outcome
is often fatal [5], which distinguishes crane-related acci-
dents from the majority of other construction accidents
where the outcomes are minor (e. g., cut in finger).
Cranes come typically in numerous configurations to fit

unique sites [6]. Cranes carrying loads over, into, and/or
aroundworkers’ environment add yet another dimension of
risk to an already complex workspace. Though safe crane
design, several on-board safety devices and operational
procedures exist, large problems remain to operate them
safely. Research studies state:

• About 16% of all construction fatalities relate to
cranes [7]

• 33% of all construction casualties and permanent dis-
abilities relate to cranes [8]

• 87% of crane-related deaths occur among workers
and do not involve operators [9]

• Few in the transient construction workforce have op-
erating or rigging experience [5]

• Little information about the causal factors or envi-
ronments leading to the accidents or close call events
is known [10]

Few safety statistics from around the world exist that
explain the problem in detail. The Center for Construc-
tion Research and Training analyzed data collected by the
U.S. Bureau of Labor Statistics in the years 1992-2006
[11]. In this time period, 632 crane-related deaths were
identified which occurred in 610 crane incidents. These
numbers equal to an average of 42 crane-related deaths
per year. Whereas mobile or truck cranes (at least 71%)
were the main types of cranes that have been associated
with crane-related fatalities, tower cranes (5%), floating or
barge cranes and overhead cranes, and other/unspecified
cranes are the other crane types (24%). Of the total 632
crane-related deaths, 157 (25%) were caused by overhead
power line electrocutions, 132 (21%) deaths were associ-
ated with struck by crane loads, 89 (14%) involved crane
collapses, 78 (12%) involved a construction worker being
struck by a (i.e. falling) crane boom/jibs, 56 (9%) included
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falls from cranes/crane baskets/crane loads, 47 (7%) were
struck by crane or crane parts, 30 (5%) caught-in between,
and 43 (7%) deaths were from other causes. The activ-
ities immediately preceding the workers’ deaths related
to deaths from struck by crane loads (132 between 1992-
206) were: 32% of the workers were not involved with
the crane, 32% loaded/unloaded, 15% performed other
crane-related work, 14% were flagging/directing/guiding,
and 7% operated the crane. The majority of the work-
ers belonged to laborers (191 deaths), while the others
trades were heavy equipment operators (101), supervi-
sors/managers/administrative (86), ironworkers (42), me-
chanics (41) and other trades (171).

In their recommendation to prevent crane accidents
from happening in the future, CPWR recommends the
following actions to take: crane operators should be
certified; crane riggers and signalpersons should be ad-
equately trained; crane inspectors should be qualified;
cranes should be inspected; only qualified and compe-
tent persons should assemble, modify or disassemble a
crane; cranes should not be allowed to pass over street
traffic; and more thorough investigations and immediate
follow-ups should be performed. Despite the poor safety
performance of cranes in construction and several rec-
ommendations that are already part of many construction
safety leaders’ best practices, no proactive approach has
been taken towards detecting and resolving the identified
crane-related hazards [12]. For example, when a crane
load swings over an active worker environment, pedes-
trian workers and crane operator should be warned of the
risk of falling objects or being struck-by.

InGermany, construction occupational safety and health
is embodied in and shaped by numerous laws, regulations
and ordinances with a view to ensuring the safety and
health of construction workers in the workplace. Tech-
nical Occupational Safety and Health includes all areas
that affect the safety of workers at work. The Safety and
Health at Work Act (ArbSchG) regulates the underlying
occupational safety and health duties of the employer, the
duties and rights of workers, and the monitoring of occu-
pational safety and health in accordance with this Act. In
the control hierarchy (a) technical, (b) organizational, and
(c) personalmeasures are typically embedded in an organi-
zation’s safety culture. These respectively and whenever
possible, (a) avoid hazards in the first place by replac-
ing hazardous work practices with safer ones and separate
workers fromhazardousworkspaces, (b) limit the exposure
time to hazards, and (c) provide personal protective equip-
ment (PPE) and instruct personnel [13]. Again, existing
regulations, rules or best practices on safety in construction
do not envision proactive solutions other than education,
training, and enforcement. For example, by means of us-
ing technology, pedestrian workers and operators could

be automatically warned in real-time from nearby or ap-
proaching crane loads. However, such technology does
not exist today [14].

3 Detection Methods
The safety of construction workers on site can be im-

proved by focusing on their working behavior. By tracking
their paths across the site, hazardous situations like close
calls can be identified. Additionally, operators can be
warned from potentially distracted workers approaching
their machines too closely. For tracking workers on con-
struction sites different technologies have already been
applied. Most prominent are radio signal emitters like
RFID, UWB, and GPS tags which are attached to the
gear of the construction workers. Besides the imposed
costs for equipping each worker on the site [1], theses tags
are perceived to be obtrusive, resulting in discomfort ac-
companied by a decrease in motivation [2]. Video-based
techniques overcome these deficiencies and allow for a
uniform method of detecting and tracking workers all over
the site. As nowadays cameras are ubiquitous and not pri-
marily meant to control workers, they can be considered
to be less obtrusive. Moreover, by making use of already
existent surveillance cameras only few cameras have to be
additionally installed, keeping new investments and main-
tenance costs low.
Identifying workers in video streams is similar to pedes-

trian detection. By now, this is a well understood field
of research in the computer vision area which already
provides a variety of satisfying methods. Especially the
automotive industry continuously advances the current
methodology. Due to the usual application area in ad-
vanced driver assistance systems, approaches in this field
assume frontal images of pedestrians. Some approaches
already adapt those methods to construction worker detec-
tion [15, 16]. Referring to this, Park and Brilakis [16] pro-
pose a two-parted detection approach. They learn shape
features using a support vector machine (SVM) to identify
people in frontal view images. Using color features these
detections are further processed by a k-nearest neighbor
(k-NN) classifier to detect construction workers by their
safety vests. On construction sites, however, frontal view
images are merely an exceptional case. Surveillance cam-
eras are usually mounted to high posts, scaffolds, or on
nearby building facades or roofs. In particular, for assist-
ing crane operators at lifts, cameras have to be mounted
to the jib or at least high on the crane tower. Detection
and tracking of workers on construction sites, thus, have to
be done in bird’s-eye view images. This complicates the
detection task as the workers’ bodies are barely visible as
can be seen in Figure 2. For this reason, identifying con-
struction workers on site requires a robust detector which
yields reasonable results despite sparse indications for the
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presence of a worker caused by the challenging perspec-
tive.

Figure 2. Construction workers recorded by a
surveillance camera mounted 15m above ground.

In comprehensive surveys Dollár et al. [17] and Benen-
son et al. [18] summarize the state-of-the-art pedestrian
detection algorithms and evaluate their performance. Be-
nenson et al. propose to categorize the approaches into
deformable part-based models (DPM), deep learning, and
decision forests.

DPM Approaches based on DPM subdivide an object
into a star-structured part-based model consisting of a root
object and multiple parts attached to it [19]. Accord-
ing to this, a latent SVM can be trained using a pyra-
mid of histograms of oriented gradients (HOG) features
in order to classify pedestrians by detecting their body
parts [20, 21]. Advancing the part-based model towards a
multi-resolution structure improves detection results [22].
Nevertheless, in our case the view is generally narrowed to
the heads and shoulders of pedestrian constructionworkers
wearing personal protective equipment (PPE).Approaches
relying on the detection of silhouettes and body parts, con-
sequently, are ineligible in this context.

Deep Learning Deep learning comprises approaches
using large artificial neural networks. These can be used
for object detection by extracting features from the image
data. Sermanet et al. [23] apply a convolutional neural
network which learns relevant features from the training
data. Albeit the network yields fair results on similar data
sets, it fails on generalization. Up to now, it has not been
shown that deep learning approaches can be used to learn
sufficient image features [18]. For other deep learning
approaches [24, 25] features have to be predefined manu-
ally. It is doubtful if such heavy techniques are necessary

to evaluate manually selected features. Furthermore, the
latter approaches again pursue the part-based idea which
is not applicable for bird’s-eye view images. Since the
results obtained by deep learning on pedestrian detection
tasks are yet at the same level with DPM and decision
forests, advantages of deep learning are still questionable
[18]. Hence, simpler methods should be preferred instead.

Decision Forests Decision forests are ensembles of de-
cision trees in which the nodes represent weak classifiers.
Samples are classified by passing through the trees. Viola
and Jones [26] proposed an approach using AdaBoost to
train a pruned decision tree with Haar features as weak
classifiers. Originally developed for face detection, they
showed that it is also applicable to pedestrian detection
[27]. Bourdev and Brandt [28] improved the method by
promoting the confidence of each evaluated weak classi-
fiers through the tree. Coupled with a generalized feature
approach, Dollár et al. [29] showed that this method out-
performs previous pedestrian detectors. This indicates
that the detection results of decision forests improve with
the development of features. By now, other pedestrian
detectors achieve a similar detection quality compared to
decision forests. Nevertheless, boosted decision trees usu-
ally outperform monolithic classifiers like SVM on most
detection tasks [30]. Furthermore, boosting automatically
selects the most suitable set of features from a given pool.
This overcomes the need for evaluating features manually
as it is commonly unclear which features qualify best for
a certain task.

Whereas Benenson et al. mainly categorize the ap-
proaches by their machine learning algorithms, Dollár et
al. focus on the sets of features. They found that gradient-
based features like HOG [31] are most prominent. Be-
sides this, shape features [32, 33] and motion features [27]
are frequently used. While HOG feature approaches per-
form best in comparison to other single feature settings,
even better detection results can be achieved when com-
bined with multiple features providing complementary in-
formation. Accordingly, combining Haar-like features,
shapelets, shape context, and HOG features outperforms
any single feature approach [34]. In their study, Dollár
et al. [29] focus on the choice of features and propose a
framework to efficiently compute multiple features based
on integral channels.

4 Concept
We evaluated previously made pedestrian detection ap-

proaches regarding the requirements and general condi-
tions of construction workers detection in bird’s-eye view
images. In the following, we develop a concept for track-
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ing construction workers on site considering the insights
gained in Section 3. Figure 3 depicts the conceptual sys-
tem in total.
According to the findings in Section 3, methods relying

on DPM are not applicable for our purpose as the per-
spective does not allow for the detection of body parts.
Also deep learning is not preferable in this context since it
could not be shown that deep neural networks are advanta-
geous over other approaches. In contrast, decision forests
prove to be well suited for construction worker detection
in bird’s-eye view images.
For our conceptual worker tracking system, we propose

a single classifier approach using a decision tree as this
highly improves the speed over the two-parted detection
system by Park and Brilakis [16]. We decide for the soft
cascaded approach proposed by Bourdev and Brandt since
its detection results exceed those of the Viola-Jones de-
tector. Additionally, its likewise pruned cascading layout
further improves the speed of classification by rejecting
negative samples early in the cascade. Hereby, the entire
cascade has to be processed for positive samples only; for
negative samples only few image feature are evaluated be-
fore rejection. This eases real-time processing on video
data. Moreover, since it is unknown which image fea-
tures qualify for this task, boosting automatically selects
the optimal set of features for our purpose. Accordingly,
a manual selection as in the approach of Park and Brilakis
[16] is not required.
We exchange the originally proposed thresholded Haar

features by integral channel features. This further im-
proves the detector as various image feature types can be
efficiently computed using integral channels, and the com-
bination of multiple feature types advances the detection
quality over single feature approaches. Similar to Park
and Brilakis [16], our concept relies on the identification
of shape and color in order to detect construction workers.
Since features responding to contours yield reasonable re-
sults on pedestrian detection, we draw on adjacent second-
order integral channel features on grayscale images. These
are equivalent to Haar features which act as edge detec-
tors and, thus, indicate shape information. Apart from
contours, construction workers are commonly character-
ized by their PPE including their helmets and safety vests.
Thus, color features may improve detection by incorporat-
ing the prominent colors of these items. Color histograms
can be efficiently computed by applying first-order integral
channel features to quantified versions of each color chan-
nel separately. For both feature types, illumination has to
be taken into account as it affects the features’ responses.
Grayscale images can be variance normalized to minimize
the influence of different lighting conditions. In case of
color histograms, the color space has to be chosen prop-
erly. In Figure 4 we compare RGB and HSV color spaces

with respect to safety vests in different illumination. As
can be seen, color histograms over red, green, and blue
channels significantly change when altering the lighting
conditions. As brightness is implicitly encoded in each
channel of this color space, varying the illumination con-
ditions directly affects the color information of these three
color channels. Contrarily, in the HSV color space hue
and saturation channels are invariant to illumination since
brightness is explicitly encoded in the value channel so
that only hue and saturation represent color information.
Color spaces like HSL or YUV should also be considered
as these offer equivalent channel characteristics.
Instead of scanning the entire image for construction

workers we favor background subtraction beforehand. By
identifying areas of motion within each video frame, clas-
sification can be limited to regions of interest. Albeit the
speed of the soft cascaded classifier allows to scan images
in real-time, restricting the scope of the classifier may sig-
nificantly reduce false positive detection. Areas of motion
can be identified by frame differencing. Assuming the
previous video frame as background, subtracting it from
the current frame reveals changes which imply movement
(see Fig. 5). By thresholding the results, its sensitivity
can be controlled:

|It−1(x, y) − It (x, y)| > τ

where It−1(x, y) and It (x, y) denote the previous and cur-
rent video frames and τ is the threshold.
The quality of the results highly depend on the choice

of the threshold τ. Furthermore, image noise and fast
illumination changes may be interpreted as motion. For
a higher robustness we advance to learn a more complex
background model. By averaging the background over
multiple frames [35] a background model emerges which
is insensitive to momentary changes between few frames.
In order to predict the paths of construction workers, the

detected workers have to be tracked throughout the video
frames. For this, we suggest the application of Kalman fil-
tering to the detections. Given position and velocity data
of a detected construction worker, the Kalman filter pre-
dicts its future state ongoing. Subsequent measurements
of position and velocity are fed into the Kalman filter to
reduce the uncertainty of the predictions. This approach
also supports the detector as it provides further regions
of interest in which construction workers may be detected
even if they are standing still.

5 Conclusion
On construction sites, workers are exposed to a variety

of hazards. Construction machines cross their paths and
loads are lifted over their heads. This often results in close
calls or even accidents. Thus, construction workers have
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Figure 3. Conceptual system for tracking construction workers on site in bird’s-eye view images. Initially
a foreground extraction of the incoming camera images is made via background subtraction averaging the
background based on a certain number of previous frames. Construction workers are, then, detected in the
foreground by means of edge and color feature. Using a Kalman filter, these detections are tracked in the camera
frames over time.
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Figure 4. Comparison of histograms in different color spaces with respect to a safety vest (first column) in dark
(first row) and bright (second row) illumination. In the RGB color space (second column) high variation occurs
in the peak positions of each channels. On the contrary, hue and saturation channels of the HSV color space
(third column) are significantly more robust to illumination changes.
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Figure 5. Frame differencing applied to two consecutive frames showing a construction worker with a threshold
τ of 40. White areas in the resulting binary image indicate areas with motion.
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to be trained individually in order to sensitize them for
potential hazards. Tracking workers during their working
routines in construction-relevant areas on sites may im-
prove the customization of the trainings since these can be
adjusted to individual deficits. Furthermore, the tracking
of workers can be used to avoid accidents involving heavy
machinery by assisting machine operators and providing
position and walking path information. The optimal for
communicating such valuable and potentially life-saving
information has yet to be found for applications in con-
struction.
A video-based tracking system offers a cost-efficient

and uniform alternative compared to conventional tag-
based methods. Although detecting construction work-
ers is similar to pedestrian detection, the perspective of
high mounted cameras complicates the task. Thus, we in-
vestigated common pedestrian detection approaches with
respect to the applicability for construction worker detec-
tion in bird’s-eye view images. We discussed detectors of
different categories and found that decision forests qualify
best. Using a multi-feature approach enhances common
edge feature approaches with complementing information
which further improves detection. For this reason, we pre-
fer to apply a soft cascaded classifier in our conceptual
tracking system. As weak classifiers, we propose edge
features and color histograms of the integral channel fea-
ture approach. Background subtraction is used to focus
the classifier on regions of interest and to reduce false pos-
itive detections. In order to track detected workers and to
predict their future walking paths, Kalman filtering can be
applied.
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