Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

From Demonstration to Practical Use
- *To New Stage of Construction Robot* -

Kitakyushu, Japan, October 27-28, 2020
Preface

The 1st International Symposium on Automation and Construction (ISARC) was held at Carnegie Mellon University in Pittsburgh, Pennsylvania, USA in 1984. Since then, ISARC has been held all over the world every year to exchange information about the development and practical use of construction robot technology among industry experts, academic researchers and individuals with novel ideas for all fields of construction, civil and building engineering, machine automation, robotics applications to construction, information technologies, planning, logistics, etc.

ISARC has been held in Japan four times so far, but it has not been held here since 2006, because the momentum for the development of construction robots declined rapidly with the economic downturn around 2000. We were very pleased to learn that we would be able to hold the 37th ISARC in Japan in 2020 after 14 years thanks to the recent increase of momentum in the development of construction robots.

For the symposium, we had planned and prepared to organize not only research presentations, but also key note lectures, technical exhibitions and technical visits related to construction robots in use on the island of Kyushu, in the western part of Japan. Last December, we started a call for papers, and more than 390 abstracts were received from 33 countries.

Unfortunately, the infectious disease caused by COVID-19, which started at the end of last year, quickly spread throughout the world, and many people are still suffering from its effects. We would like to express our heartfelt sympathy to all the people who are in a severe situation, including those who have lost loved ones and/or have been infected by the disease.

There is still no clear end in sight to COVID-19. For this reason, in May of this year, we decided to hold the symposium online and immediately started the preparations for an online symposium. However, we had neither the experience nor the know-how to organize an online international symposium. Therefore, our original plan was not necessarily a very productive one. Under these circumstances, we received tremendous support from the IAARC Board members and were able to hold the online symposium successfully. We would like to extend our sincere gratitude to them for their kindness and great cooperation.

Although the number of submitted papers decreased, due to changes related to an online symposium, we still received 221 full papers from 23 countries. We believe that this symposium was very fruitful in terms of cross-national technical exchange among all the participants.

Finally, I would like to express our deepest gratitude to the members of the Japanese local committee for all the work they did with us in planning and preparing for this symposium. I believe that the efforts of all the people involved in this symposium will greatly contribute to the further evolution of construction robots.

Kazuyoshi Tateyama
Chair, 37th ISARC
Professor, Ritsumeikan University, Japan
Introduction

This publication is the Proceedings of the 37th International Symposium on Automation and Robotics in Construction (ISARC). The symposium was held online during 27-28 October 2020. The Proceedings include an illustrated review of the program, the names of organizations and persons who contributed to the technical program, and the 221 technical papers from 23 countries authored for this international meeting.

The manuscripts were presented during 57 sessions on 3 tracks, among them: automation and robotics, building information modeling (BIM), inspection and monitoring, artificial intelligence and machine learning, construction management, safety and health, data sensing and analysis, mixed Realities (AR/VR), control technology, education, environmental sensing and modeling, human sensing and monitoring, IT supported system, database, big data, lean, logistics, prefabrication, modularization, leaning/AI/recognition, human-computer interaction, measurement, modeling and management, new application field of construction robots and machines, risk management, robot and interface design, and robot construction.

Please note: All ISARC proceedings since 1984 are available at no cost at http://www.iaarc.org.

We are very grateful for the support of so many. Thank you!

Prof. Kazuyoshi Tateyama, Ritsumeikan University, Japan (Chair)
Prof. Kazuo Ishii, Kyushu Institute of Technology, Japan (Co-Chair)
Prof. Fumihiro Inoue, Shonan Institute of Technology, Japan (Co-Chair)
Acknowledgements

Symposium host: The International Association for Automation and Robotics in Construction
Japanese Council for Construction Robot Research

Symposium sponsors: Council for Construction Robot Research
The International Association for Automation and Robotics in Construction

Symposium co-sponsors: Advanced Construction Technology Center
Architectural Institute of Japan
Japan Robot Association
Japan Construction Machinery and Construction Association
Japan Society of Civil Engineers
City of Kitakyushu
The Robotics Society of Japan

Symposium cooperation: The Institute of Electrical Engineers of Japan
Japan Association of Surveyors
Japan Association for the Unmanned Construction
Japan Federation of Construction Contractors
The Japanese Geotechnical Society
The Japan Society of Mechanical Engineers
The Japan Society for Precision Engineering
Kitakyushu Convention & Visitors Association
The Society of Instrument and Control Engineers
Sabo & Landslide Technical Center
New Unmanned Construction Technology Research Association
Ritsumeikan University
The Kajima Foundation
Rent All Scholarship Foundation

Symposium support: Ministry of Land, Infrastructure, Transport and Tourism
Local Organizing Committee
Chair Kazuyoshi Tateyama, Ritsumeikan University, Japan
Co-Chair Fumihiro Inoue, Shonan Institute of Technology, Japan
Co-Chair Kazuo Ishii, Kyushu Institute of Technology, Japan

Program committee
Chair Hisashi Osumi, Chuo University, Japan
Co-Chair Kazuo Kikawada, Hazama Ando Corporation, Japan
Co-Chair Fumihiro Inoue, Shonan Institute of Technology, Japan
Co-Chair Mitsuo Kamesaki, Waseda University, Japan

Award committee
Chair Miho Makatayama, Building Research Institute, Japan

Publication committee
Chair Masamitsu Kurisu, Osaka University, Japan

Web-management
Chair Takaaki Yokoyama, Ritsumeikan University, Japan

International relations
Chair Hiroshi Furuya, Obayashi Corporation, Japan

Finance
Chair Hiroki Murakami, IHI Corporation, Japan

Secretary-general
Masaharu Moteki, Advanced Construction Technology Center, Japan
Technical Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tatsuo Arai</td>
<td>The Univ. of Electro-Communications</td>
<td>Soonwook Kwon</td>
<td>Sungkyunkwan University</td>
</tr>
<tr>
<td>Mantha Bharadwaj</td>
<td>New York Univ. - Abu Dhabi</td>
<td>Junbok Lee</td>
<td>Kyung Hee University</td>
</tr>
<tr>
<td>Thomas Bock</td>
<td>Technical University Munich</td>
<td>Nan Li</td>
<td>Tsinghua University</td>
</tr>
<tr>
<td>Frederic Bosche</td>
<td>University of Edinburgh</td>
<td>Miho Makatayama</td>
<td>Building Research Institute</td>
</tr>
<tr>
<td>Ioannis Brilakis</td>
<td>University of Cambridge</td>
<td>Leonardo Messi</td>
<td>Polytechnic Univ. of Marche</td>
</tr>
<tr>
<td>Alessandro Carbonari</td>
<td>Polytechnic University of Marche</td>
<td>Naoki Mori</td>
<td>Taisei Corporation</td>
</tr>
<tr>
<td>Daniel Castro</td>
<td>Georgia Institute of Technology</td>
<td>Masaharu Moteki</td>
<td>Advanced Construction Technology Center</td>
</tr>
<tr>
<td>Soungho Chae</td>
<td>Kajima Corporation</td>
<td>Hiroki Murakami</td>
<td>IHI Corporation</td>
</tr>
<tr>
<td>Hung-Ming Chen</td>
<td>NTL Taiwan Univ. Science & Tech.</td>
<td>Keiji Nagatani</td>
<td>The University of Tokyo</td>
</tr>
<tr>
<td>Po-Han Chen</td>
<td>NTL Taiwan University</td>
<td>Satoshi Nakamura</td>
<td>Tokyo University</td>
</tr>
<tr>
<td>Yong Cho</td>
<td>Georgia Institute of Technology</td>
<td>Takahiro Nakamura</td>
<td>Kajima Corporation</td>
</tr>
<tr>
<td>Satoru Doi</td>
<td>Obayashi Corporation</td>
<td>Tadashi Narise</td>
<td>Maeda Corporation</td>
</tr>
<tr>
<td>Chen Feng</td>
<td>New York University</td>
<td>Yasutoshi Nomura</td>
<td>Ritsumeikan University</td>
</tr>
<tr>
<td>Yutaro Fukase</td>
<td>Shimizu Corporation</td>
<td>Ken Ooi</td>
<td>Komatsu Ltd.</td>
</tr>
<tr>
<td>Hiromitsu Fujii</td>
<td>Chiba Institute of Technology</td>
<td>Makoto Oshio</td>
<td>Kajima Corporation</td>
</tr>
<tr>
<td>Hiroi Furuya</td>
<td>Obayashi Corporation</td>
<td>Hisashi Osumi</td>
<td>Chuo University</td>
</tr>
<tr>
<td>Jozef Gasparik</td>
<td>Slovak University of Technology</td>
<td>Saiedeh Razavi</td>
<td>McMaster University</td>
</tr>
<tr>
<td>Quang Ha</td>
<td>University of Technology, Sydney</td>
<td>Kazuyuki Sano</td>
<td>Taisei Corporation</td>
</tr>
<tr>
<td>Daniel Hall</td>
<td>ETH Zurich</td>
<td>Anoop Sattineni</td>
<td>Auburn University</td>
</tr>
<tr>
<td>Kouji Hamada</td>
<td>Obayashi Corporation</td>
<td>Isaac Shabtai</td>
<td>Israel Institute of Technology</td>
</tr>
<tr>
<td>Amin Hammad</td>
<td>Concordia University</td>
<td>Yasuyuki Shingu</td>
<td>Shimizu Corporation</td>
</tr>
<tr>
<td>Takeshi Hashimoto</td>
<td>Public Works Research Institute</td>
<td>Shinya Suzuki</td>
<td>Toda Corporation</td>
</tr>
<tr>
<td>ShigekiHola</td>
<td>Topcon Corporation</td>
<td>Piotr Szyrkarczyk</td>
<td>Industrial Research Institute for Autom. & Measurement</td>
</tr>
<tr>
<td>Daehie Hong</td>
<td>Korea University Seoul</td>
<td>Hiroki Takabayashi</td>
<td>aT ROBOTICS Inc.</td>
</tr>
<tr>
<td>Koji Ihara</td>
<td>Asunaro Aoki Construction Co., Ltd.</td>
<td>Manabu Takeishi</td>
<td>Hazama Ando Corporation</td>
</tr>
<tr>
<td>Ryosei Ikeda</td>
<td>East Nippon Expressway Co., Ltd.</td>
<td>Toshinari Tanaka</td>
<td>Port & Airport Research Inst.</td>
</tr>
<tr>
<td>Fumihiro Inoue</td>
<td>Shonan Institute of Technology</td>
<td>Jochen Teizer</td>
<td>University of Bochum</td>
</tr>
<tr>
<td>Genya Ishigami</td>
<td>Keio University</td>
<td>Yelda Turkan</td>
<td>Oregon State University</td>
</tr>
<tr>
<td>Kazuo Ishii</td>
<td>Kyushu Institute of Technology</td>
<td>Takao Ueno</td>
<td>Tokyo University</td>
</tr>
<tr>
<td>Fumio Itoh</td>
<td>Japan Construction Machinery and Construction Association</td>
<td>Kazunori Umeda</td>
<td>Chuo University</td>
</tr>
<tr>
<td>Yonghoon Ji</td>
<td>Japan Advanced Inst. Science & Tech.</td>
<td>Tomohiro Umetani</td>
<td>Konan University</td>
</tr>
<tr>
<td>Vineet Kumat</td>
<td>The University of Michigan</td>
<td>Enrique Valero</td>
<td>University of Edinburgh</td>
</tr>
<tr>
<td>Mitsuhiro Kamezaki</td>
<td>Waseda University</td>
<td>Frans van Gasssel</td>
<td>Eindhoven Univ. of Technology</td>
</tr>
<tr>
<td>Kazuito Kamiyama</td>
<td>Takenaka Corporation</td>
<td>Koshy Varghese</td>
<td>I.I.T. Madras</td>
</tr>
<tr>
<td>Kazuya Kikawada</td>
<td>Hazama Ando Corporation</td>
<td>Józef Wrona</td>
<td>Wajskowa Technical Academia</td>
</tr>
<tr>
<td>Huongkwan Kim</td>
<td>Yonsei University</td>
<td>Hiroshi Yamamoto</td>
<td>Komatsu Ltd.</td>
</tr>
<tr>
<td>Shigeo Kitahara</td>
<td>Kumagai Gumi Co., Ltd.</td>
<td>Shinya Yamamoto</td>
<td>Shimizu Corporation</td>
</tr>
<tr>
<td>Taizo Kobayashi</td>
<td>Ritsumeikan University</td>
<td>Takaaki Yokoyama</td>
<td>Ritsumeikan University</td>
</tr>
<tr>
<td>Markus König</td>
<td>University of Bochum</td>
<td>Zhenhua Zhu</td>
<td>Wisconsin University</td>
</tr>
<tr>
<td>Masamitsu Kurisu</td>
<td>Osaka University</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program Schedule

<table>
<thead>
<tr>
<th>JST*</th>
<th>Tuesday October 27</th>
<th>Wednesday October 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>Opening Ceremony</td>
<td>Academic Presentations</td>
</tr>
<tr>
<td>– 13:00</td>
<td>Tucker-Hasegawa 2020 Award Keynote Lecture</td>
<td>Academic Presentations</td>
</tr>
<tr>
<td>14:00 – 15:00</td>
<td>Keynote2</td>
<td>Keynote3</td>
</tr>
<tr>
<td>15:00 – 19:00</td>
<td>Academic Presentations</td>
<td>Award and Closing Ceremony</td>
</tr>
<tr>
<td>20:00 – 23:00</td>
<td>Academic Presentations</td>
<td></td>
</tr>
</tbody>
</table>

*Japan Standard Time

Keynote

Tucker-Hasegawa 2020 Award Keynote Lecture

Hyoungkwan KIM
Professor at Yonsei University, Korea

Smart Safety Assurance for Temporary Structures
Temporary structures on construction sites has been the major cause of worker fatalities. According to a Korean statistics report, about 300 people are losing precious lives each year due to accidents involving temporary structures. A new research program was launched this year to develop a smart safety assurance system that recognizes, evaluates, and predicts accident risks that may occur during the installation, dismantling, and operation of temporary structures. It is a part of the smart construction initiative sponsored by the Korean Ministry of Land, Infrastructure, and Transport, and the Korea Agency for Infrastructure Technology Advancement. The program was designed for developing technologies such as deep learning-based hazard identification, augmented reality-based risk warning, and smart mobility for intelligent sensing of construction sites, with a total budget of ₩12.5 billion ($10.5 million) over six years. The program has a clear goal of reducing the number of accidents related to temporary structures by more than 25% through the creation of a new construction culture, safety-related policies, and safety-related industries.

Speaker profile:
Hyoungkwan KIM, Ph.D. is a Professor of the School of Civil and Environmental Engineering at Yonsei University, Korea. His areas of research include construction automation, infrastructure adaptation to climate change, and project finance. He is the principal investigator of a $10.5 million research program titled “Smart Safety Assurance for Temporary Structures,” which is a part of smart construction initiative sponsored by the Korean Ministry of Land, Infrastructure, and Transport, and the Korea Agency for Infrastructure Technology and Advancement. He serves as Vice-President for the International Association for Automation and Robotics in Construction (IAARC), and Associate Editor for Journal of Computing in Civil Engineering, American Society of Civil Engineers (ASCE). He also served as Secretary General for Association for Engineering Education in Southeast Asia and the Pacific (AEESEAP). He has received six excellent teaching awards and an excellent research award from Yonsei University. More information on Prof. Kim can be found at: http://aim.yonsei.ac.kr.
Keynote 2

Naoki SATO
Director of the Space Exploration System Technology Unit, The Japan Aerospace Exploration Agency (JAXA), JAXA Space Exploration Center (JSEC), Japan

International Space Exploration and Japanese Lunar Activities
JAXA is engaged in international collaborations to tackle the challenge of human and robotic exploration missions in and beyond low-Earth orbit (LEO). The current focus is exploration missions to the Moon and Mars, targeting future human activities. His presentation introduced Japan’s current exploration activities and JAXA’s future plans and studies beyond the Earth orbit with the context of international coordination. Especially for the lunar surface activities, the concept study of the lunar base construction, which JAXA had conducted with a group of construction-related companies across Japan, was introduced along with the technological development.

Speaker profile:
Naoki SATO graduated from the Aeronautics Engineering Department, Kyusyu University in 1986, and gained a master degree of applied engineering of Kyusyu University in 1988. In the same year, he entered the National Space Development Agency of Japan (predecessor of JAXA). From 1990 he had been involved in the International Space Station program for about 16 years. Afterwards, he has been working for the international space exploration program formulation. Since April 2018 he is the current ISECG chair and since July 2018 he was assigned as the Director of the Space Exploration System Technology Unit of JAXA Space Exploration Center (JSEC).

Keynote 3

Yasushi NITTA
Director for Construction Equipment and Safety Planning Office, Policy Bureau, Ministry of Land, Infrastructure, Transport and Tourism, Japan

Initiatives for Robot Introduction in Japanese Public Works
The Japanese society faces various social issues such as frequent occurrences of earthquakes, eruption of volcanoes, floods, landslides, etc., resulting in the deterioration of the infrastructure. Japan also sees a reduction of the working population in the construction industry. In his speech, he introduced initiatives for the social implementation of robots and information and communication technologies in the Japanese construction industry, including the Ministry of Land, Infrastructure, Transport and Tourism (MLIT).

Speaker profile:
After graduating from University of Tsukuba in 1994, Dr. Yasushi NITTA joined the Ministry of Land, Infrastructure, Transport and Tourism (MLIT). There he is widely engaged in policy planning, public works and R&D in the various departments, such as MLIT Headquarters, Regional Development Bureau, National Road Office, National Research Institutes (PWRI, NILIM), Advanced Construction Technology Center (ACTEC). He is especially responsible for the planning and operation of on-site verification projects to promote the introduction of robots to the infrastructure department, development/deployment/budgeting/operation of disaster
countermeasure machines, and nationwide deployment of machine construction (i-Construction) using 3D data. Dr. NITTA is also engaged in establishing technical standards for the purpose, demonstrating ultra-long-distance unmanned construction technology, and flood control as an international emergency relief team.

Video list

Construction robots in Japan

1. **Sea Experiment on Tele-operation System of Underwater Excavator**
 National Institute of Maritime, Port and Aviation Technology,
 Port and Airport Research Institute,
 Infrastructure Digital Transformation Engineering Department
2. **Development of Heavy Carrier Robot for Shallow Water Area**
 New Unmanned Construction Technology Research Association
3. **Tunnel RemOS-WL**
 Kanamoto Co., Ltd.
4. **kana Robo – Robo-Construction System** –
 Kanamoto Co., Ltd.
5. **kana Robo – Robo-Construction System 2** –
 Kanamoto Co., Ltd.
6. **ROBO CONSTRUCTION – DokaBOri Training** –
 Fujiken Co.,Ltd.
7. "**A4CSEL at the Seisho Test and Practice Field**"
 KAJIMA CORPORATION
8. **Pursuing "Zero Ground Subsidence" in Shield Tunneling**
 TAC Corporation
9. **Automatic Dam Concrete Placing System**
 SHIMIZU CORPORATION
10. **Automatic Tunnel Lining Concrete Placing System**
 SHIMIZU CORPORATION
11. **A robot that assists in plotting**
 SHIMIZU CORPORATION
12. **Development of IT construction system by Robot**
 Public Works Research Institute
13. **Demonstration of autonomous excavation, loading and unmanned bulldozer. (CEATEC2018)**
 Komatsu Ltd., Office of CTO
14. **Smart Construction Concept, Future image. (CEATEC2018)**
 Komatsu Ltd., Office of CTO
15. **BE A HERO, Future image**
 Komatsu Ltd., Office of CTO
16. **DEEP CRAWLER - Crawler type ROV**
 WAKACHIKU CONSTRUCTION Co., Ltd.
17. **What is dredging? - A job that protects the safety of the sea**
 WAKACHIKU CONSTRUCTION Co., Ltd.
18. **Robotic rubble-mound mechanized construction system**
 Pента-Ocean Construction Co., Ltd.
19. **Rotation Control Device for Lifting Cargo**
 WAKACHIKU CONSTRUCTION Co., Ltd.
20. **Automatic operation system of the construction machine (Vibrating roller - Bulldozer)**
 HAZAMA ANDO CORPORATION
Table of Contents

Improving Construction Demonstrations by Integrating BIM, UAV, and VR .. 1
 Kun-Chi Wang, Ren-Jie Gao, Sheng-Han Tung and Yuan-Hsiu Chou

Using Virtual Reality and Augmented Reality for Presale House Customer Change 8
 Ben Amed Ouedraogo, Li-Chuan Lien, Unurjargal Dolgorsuren and Yan Ni Liu

Virtual Prototyping-Based Path Planning of Unmanned Aerial Vehicles for Building Exterior Inspection .. 16
 Zhenjie Zheng, Mi Pan and Wei Pan

Near Real-Time Monitoring of Construction Progress: Integration of Extended Reality and Kinect V2 ... 24
 Ahmed Khairadeen Ali, One Jae Lee and Chansik Park

VRGlare: A Virtual Reality Lighting Performance Simulator for real-time Three-Dimensional Glare Simulation and Analysis .. 32
 Kieran May, James Walsh, Ross Smith, Ning Gu and Bruce Thomas

Development of an Augmented Reality Fitness Index for Contractors .. 40
 Hala Nassereddine, Wafik Lotfallah, Awad Hanna and Dharmaraj Veeramani

A Method to Produce & Visualize Interactive Work Instructions for Modular Products within Onsite Construction .. 48
 Raafat Hussamadin, Jani Makkavaara and Gustav Jansson

A Framework for Augmented Reality Assisted Structural Embedment Inspection 56
 Jeffrey Kim and Darren Olsen

Towards Circular Economy in Architecture by Means of Data-driven Design-to- Robotic-Production 63
 Ginevra Nazzari and Henriette Bier

Automated Pavement Marking Defects Detection .. 67
 Andrea Leal Ruiz and Hani Alzraiee

An Assistive Interface of a Teleoperation System of an Excavator by Overlapping the Predicted Position of the Arm ... 74
 Yuzuki Okawa, Masaru Ito, Ryota Sekizuka, Seiji Saiki, Yoichiro Yamazaki and Yuichi Kurita

Development of Rotary Snow Blower Vehicle Driving Support System using Quasi-Zenith Satellite on the Expressway in Japan ... 79
 Katsuyoshi Abe, Atsushi Ichikawa, Toshiaki Itou and Keigo Kurihara

A Systematic Review of the Geographic and Chronological Distributions of 3D Concrete Printers from 1997 to 2020 ... 84
 Jihoon Chung, Ghang Lee and Jung-Hoon Kim
Towards High-Quality Road Construction: Using Autonomous Tandem Rollers for Asphalt Compaction Optimization .. 90
Jörg Husemann, Patrick Wolf, Axel Vierling, Karsten Berns and Peter Decker

Ontology-Based Decoding of Risks Encoded in the Prescriptive Requirements in Bridge Design Codes .. 98
Fahad Ul Hassan and Tuyen Le

Current Status of Unmanned Construction Technology Developed using a Test Field System 105
Koji Ihara and Takeshi Tamura

Remote Control Demonstration of the Construction Machine Using 5G Mobile Communication System at Tunnel Construction Site 111
Ken Takai, Hiroaki Aoki, Yusuke Tajima and Michinobu Yoshida

Sea Experiment on Tele-operation System of Underwater Excavator 118
Tsukasa Kita, Taketsugu Hirabayashi, Atsushi Ueyama, Hiroshi Kinjo, Naoki Oshiro and Nobuyuki Kinjo

Automation and Operation Record of Large Overhead Crane for Segment Transportation 126
Yasushi Nishizaki, Koki Takahashi, and Takashi Fukui

Development of an Automated Angle Control System to Improve Safety and Productivity 134
Tsuyoshi Fukuda, Takumi Arai, Kousuke Kakimi and Keishi Matsumoto

Automated Detection for Road Marking Quality, using Visual Based Machine Learning 139
Firas Habbal, Fawaz Habbal, Abdualla Alnuaimi, Shafia Alkheyaili and Ammar Safi

A Construction Progress On-site Monitoring and Presentation System Based on The Integration of Augmented Reality and BIM .. 147
Sheng-Kai Wang and Hung-Ming Chen

Rule-Based Generation of Assembly Sequences for Simulation in Large-Scale Plant Construction · 155
Jan Weber, Jana Stolipin, Ulrich Jessen, Markus König and Sigrid Wenzel

An analysis of 4D-BIM Construction Planning: Advantages, Risks and Challenges 163
Pedram Farnood Ahmadi and Mehrdad Arashpour

Ontology-based Product Configuration for Modular Buildings ... 171
Jianpeng Cao and Daniel Hall

On construction-specific Product Structure Design and Development: the BIM Enhancement Approach ... 177
Solmaz Mansoori, Harri Haapasalo and Janne Härkönen

Parametric Structural Design for automated Multi-Objective Optimization of Flexible Industrial Buildings .. 185
Julia Reisinger, Maximilian Knoll and Iva Kovacic
Inspection of Discrepancies in Construction Temporary Safety Structures through Augmented Reality
Hashim Raza Bokhari, Doyeop Lee, Numan Khan and Chansik Park

Status of 4D BIM Implementation in Indian Construction
V. Paul C. Charlesraj and Talapaneni Dinesh

An Information Quality Assessment Framework for Developing Building Information Models
Liji Chen and Justin K. W. Yeoh

BIM Based Information Delivery Controlling System
Brian Klusmann, Zhiwei Meng, Noemi Kremer, Anica Meins-Becker and Manfred Helmus

Development of an Open-source Scan+BIM Platform
Enrique Valero, Dibya D. Mohanty and Frederic Bosche

BuiltView: Integrating LiDAR and BIM for Real-Time Quality Control of Construction Projects
Rana Abbas, F. A. Westling, Christian Skinner, Monica Hanus-Smith, Andrew Harris and Nathan Kirchnher

Single Shared Model Approach for Building Information Modelling
Simo Ruokamo and Heikkila Rauno

Parametric or Non-parametric? Understanding the Inherent Trade-offs between Forms of Object Representation
Christopher Rausch, Yinghui Zhao and Carl Haas

Development of a Twin Model for Real-time Detection of Fall Hazards
Leonardo Messi, Alessandra Corneli, Massimo Vaccarini and Alessandro Carbonari

Automatized Parametric Modeling to Enhance a data-based Maintenance Process for Infrastructure Buildings
Robert Hartung, Robin Schönbach, Dominic Liepe and Katharina Klemt-Albert

Gamification and BIM Teaching the BIM Method through a Gamified, Collaborative Approach
Carla Pütz, Christian Heins, Manfred Helmus and Anica Meins-Becker

Opportunities and Challenges of Digital Twin Applications in Modular Integrated Construction
Mingcheng Xie and Wei Pan

Integrating Industry 4.0 Associated Technologies into Automated and Traditional Construction
Fabiano Correa

System Development of an Augmented Reality On-site BIM Viewer Based on the Integration of SLAM and BLE Indoor Positioning
Yu-Cheng Liu, Jhih-Rong Chen and Hung-Ming Chen

Review of Construction Workspace Definition and Case Studies
Kuan-Fan Lai and Ying-Chieh Chan
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Web-Based Approach to Dynamically Assessing Space Conflicts by Integrating BIM and Graph Database</td>
<td>307</td>
</tr>
<tr>
<td>Wei-Ting Chien and Shang-Hsien Hsieh</td>
<td></td>
</tr>
<tr>
<td>Deployment of a Standardized BIM Modeling Guideline for the Planning and Construction Industry</td>
<td>313</td>
</tr>
<tr>
<td>Gamze Hort, Daiki John Feller, Anica Meins-Becker and Manfred Helmus</td>
<td></td>
</tr>
<tr>
<td>Ming Shan Ng, Marcella M. Bonanomi, Daniel M. Hall and Jürgen Hackl</td>
<td></td>
</tr>
<tr>
<td>A BIM-Based Approach for Optimizing HVAC Design and Air Distribution System Layouts in Panelized Houses</td>
<td>326</td>
</tr>
<tr>
<td>Pouya Baradaran-Noveiri, Mohammed Zaheeruddin and Sang Hyeok Han</td>
<td></td>
</tr>
<tr>
<td>Synthetic Data Generation for Indoor Scene Understanding Using BIM</td>
<td>334</td>
</tr>
<tr>
<td>Yeji Hong, Somin Park and Hyoungkwan Kim</td>
<td></td>
</tr>
<tr>
<td>Cyber-physical System for Diagnosing and Predicting Technical Condition of Servo-drives of Mechatronic Sliding Complex during Construction of High-rise Monolithic Buildings</td>
<td>339</td>
</tr>
<tr>
<td>Alexey Bulgakov, Thomas Bock and Tatiana Kruglova</td>
<td></td>
</tr>
<tr>
<td>Proposal for Automation System Diagram and Automation Levels for Earthmoving Machinery</td>
<td>347</td>
</tr>
<tr>
<td>Takeshi Hashimoto, Mitsuru Yamada, Genki Yamauchi, Yasushi Nitta and Shinichi Yuta</td>
<td></td>
</tr>
<tr>
<td>Applications of LiDAR for Productivity Improvement on Construction Projects: Case Studies from Active Sites</td>
<td>353</td>
</tr>
<tr>
<td>Fredrik Westling, Rana Abbas, Christian Skinner, Monica Hanus-Smith, Andrew Harris and Nathan Kirchner</td>
<td></td>
</tr>
<tr>
<td>Design and Construction of Shell-shaped Bench using a 3D Printer for Construction</td>
<td>362</td>
</tr>
<tr>
<td>Hajime Sakagami, Haruna Okawa, Masaya Nakamura, Takuya Anabuki, Yoshikazu Ishizeki and Tomoya Kaneko</td>
<td></td>
</tr>
<tr>
<td>Requirements for Safe Operation and Facility Maintenance of Construction Robots</td>
<td>369</td>
</tr>
<tr>
<td>Alexey Bulgakov, Thomas Bock, Jens Otto, Natalia Buzalo and Thomas Linner</td>
<td></td>
</tr>
<tr>
<td>Safety Concept and Architecture for Autonomous Haulage System in Mining</td>
<td>377</td>
</tr>
<tr>
<td>Hidefumi Ishimoto and Tomoyuki Hamada</td>
<td></td>
</tr>
<tr>
<td>Xinghui Xu and Borja Garcia de Soto</td>
<td></td>
</tr>
<tr>
<td>Curtain Wall Installation for High-Rise Buildings: Critical Review of Current Automation Solutions and Opportunities</td>
<td>393</td>
</tr>
<tr>
<td>Brandon Johns, Mehrdad Arashpour and Elahe Abdi</td>
<td></td>
</tr>
<tr>
<td>Rationalization of Free-form Surface Construction Method using Wooden Formwork</td>
<td>401</td>
</tr>
<tr>
<td>Sei Hayashi and Tomoyuki Gondo</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Comparison of Shortest Path Finding Algorithms for Cable Networks on Industrial Construction</td>
<td>409</td>
</tr>
<tr>
<td>Fatima Alsakka, Salam Khalife, Maram Nomir, Yasser Mohamed and Rick Hermann</td>
<td></td>
</tr>
<tr>
<td>Constructability: The Prime Target in Value Engineering for Design Optimization</td>
<td>417</td>
</tr>
<tr>
<td>Arun Sekhar and Uma Maheswari</td>
<td></td>
</tr>
<tr>
<td>Blockchain based Framework for Verifying the Adequacy of Scaffolding Installation</td>
<td>425</td>
</tr>
<tr>
<td>Chanwoo Baek, Doyeop Lee and Chansik Park</td>
<td></td>
</tr>
<tr>
<td>Towards a Comprehensive Facade Inspection Process: An NLP based Analysis of Historical Facade Inspection Reports for Knowledge Discovery</td>
<td>433</td>
</tr>
<tr>
<td>Zhuoya Shi, Keundeok Park and Semiha Ergan</td>
<td></td>
</tr>
<tr>
<td>Scheduling Simulator by Ensemble Forecasting of Construction Duration</td>
<td>441</td>
</tr>
<tr>
<td>Shigeomi Nishigaki, Katsutoshi Saibara, Takashi Ootsuki and Hirokuni Morikawa</td>
<td></td>
</tr>
<tr>
<td>A Technology Platform for a Successful Implementation of Integrated Project Delivery for Medium Size Projects</td>
<td>449</td>
</tr>
<tr>
<td>Luke Psomas and Hani Alzraiee</td>
<td></td>
</tr>
<tr>
<td>Simulation-based Reinforcement Learning Approach towards Construction Machine Automation</td>
<td>457</td>
</tr>
<tr>
<td>Keita Matsumoto, Atsushi Yamaguchi, Takahiro Oka, Masahiro Yasumoto, Satoru Hara, Michitaka Iida and Marek Teichmann</td>
<td></td>
</tr>
<tr>
<td>Optimization of Trajectories for Cable Robots on Automated Construction Sites</td>
<td>465</td>
</tr>
<tr>
<td>Roland Boumann, Patrik Lemmen, Robin Heidel and Tobias Bruckmann</td>
<td></td>
</tr>
<tr>
<td>A Robust Framework for Identifying Automated Construction Operations</td>
<td>473</td>
</tr>
<tr>
<td>Aparna Harichandran, Benny Raphael and Abhijit Mukherjee</td>
<td></td>
</tr>
<tr>
<td>Analysis of Excavation Methods for a Small-scale Mining Robot</td>
<td>481</td>
</tr>
<tr>
<td>Michael Berner and Nikolaus August Sifferlinger</td>
<td></td>
</tr>
<tr>
<td>Robotic Insertion of Timber Joints using Visual Detection of Fiducial Markers</td>
<td>491</td>
</tr>
<tr>
<td>Nicolas Rogeau, Victor Tiberghien, Pierre Latteur and Yves Weinand</td>
<td></td>
</tr>
<tr>
<td>Constraint Control of a Boom Crane System</td>
<td>499</td>
</tr>
<tr>
<td>Michele Ambrosino, Arnaud Dawans and Emanuele Garone</td>
<td></td>
</tr>
<tr>
<td>Optimal Travel Routes of On-road Vehicles Considering Sustainability</td>
<td>507</td>
</tr>
<tr>
<td>Nassim Mehrvarz, Zhilin Ye, Khalegh Barati and Xuesong Shen</td>
<td></td>
</tr>
<tr>
<td>Modeling and Control of 5-DoF Boom Crane</td>
<td>514</td>
</tr>
<tr>
<td>Michele Ambrosino, Marc Berneman, Gianluca Carbone, Rémi Crépin, Arnaud Dawans and Emanuele Garone</td>
<td></td>
</tr>
<tr>
<td>Automating Crane Lift Path through Integration of BIM and Path Finding Algorithm</td>
<td>522</td>
</tr>
<tr>
<td>Songbo Hu and Yihai Fang</td>
<td></td>
</tr>
</tbody>
</table>
A study on an Autonomous Crawler Carrier System with AI based Transportation Control .. 530
Hironobu Hatamoto, Kazuya Fujimoto, Tsubasa Asuma, Yoshito Takeshita, Tetsuo Amagai, Atsushi Furukawa and Shigeo Kitahara

Accuracy and Generality of Trained Models for Lift Planning Using Deep Reinforcement Learning - Optimization of the Crane Hook Movement Between Two Points .. 538
Aoi Tarutani and Kosei Ishida

Reaching Difficulty Model of Swinging Operations of a Hydraulic Excavator Considering the First-Order Delay .. 547
Kazuyuki Matsumura, Masaru Ito, Chiaki Raima, Seiji Saiki, Yoichiro Yamazaki and Yuichi Kurita

Mechatronic Control System for Leveling of Bulldozer Blade ... 552
Alexey Bulgakov, Thomas Bock and Georgii Tokmakov

Multiple Tower Crane Selection methodology utilizing Genetic Algorithm ... 558
Preet Lodaya, Abhishek Raj Singh and Venkata Santosh Kumar Delhi

Fuzzy Controller Algorithm for Automated HVAC Control ... 566
Myungjin Chae, Kyubying Kang, Dan D. Koo, Sukjoon Oh and Jae Youl Chun

A Probabilistic Motion Control Approach for Teleoperated Construction Machinery ... 571
Hyung Joo Lee and Sigrid Brell-Cokcan

Excavation Path Generation for Autonomous Excavator Considering Bulking Factor of Soil ... 578
Shinya Katsuma, Ryosuke Yajima, Shunsuke Hamasaki, Pang-Jo Chun, Keiji Nagatani, Genki Yamauchi, Takeshi Hashimoto, Atsushi Yamashita and Hajime Asama

Development of an Algorithm for Crane Sway Suppression ... 584
Yasuhiro Yamamoto, Chunnan Wu, Hisashi Osumi, Masayuki Yano and Yusuke Hara

Analysis of Energy Efficiency of a Backhoe during Digging Operation ... 589
Yusuke Sano, Chunnan Wu, Hisashi Osumi, Yuki Kawashima and Tomoaki Tsuda

Action Recognition of Construction Machinery from Simulated Training Data Using Video Filters 595

Real-time Aarly Warning of Clogging Risk in Slurry Shield Tunneling: A Self-updating Machine Learning Approach ... 600
Qiang Wang, Xiongyao Xie and Yu Huang

Efficient Numerical Methods for Accurate Modeling of Soil Cutting Operations ... 608
Amin Haeri, Dominique Tremblay, Krzysztof Skonieczny, Daniel Holz and Marek Teichmann

IoT-enabled Dependable Co-located Low-cost Sensing for Construction Site Monitoring ... 616
Huynh A. D. Nguyen, Lanh V. Nguyen and Quang P. Ha
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threat Modeling in Construction: An Example of a 3D Concrete Printing System</td>
<td>625</td>
</tr>
<tr>
<td>Maahir Ur Rahman Mohamed Shibly and Borja Garcia de Soto</td>
<td></td>
</tr>
<tr>
<td>Measuring Adhesion Strength of Wall Tile to Concrete by Non-Contact Inspection Using Electromagnetic Waves</td>
<td>633</td>
</tr>
<tr>
<td>Hussain Alsalem, Takayuki Tanaka, Takumi Honda, Satoru Doi and Shigeru Uchida</td>
<td></td>
</tr>
<tr>
<td>Construction Method of Super Flat Concrete Slab using High Precision Height Measurement</td>
<td>639</td>
</tr>
<tr>
<td>Yutaro Fukase, Ryosuke Saito, Yoshiaki Takemoto and Yoshiki Muramatsu</td>
<td></td>
</tr>
<tr>
<td>Method for Estimating Subgrade Reaction Modulus by Measuring Wheel-terrain Interactions</td>
<td>646</td>
</tr>
<tr>
<td>Yasushi Wada and Taizo Kobayashi</td>
<td></td>
</tr>
<tr>
<td>Report on the Measurement of the Form of SHOTCRETE GRID BEAM-FREE FRAME Using Point Cloud Data</td>
<td>650</td>
</tr>
<tr>
<td>Kojima Takayuki and Yori Nomoto</td>
<td></td>
</tr>
<tr>
<td>Single Camera Worker Detection, Tracking and Action Recognition in Construction Site</td>
<td>653</td>
</tr>
<tr>
<td>Hiroaki Ishioka, Xinshuo Weng, Yunze Man and Kris Kitani</td>
<td></td>
</tr>
<tr>
<td>Jinwoo Song, Kyuhyup Lee, Minkyeong Jeong, Seojoon Lee and Soonwook Kwon</td>
<td></td>
</tr>
<tr>
<td>Use of Laser scanning, Remote Sensors & Traffic Data Collection, Drones & Mobile Application. MoEI Federal Highways network case study.</td>
<td>669</td>
</tr>
<tr>
<td>Khamis Al Sheyahri, Habiba Noor Aflatoon and Daniel Llort Mac Donald</td>
<td></td>
</tr>
<tr>
<td>Safety Monitoring of Construction Equipment based on Multi-sensor Technology</td>
<td>677</td>
</tr>
<tr>
<td>Ziqing Yang, Jian Yang and Enliu Yuan</td>
<td></td>
</tr>
<tr>
<td>Autonomous UAV flight using the Total Station Navigation System in Non-GNSS Environments</td>
<td>685</td>
</tr>
<tr>
<td>Akira Ishii, Takato Yasuno, Masazumi Amakata, Hiroaki Sugawara, Junichiro Fujii and Kohei Ozasa</td>
<td></td>
</tr>
<tr>
<td>Depth-Camera-Based In-line Evaluation of Surface Geometry and Material Classification For Robotic Spraying</td>
<td>693</td>
</tr>
<tr>
<td>Valens Frangez, David Salido-Monzú and Andreas Wieser</td>
<td></td>
</tr>
<tr>
<td>Combining Reality Capture and Augmented Reality to Visualise Subsurface Utilities in the Field</td>
<td>703</td>
</tr>
<tr>
<td>Lasse Hedegaard Hansen, Simon Swanström Wyke and Erik Kjems</td>
<td></td>
</tr>
<tr>
<td>Condition Prediction of Highway Assets Based on Spatial Proximity and Interrelations of Asset Classes: A Case Study</td>
<td>711</td>
</tr>
<tr>
<td>Arash Karimzadeh, Sepehr Sabeti, Hamed Tabkhib and Omidreza Shoghli</td>
<td></td>
</tr>
<tr>
<td>A Simulation Approach to Optimize Concrete Delivery using UAV Photogrammetry and Traffic Data</td>
<td>719</td>
</tr>
<tr>
<td>Robert Sprotte and Hani Alzraiee</td>
<td></td>
</tr>
</tbody>
</table>
Quality Control for Concrete Steel Embed Plates using LiDAR and Point Cloud Mapping 727
Hani Alzraiee, Robert Sprotte and Andrea Leal Ruiz

Exploring Gerontechnology for Aging-Related Diseases in Design Education: An Interdisciplinary Perspective ... 735
Rongbo Hu, Thomas Linner, Marc Schmaitzl, Jörg Gütter, Yuan Lu and Thomas Bock

Changing Paradigm: a Pedagogical Method of Robotic Tectonics into Architectural Curriculum 743
Xinyu Shi, Xue Fang, Zhoufan Chen, Tyson Keen Phillips and Hiroatsu Fukuda

Augmented Reality Sandboxes for Civil and Construction Engineering Education 750
Joseph Louis and Jennifer Lather

Education of Open Infra BIM based Automation and Robotics ... 757
Kolli Tanja and Heikkila Rauno

Automated Data Acquisition for Indoor Localization and Tracking of Materials Onsite 765
Hassan Bardareh and Osama Moselhi

Laser Scanning with Industrial Robot Arm for Raw-wood Fabrication ... 773
Petras Vestartas and Yves Weinand

Workspace Modeling: Visualization and Pose Estimation of Teleoperated Construction Equipment from Point Clouds .. 781
Jing Dao Chen, Pileun Kim, Dong-Ik Sun, Chang-Soo Han, Yong Han Ahn, Jun Ueda and Yong Cho

A Critical Review of Machine Vision Applications in Construction .. 789
Saeed Ansari Rad and Mehrdad Arashpour

An Agent-based Approach for Modeling Human-robot Collaboration in Bricklaying 797
Ming-Hui Wu and Jia-Rui Lin

A Vision for Evaluations of Responsive Environments in Future Medical Facilities 805
Daniel Lu, Semiha Ergan, Devin Mann and Katharine Lawrence

Toolbox Spotter: A Computer Vision System for Real World Situational Awareness in Heavy Industries ... 813
Stuart Eiffert, Alex Wendel, Peter Colborne-Veel, Nicholas Leong, John Gardenier and Nathan Kirchner

Evaluating SLAM 2D and 3D Mappings of Indoor Structures ... 821
Yoshihiro Nitta, Derbew Yenet Bogale, Yorimasa Kuba and Zhang Tian

A Novel Audio-Based Machine Learning Model for Automated Detection of Collision Hazards at Construction Sites ... 829
Khang Dang and Tuyen Le

Training of YOLO Neural Network for the Detection of Fire Emergency Assets 836
Alessandra Corneli, Berardo Naticchia, Massimo Vaccarini, Frederic Bosché and Alessandro Carbonari
Improvement of 3D Modeling Efficiency and Accuracy of Earthwork Site by Noise Processing Using Deep Learning and Structure from Motion
Nobuyoshi Yabuki, Yukako Sakamoto and Tomohiro Fukuda

Real-time Judgment of Workload using Heart Rate and Physical Activity
Nobuki Hashiguchi, Lim Yeongjoo, Cyo Sya, Shinichi Kuroishi, Yasuhiro Miyazaki, Shigeo Kitahara, Taizo Kobayashi, Kazuyoshi Tateyama and Kota Kodama

An Integrated Sensor Network Method for Safety Management of Construction Workers
Tingsong Chen, Nobuyoshi Yabuki and Tomohiro Fukuda

Data-Driven Worker Detection from Load-View Crane Camera
Tanithta Sutjaritvorakul, Axel Vierling and Karsten Berns

Using Deep Learning for Assessment of Workers' Stress and Overload
Sahel Eskandar and Saiedeh Razavi

Development of a Workers' Behavior Estimation System Using Sensing Data and Machine Learning
Rikuto Tanaka, Nobuyoshi Yabuki and Tomohiro Fukuda

Incident Detection at Construction Sites via Heart-Rate and EMG Signal of Facial Muscle
Mizuki Sugimoto, Shunsuke Hamasaki, Ryosuke Yajima, Hiroshi Yamakawa, Kaoru Takakusaki, Keiji Nagatani, Atsushi Yamashita and Hajime Asama

Scenario-Based Construction Safety Training Platform Using Virtual Reality
Ankit Gupta and Koshy Varghese

Generation of Orthomosaic Model for Construction Site using Unmanned Aerial Vehicle
Alexey Bulgakov, Daher Sayfeddine, Thomas Bock and Awny Fares

Field Application of Tunnel Half Section Inspection System
Nobukazu Kamimura, Satoru Nakamura, Daisuke Inoue and Takao Ueno

Challenges in Capturing and Processing UAV based Photographic Data From Construction Sites
Saurabh Gupta and Syam Nair

Research and Development on Inspection Technology for Safety Verification of Small-Scale Bridges using Three-Dimensional Model
Kazuhiko Seki, Koichi Iwasa, Satoshi Kubota, Yoshinori Tsukada, Yoshihiro Yasumuro and Ryuichi Imai

Development of Cloud Computing System for Concrete Structure Inspection by Deep Learning Based Infrared Thermography Method
Shogo Hayashi, Koichi Kawanishi, Isao Ujike and Pang-Jo Chun

Stereo Vision based Hazardous Area Detection for Construction Worker's Safety
Doyeop Lee, Numan Khan and Chansik Park
Artificial Intelligence and Blockchain-based Inspection Data Recording System for Portable Firefighting Equipment
Numan Khan, Doyeop Lee, Ahmed Khairadeen Ali and Chansik Park

Development of Field View Monitor 2 - An assisting function for safety check around a hydraulic excavator using real-time image recognition with monocular cameras-
Yoshihisa Kiyota, Shunsuke Otsuki, Susumu Aizawa and Danting Li

Development of ROV for visual inspection of Concrete Pier Superstructure
Toshinari Tanaka, Shuji Nogami, Ema Kato and Tsukasa Kita

An automated Approach to Digitise Railway Bridges
Mustafa Al-Adhami, Sagal Rooble, Song Wu, Clara Osuna-Yevenes, Veronica Ruby-Lewis, Mark. Greatrix, Yreilyn Cartagena and Saeed Talebi

Mirror-aided Approach for Surface Flatness Inspection using Laser Scanning
Fangxin Li and Min-Koo Kim

A Predictive Model for Scaffolding Man-hours in Heavy Industrial Construction Projects
Wenjing Chu, Sanghyeok Han, Zhen Lei, Ulrich Hermann and Di Hu

Ontological Base for Concrete Bridge Rehabilitation Projects
Chengke Wu, Rui Jiang, Jun Wang, Jizhuo Huang and Xiangyu Wang

IoT Enabled Framework for Real-time Management of Power-Tools at Construction Projects
Ashish Kumar Saxena, Varun Kumar Reja and Koshy Varghese

Web-Based Communication Platform for Decision Making in Early Design Phases
Zhiwei Meng, Ata Zahedi and Frank Petzold

Decision Support System for Site Layout Planning
Abhishek Raj Singh, Ankan Karmakar and Venkata Santosh Kumar Delhi

Factors Affecting the Implementation of AI-based Hearing Protection Technology at Construction Workplace
Yongcan Huang and Tuyen Le

Project Work Breakdown Structure Similarity Estimation Using Semantic and Structural Similarity Measures
Navid Torkanfar and Ehsan Rezazadeh Azar

ABM and GIS Integration for Investigating the Influential Factors Affecting Wildfire Evacuation Performance
Qi Sun and Yelda Turkan

Streamlining Photogrammetry-based 3D Modeling of Construction Sites using a Smartphone, Cloud Service and Best-view Guidance
Ryota Moritani, Satoshi Kanai, Kei Akutsu, Kiyotaka Suda, Abdalrahman Elshafey, Nao Urushidate and Mitsuru Nishikawa
Cyber Agent to Support Workers' Decision Making for Mechanized Earthwork .. 1045
Shigeomi Nishigaki, Katsutoshi Saibara, Takashi Ootsuki and Hirokuni Morikawa

Research on Standardization of Construction Site Time-series Change Information as Learning Data for Automatic Generation of Work Plan of Construction Machinery in Earthworks .. 1053
Takashi Otsuki, Hirokuni Morikawa, Yushi Shiiba, Seigo Ogata and Masaharu Moteki

Energy Performance and LCA-driven Computational Design Methodology for Integrating Modular Construction in Adaptation of Concrete Residential Towers in Cold Climates ... 1061
Sheida Shahi, Patryk Wozniczka, Tristan Truyensb, Ian Trudeau and Carl Haas

A View of Construction Science and Robot Technology Implementation ... 1069
Hiroshi Yamamoto

Constructible Design for Off-site Prefabricated Structures in Industrial Environments: Review of Mixed Reality Applications ... 1074
Ankit Shringi, Mehrdad Arashpour and Arnaud Prouzeau

Financial Modeling for Modular and Offsite Construction .. 1082
Tarek Salama, Gareth Figgess, Mohamed Elsharawy and Hossam Elsokkary

A Novel Methodological Framework of Smart Project Delivery of Modular Integrated Construction 1090
Wei Pan, Mi Pan and Zhenjie Zheng

Block Chain based Remicon Quality Management ... 1098
Seungwon Cho, Doyeop Lee and Chansik Park

A Conceptual Model for Transformation of Bill of Materials from Offsite Manufacturing to Onsite Construction in Industrialized House-building ... 1106
Raafat Hussamadin, Mikael Viklund Tallgren and Gustav Jansson

Study on the Level Concept of Autonomous Construction in Mechanized Construction 1114
Hirokuni Morikawa and Takashi Otsuki

Mask R-CNN Deep Learning-based Approach to Detect Construction Machinery on Jobsites 1122
Hamed Raoofi and Ali Motamedi

Implementation of Unsupervised Learning Method in Rule Learning from Construction Schedules 1128
Boong Yeol Ryoo and Milad Ashtab

Evaluation of Spalling in Bridges Using Machine Vision Method ... 1136
Eslam Mohammed Abdlekader, Osama Moselhi, Mohamed Marzouk and Tarek Zayed

Improving Construction Project Schedules before Execution ... 1144
John Fitzsimmons, Ying Hong and Ioannis Brilakis

Automated On-Site Quality Inspection and Reporting Technology for Off-Site Construction (OSC)-based Precast Concrete Members ... 1152
Seojoon Lee, Soonwook Kwon, Minkyeong Jeong, Syedmobeen Hasan and Alexander Kim
The Impact of Integrating Augmented Reality into the Production Strategy Process ... 1160
Hala Nassereddine, Dharmaraj Veeramani and Awad Hanna

Automatic Detection of Air Bubbles with Deep Learning .. 1168
Takuma Nakabayashi, Koji Wada and Yoshikazu Utsumi

Using a Virtual Reality-based Experiment Environment to Examine Risk Habituation in Construction Safety ... 1176
Namgyun Kim and Changbum Ryan Ahn

Towards a Computational Approach to Quantify Human Experience in Urban Design: A Data Collection Platform .. 1183
Keundeok Park and Semiha Ergan

Investigation of Changes in Eye-Blink Rate by VR Experiment for Incident Detection at Construction Sites .. 1191
Shunsuke Hamasaki, Mizuki Sugimoto, Ryosuke Yajima, Atsushi Yamashita, Keiji Nagatani and Hajime Asama

BIM-Aided Scanning Path Planning for Autonomous Surveillance UAVs with LiDAR ... 1195
Changhao Song, Kai Wang and Jack C. P. Cheng

Research on a Method to Consider Inspection and Processing for Atypical Wood Members Using 3D Laser Scanning ... 1203
Shunsuke Someya, Yasushi Ikeda, Kensuke Hotta, Seigo Tanaka, Mizuki Hayashi, Mitsuhiro Jokaku and Taito Takahashi

Generative Damage Learning for Concrete Aging Detection using Auto-flight Images ... 1211
Takato Yasuno, Akira Ishii, Junichiro Fujii, Masazumi Amakata and Yuta Takahashi

Evaluation of Drainage Gradient using Three-dimensional Measurement Data and Physics Engine 1219
Kosei Ishida

Stakeholder Perspectives on the Adoption of Drones in Construction Projects ... 1227
V. Paul C. Charlesraj and Nijalingamurthy Rakshith

Examination of Efficiency of Bridge Periodic Inspection Using 3D Data (Point Cloud Data and Images) .. 1235
Tatsuru Ninomiya, Mami Enomoto, Mitsuharu Shimokawa, Tatsuya Hattori and Yasushi Nitta

Experimental Result of Third-person View Generation using Deliberately Delayed Omni-directional Video ... 1240
Akira Sakata, Yasushi Hada, Rei Hojo, Masahiro Munemoto, Yoshito Takeshita, Tsubasa Asuma and Shigeo Kitahara

Construction Operation Assessment and Correction Using Laser Scanning and Projection Feedback 1247
Alexei Pevzner, Saed Hasan, Rafael Sacks and Amir Degani
MLIT's Initiatives for Promotion the Efficient Construction and Inspection by using new Technologies such as AI and Robots in Japan .. 1356
Kenichi Watanabe

Track Similarity-based Typhoon Search Engine for Disaster Preparedness 1361
Chun-Mo Hsieh, Cheng-Yu Ho, Hung-Kai Kung, Hao-Yung Chan, Meng-Han Tsai and Yun-Cheng Tsai

Cracks Detection using Artificial Intelligence to Enhance Inspection Efficiency and Analyze the Critical Defects .. 1367
Fawaz Habbal, Abdualla Alnuaimi, Mohammed Al Shamsi, Saleh Alshaibah and Thuraya Aldarmaki

Smart Tunnel Inspection and Assessment using Mobile Inspection Vehicle, Non-Contact Radar and AI .. 1373
Toru Yasuda, Hideki Yamamoto, Mami Enomoto and Yasushi Nitta

Applications of Building Information Modeling (BIM) in Disaster Resilience: Present Status and Future Trends .. 1380
Sadegh Khanmohammadi, Mehrdad Arashpour and Yu Bai

Integrating BIM- and Cost-included Information Container with Blockchain for Construction Automated Payment using Billing Model and Smart Contracts .. 1388
Xuling Ye, Katharina Sigalov and Markus König

An Agent-based Framework for Evaluating Location-based Risk Score in Indoor Emergency Evacuation ... 1396
Tianlun Cai, Jiamou Liu, Hong Zheng, Yupan Wang and Vicente Gonzalez

A Framework for Camera Planning in Construction Site using 4D BIM and VPL .. 1404
Si Tran, Ahmed Khairadeen Ali, Numan Khan, Doyeop Lee and Chansik Park

Safe and Lean Location-based Construction Scheduling .. 1409
Beidi Li, Carl Schultz, Jürgen Melzner, Olga Golovina, and Jochen Teizer

Don't Risk Your Real Estate Actions to Realize Efficient Project Risk Management using the BIM Method ... 1417
Maike Eilers, Carla Pütz, Manfred Helmus and Anica Meins-Becker

Introduction of the New Safety Concept "Safety2.0" to Reduce the Risk of Machinery Accidents .. 1424
Hidesato Kojima, Takaya Fujii, Yasushi Mihara and Hiroaki Ihara

Applying ANN to the AI Utilization in Forecasting Planning Risks in Construction .. 1431
Fawaz Habbal, Firas Habbal, Abdualla Alnuaimi, Anwar Alshimmari, Nawal Alhanaee and Ammar Safi

Development of A Mobile Robot pulling An Omni-directional Cart for A Construction Site .. 1438
Yusuke Takahashi, Yoshiro Hada and Satoru Nakamura

Developing a Windshield Display for Mobile Cranes .. 1444
Taufik Akbar Sitompul, Simon Roysson and José Rosa
Development of Simple Attachment for Remote Control (DokaTouch) .. 1452
Kazuki Sumi

Preliminary Development of a Powerful and Backdrivable Robot Gripper Using Magnetorheological Fluid ... 1458
Sahil Shembekar, Mitsuhiro Kamezaki, Peizhi Zhang, Zhouyi He, Tsunoda Ryuichiro, Hiroyuki Sakamoto and Shigeki Sugano

Development and Application of a Fire Resistive Covering Spraying Robot to Building Construction Site .. 1464
Yuichi Ikeda, Hirofumi Segawa and Nobuyoshi Yabuki

A Cable Driven Parallel Robot with a Modular End Effector for the Installation of Curtain Wall Modules .. 1472
Kepa Iturralde, Malte Feucht, Rongbo Hu, Wen Pan, Marcel Schlandt, Thomas Linner, Thomas Bock, Jean-Baptiste Izard, Ibon Eskudero, Mariola Rodriguez, Jose Gorrotxategi, Julen Astudillo, Joao Cavalcanti, Marc Gouttefarde, Marc Fabritius, Christoph Martin, Tomas Henninge, Stein M. Nornes, Yngve Jacobsen, A. Pracucci, Jesús Cañada, José David Jimenez-Vicaria, Carlo Paulotto, Ruben Alonso and Lorenzo Elia

Bi-Directional Communication Bridge for State Synchronization between Digital Twin Simulations and Physical Construction Robots .. 1480
Ci-Jyun Liang, Wes McGee, Carol Menassa and Vineet Kamat

Parallel Kinematic Construction Robot for AEC Industry .. 1488
Maike Klöckner, Mathias Haage, Klas Nilsson, Anders Robertsson and Ronny Andersson

Design-to-Robotic-Production and -Assembly for Architectural Hybrid Structures ... 1496
Henriette Bier, Arwin Hidding and Marco Galli

Design and Synthesis of the Localization System for the On-site Construction Robot .. 1501
Wen Pan, Rui Li and Thomas Bock

Online Synchronization of Building Model for On-Site Mobile Robotic Construction ... 1508
Selen Ercan Jenny, Hermann Blum, Abel Gawel, Roland Siegwart, Fabio Gramazio and Matthias Kohler

A Methodology to Monitor Construction Progress Using Autonomous Robots .. 1515
Samuel A. Prieto, Borja Garcia de Soto and Antonio Adan

Digital Twin Technology Utilizing Robots and Deep Learning .. 1523
Fuminori Yamasaki

Real-Time Process-Level Digital Twin for Collaborative Human-Robot Construction Work 1528
Xi Wang, Ci-Jyun Liang, Carol Menassa and Vineet Kamat

Research and Development of Construction Technology in Social Cooperation Program "Intelligent Construction System" .. 1536
Shota Chikushi, Jun Younes Louhi Kasahara, Hiromitsu Fujii, Yusuke Tamura, Angela Faragasso, Hiroshi Yamakawa, Keiji Nagatani, Yoonhoon Ji, Shinya Aoki, Takumi Chiba, Shingo Yamamoto, Kazuhiro Chayama, Atsushi Yamashita and Hajime Asama

Adopting Off-site Manufacturing, and Automation and Robotics Technologies in Energy-efficient Building .. Wen Pan, Kepa Iturralde Lerchundi, Rongbo Hu, Thomas Linner and Thomas Bock 1549

Analysis on the Implementation Mechanism of an Inspection Robot for Glass Curtain Walls in High-rise Buildings .. Shiyou Cai, Zhiliang Ma and Jianfeng Guo 1556

Application of Robots to the Construction of Complex Structures using Standardized Timbers .. Yi Leng, Xingyu Shi and Fukuda Hiroatsu 1562

A Preliminary Comparison Between Manual and Robotic Construction of Wooden Structure Architecture ... Lu Wang, Hiroatsu Fukuda and Xinyu Shi 1568

Towards 3D Perception and Closed-Loop Control for 3D Construction Printing .. Xuchu Xu, Ruoyu Wang, Qiming Cao and Chen Feng 1576

Robotics Autonomous Surveillance Algorithms for Assessing Construction Automation and Completion Progress Firas Habbal, Abdualla AlNuaimi, Dhoha Alhmoudi, Mariam Alrayssi and Ahmed Alali 1584

Oscillation Reduction for Knuckle Cranes ... Michele Ambrosino, Arnaud Dawans, Brent Thierens and Emanuele Garone 1590