Proceedings of the 40th International Symposium on Automation and Robotics in Construction

Chennai, India, July 5-7, 2023

Proceedings of the 40th International Symposium on Automation and Robotics in Construction

ISSN (for the proceedings series): 2413-5844

ISBN (for this issue of the proceeding series): 978-0-6458322-0-4

The proceeding series is Scopus indexed.

Scopus

All papers are available in the IAARC Website and presentations in the IAARC YouTube Channel

Copyrights reserved.

© 2023 International Association on Automation and Robotics in Construction

This work including all its parts is protected by copyright. Any use outside the narrow limits of copyright law without the consent of the individual authors is inadmissible and punishable. This applies in particular to reproductions, translations, microfilming and saving and processing in electronic systems.

The reproduction of common names, trade names, trade names etc. in this work does not justify the assumption that such names are to be regarded as free within the meaning of the trademark and trademark protection legislation and can therefore be used by everyone, even without special identification.

Cover design: Samuel Prieto and Borja García de Soto. Image: Robotic platform developed by the S.M.A.R.T. Construction Research Group at NYUAD with a thermal camera and laser scanner for the autonomous collection of information in construction sites.

Editorial Board

Editors in Chief

García de Soto, Borja (New York University Abu Dhabi) Gonzalez, Vicente (University of Alberta) Brilakis, Ioannis (University of Cambridge)

Editors (Area Chairs)

Adán, Antonio (University of Castilla La Mancha) Arashpour, Mehrdad (Monash University) Brosque, Cynthia (Stanford University) Bugalia, Nikhil (Indian Institute of Technology Madras) Carbonari, Alessandro (Università Politecnica delle Marche) Du, Jing (University of Florida) Feng, Zhenan (Massey University) Gheisari, Masoud (University of Florida) Hall, Daniel (TU Delft) Hamzeh, Farook (University of Alberta) Hu, Rongbo (Technical University of Munich) Isaac, Shabtai (Ben-Gurion University of the Negev) Iturralde, Kepa (Technical University of Munich) Li, Nan (Tsinghua University) Liang, Ci-Jyun (National Institute for Occupational Safety and Health) Mahalingam, Ashwin (Indian Institute of Technology Madras) Ng, Ming Shan (Kyoto Institute of Technology) Zhang, Jiansong (Purdue University) Zou, Yang (University of Auckland)

Local Organizing Committee

Raphael, Benny (Chair) Varghese, Koshy (Co-chair) Babu, Ramesh Bugalia, Nikhil Chaunsali, Piyush Gettu, Ravindra Kirupakaran, Keerthana Mahalingam, Ashwin Palaniappan, Sivakumar Pillai, Radhakrishna Ramamurthy, K. Santhanam, Manu Satyanarayana, K. N.

Sponsors

PLATINUM SPONSOR		RSEN & T	OUBRO
GOLD SPONSOR	ні-тесн 🖉	Элд сонятнистон	tvasta
SILVER SPONSOR	Cap <u>/taLand</u>		
BRONZE SPONSOR	Trimble.	Shapoog Palong ENG	NEERING &
WORKSHOP PARTNER		INFO GLOBAL	

Foreword

The International Association for Automation and Robotics in Construction (IAARC) and the local organizing committee are pleased to present the Proceedings of the 40th International Symposium on Automation and Robotics in Construction (ISARC 2023) held on July 5-7, 2023, at IIT Madras, Chennai, India. The 40th ISARC was proudly hosted by the Department of Civil Engineering at IIT Madras. This ISARC marks the 40th anniversary of this emblematic symposium. A total of 133 papers were submitted, and after a rigorous peer-review process, 103 papers (77%) were accepted, and 100 were included in the proceedings. Two hundred eighty-six authors representing 115 universities and 29 private/public research organizations and firms from 28 countries, including the Americas, Europe, Asia, and the Middle East, were selected after a two-step (including rebuttal phase) peer-review process with over 170 reviewers managed by 19 Area Chairs taking care of the 8 technical areas of interest of ISARC/IAARC including "Sustainable construction with automation", the theme proposed by the local organizers for this edition. Submission of full papers with no prior submission of abstracts was requested, making the revision cycles and iterations more effective. The peer-review of the papers was single-blinded. Most of the papers (66%) had 2 reviews. In some cases, papers went through additional reviews before a decision could be made. Twenty-nine percent had 3 reviews, and 6% had 4. That allowed us to address situations where consensus by the reviewers was not reached, and additional reviews were required. During the review process, a rebuttal phase was incorporated to allow authors to address the comments by the reviewers. In general, authors appreciate the comments and feedback provided by the reviews. The peer-review process enabled the identification of highquality papers, including short papers, in the proceedings. In terms of presentations, the traditional keynote, plenary and parallel presentations were identified. On top of that, this edition of ISARC includes a "poster category". The posters were showcased during the symposium.

ISARC is the premier global event in the domain of automation and robotics in construction, and as such, the IAARC Technical Committee, with the support of the Area Chairs, strived to secure the acceptance of high-caliber papers. Along with the consolidation of ISARC/IAARC technical areas of interest, an explicit effort to consolidate the knowledge accumulated this year (and from prior years) was undertaken by the IAARC Technical Committee. In that regard, a supporting framework for Area Chairs and reviewers was put in place, including guidelines and standards, to include papers in the proceedings that were carefully curated. The establishment of this review framework and additional "standards" represent an incremental improvement to the ongoing efforts from IAARC to continue improving the standing of ISARC.

We trust that this year's proceedings are interesting for readers, and they will find the papers included stimulating and inspiring. Please enjoy.

Borja García de Soto (New York University Abu Dhabi) Vicente A. Gonzalez (University of Alberta) Ioannis Brilakis (University of Cambridge)

Table of Contents

K – Keynote talks

	Automated Progress Monitoring in Modular Construction Factories Using Computer Vision and Building Information Modeling	1
	Roshan Panahi, Joseph Louis, Ankur Podder, Shanti Pless, Colby Swanson, and Melika Jafari	
	BIM-based construction quality assessment using Graph Neural Networks Navid Kayhani, Brenda McCabe, and Bharath Sankaran	9
	Discrete Event Simulation Based Approach for Tracking Performance of Segmental Production at Precast Yard Ashutosh Kumar Rai, Varun Kumar Reja, and Koshy Varghese	17
P·	– Plenary talks	
	Reducing Uncertainty in Multi-Robot Construction through Perception Modelling and Adaptive Fabrication Daniel Ruan, Wes Mcgee, and Arash Adel	25
	Identifying key parameters for BIM-based disassembly planning Benjamin Sanchez, Pieter Herthogs, and Rudi Stouffs	32
	Building insulation renovation: a process and a software to assist panel layout design, a part of the ISOBIM project Michel Pierre Aldanondo, Julien Lesbegueries, Andrea Christophe, Elise Vareilles, and Xavier Lorca	40
	Automatic point Cloud Building Envelope Segmentation (Auto-CuBES) using Machine Learning Bryan P. Maldonado, Nolan W. Hayes, and Diana Hun	48
	Contribution of Dual-tree Complex Wavelet to Three-dimensional Analysis of Pavement Surfaces Kazuya Tomiyama, Yuki Yamaguchi, and Kazushi Moriishi	56
	How Can ChatGPT Help in Automated Building Code Compliance Checking?	63
	Making Uncoordinated Autonomous Machines Cooperate: A Game Theory Approach	71

A – Automated/robotic machines, devices, & end-effectors

Full-Scale Prototype for Bricklaying Activity Michele Ambrosino, Fabian Boucher, Pierre Mengeot, and Emanuele Garone	79
Bettan – Industrial robot and application for Finja Exakt build system Maike Klöckner, Mathias Haage, Ronny Andersson, Klas Nilsson, Anders Robertsson, and Helena Eriksson	86
Optical Process Control for extrusion-based Additive Manufacturing methods in construction Rafay Mohiuddin, Miranda Cruz Policroniades, Martin Slepicka, and André Borrmann	94
RTDE robot control integration for Fabrication Information Modeling Martin Slepicka, Jalal Helou, and André Borrmann	102
Realtime damage detection in long conveyor belts using deep learning approach Uttam Kumar Dwivedi, Ashutosh Kumar, and Yoshihide Sekimoto	110
Low-light Image Enhancement for Construction Robot Simultaneous Localization and Mapping Xinyu Chen, and Yantao Yu	116
Mobile-robot and Cloud-based Integrated Defect Inspection System for Indoor Environments Vengatesan Govindaraju, Takrit Tanasnitikul, Zheng Wu, and Pongsak Lasang	124
Vehicle Trajectory-Tracking Model for AV using LiDAR in Snowy Weather Under Different Snowing Environments Padmapriya J, Ravi Prasath M, and Murugavalli S	132
Quantified Productivity Evaluation of Autonomous Excavation Systems using a Simulation Approach Xiaoyu Bai, Beiji Li, Yong Zhi Koh, Soungho Chae, C.S. Meera, and Justin K.W. Yeoh	140
Prototypical digital twin of multi-rotor UAV control and trajectory following Lanh Van Nguyen, Trung Hoang Le, and Quang Phuc Ha	148
Development of a Blade Lifting Control Assist System for a Motor Grader Ekin Cansu Özkan Öztürk, Ufuk Akpınarlı, İlhan Varol, Yavuz Samim Ünlüsoy, and Klaus Werner Schmidt	156
Development and evaluation of a low-cost passive wearable exoskeleton system for improving safety and health performance of construction workers: A pilot study Shahnawaz Anwer, Heng Li, Mohammed Abdul-Rahman, and Maxwell Fordjour Antwi-Afari	164
Automated construction process for foundation engineering George Meshcheriakov, and Anatolii Andryushchenko	172
Bulldozer sensing technique for the purpose of automation for bulldozer's workflow Alexey Bulgakov, Thomas Bock, Georgii Tokmakov, and Sergey Emelianov	180
Proposal of an Open Platform for Autonomous Construction Machinery Development Genki Yamauchi, Endo Daisuke, Hirotaka Suzuki, and Takeshi Hashimoto	186
Real-time evaluator to optimize and automate crane installation of prefabricated components Nolan W. Hayes, Bryan P. Maldonado, Diana Hun, and Peter Wang	192
Mathematical description of concrete laying robots Vladimir Travush, Alexey Bulgakov, Thomas Bock, Wen-der Yu, and Ekaterina Pakhomova	200
Structural organization of robotic building and mounting complexes Alexey Bulgakov, Jens Otto, Wen-der Yu, Vladimir Rimshin, and Alexey Shleenko	208

B – Construction management techniques

Proof-of-concept for a reliable common data environment utilizing blockchain and smart contracts for supply-chain of public civil works Fumiya Matsushita, and Kazumasa Ozawa	214
An Extensible Construction Ontology to Guide Job-Site Sensing and Support Information Management Ran Ren, Jiansong Zhang, and Pingbo Tang	222
Impact of Reinforcement Design on Rebar Productivity Amith G Mallya, Varun Kumar Reja, and Koshy Varghese	230
Prospects of Integrating BIM and NLP for Automatic Construction Schedule Management Akarsth Kumar Singh, Aritra Pal, Pavan Kumar, Jacob J. Lin, and Shang-Hsien Hsieh	238
Design based Constraint Handling for Site Layout Planning Abhishek Raj Singh, Venkata Santosh Kumar Delhi, and Sagar Jain	246
Digital Twin Framework for Worker Safety using RFID Technology Anikesh Paul, Sagar Pulani, and J. Uma Maheswari	254
Evaluation of ground stiffness using multiple accelerometers on the ground during compaction by vibratory rollers Yusuke Tamaishi, Kentaro Fukuda, Kazuto Nakashima, Ryuichi Maeda, Kohei Matsumoto, and Ryo Kurazume	262
Optimized Production Scheduling for Modular Construction Manufacturing Angat Pal Singh Bhatia, Osama Moselhi, and SangHyeok Han	270
AWPIC: Advanced Work Packaging Improvement Canvas Hala Nassereddine, Makram Bou Hatoum, and Fernando Espana	278
Assessment of Financial Risk Parameters Associated with Public-Private Partnership Port Projects in India	286
Krushna Shivaji kaut, and Gayatri S. Vyas	

C – Human factors & human-system collaboration

From Lab to Field: A Sociotechnical Systems View of the Organisational Cycle for Intelligent Robotics Technologies Ideation, Planning, Design, Development and Deployment Karyne Ang, Shankar Sankaran, Dikai Liu, and Pratik Shreshta	294
Digital Twin Approach for the Ergonomic Evaluation of Vertical Formwork Operations in Construction Vigneshkumar Chellappa, and Jitesh Singh Chauhan	302
Impact of Crew Diversity on Worker Information Access and Performance Bassam Ramadan, Hala Nassereddine, Timothy Taylor, and Paul Goodrum	309
Understanding BIM through a Simulation Game - Case study of Indian Students subjected to this course Vasanth K. Bhat, Gregor Grunwald, and Tobias Hanke	317
Towards interfacing human centered design processes with the AEC industry by leveraging BIM- based planning methodologies Marc Schmailzl, Michael Spitzhirn, Friedrich Eder, Georg Krüll, Thomas Linner, Mathias Obergrießer, Wassim Albalkhy, and Zoubeir Lafhaj	325

Research on the Relationship between Awareness and Heart Rate Changes in the Experience of	
Safety Education Materials Using VR Technology	333
Shunsuke Someya, Kazuya Shide, Hiroaki Kanisawa, Zi Yi Tan, and Kazuki Otsu	

D – Information modeling techniques

An Integrated Approach for Automated Acquisition of Bridge Data and Deficiency Evaluation Abdelhady Omar, and Osama Moselhi	341
Coupling asphalt construction process quality into product quality using data-driven methods Qinshuo Shen, Faridaddin Vahdatikhaki, Seirgei Miller, and Andre Doree	349
BIM-GIS integration and crowd simulation for fire emergency management in a large diffused university Silvia Meschini, Daniele Accardo, Mirko Locatelli, Laura Pellegrini, Lavinia Chiara Tagliabue, and Giuseppe Martino Di Giuda	357
Transformation of Point Clouds to Images for Safety Analysis of Scaffold Joints Jeehoon Kim, Sunwoong Paik, Yulin Lian, Juhyeon Kim, and Hyoungkwan Kim	365
Occlusion-free Orthophoto Generation for Building Roofs Using UAV Photogrammetric Reconstruction and Digital Twin Data Jiajun Li, Frédéric Bosché, Chris Xiaoxuan Lu, and Lyn Wilson	371
Geometric control of short-line match casting using Computational BIM Nandeesh Babanagar, Ashwin Mahalingam, Koshy Varghese, and Vijayalaxmi Sahadevan	379
A pre-trained language model-based framework for deduplication of construction safety newspaper articles Abhipraay Nevatia, Soukarya Saha, Sundar Balarka Bhagavatula, and Nikhil Bugalia	387
Development of a BIM-based spatial conflict simulator for detecting dust hazards Leonardo Messi, Alessandro Carbonari, Alessandra Corneli, Stefano Romagnoli, and Berardo Naticchia	395
MN-pair Contrastive Damage Representation and Clustering for Prognostic Explanation Takato Yasuno, Masahiro Okano, and Junichiro Fujii	403
Indoor Defect Region Identification Using an Omnidirectional Camera and Building Information Modeling Yonghan Kim, and Ghang Lee	411
Subword Tokenization of Noisy Housing Defect Complaints for Named Entity Recognition	418
A Framework of Reconstructing Piping Systems on Class-imbalanced 3D Point Cloud Data from Construction Sites Yilong Chen, Seongyong Kim, Yonghan Ahn, and Yong Kwon Cho	426
Information Modelling Guidelines for the Mining Sector Jyrki Salmi, and Rauno Heikkilä	434
Automated Layout Zoning: A Case of the Campus Design Problem Vijayalaxmi Sahadevan, Kane Borg, Vishal Singh, and Koshy Varghese	442
Deep learning for construction emission monitoring with low-cost sensor network Huynh Anh Duy Nguyen, Trung Hoang Le, Quang Phuc Ha, and Merched Azzi	450

Restructuring Elements in IFC Topology through Semantic Enrichment: A Case of Automated Compliance Checking	458
Ankan Karmakar, and Venkata Santosh Kumar Delhi	
Towards Automation in Steel Construction: Development of an OWL Extension for the DSTV-NC Standard	466
Victoria Clarita Jung, Lukas Kirner, and Sigrid Brell-Cokcan	
Quality monitoring of Concrete 3D printed elements using computer vision-based texture extraction technique	474
Shanmugaraj Senthilnathan, and Benny Raphael	
Digital twins of bridges: notions towards a practical digital twinning framework Kamil Korus, Marek Salamak, and Jan Winkler	482

E – Sensing systems & data infrastructures

Marker-based Extrinsic Calibration for Thermal-RGB Camera Pair with Different Calibration Board Materials Bilal Ali Sher, Xuchu Xu, Guanbo Chen, and Chen Feng	490
Online Safety Risk Management for Underground Mining and Construction Based on IoT and Bayesian Networks Milad Mousavi, Xuesong Shen, and Binghao Li	498
Evaluating Road Segmentation Performance in Participatory Sensing: An Investigation into Alternative Metrics Jeongho Hyeon, Minwoo Jeong, Giwon Shin, Wei-Chih Chern, Vijayan K. Asari, and Hongjo Kim	506
Microservice-Based Middleware for a Digital Twin of Equipment-Intensive Construction Processes Anne Fischer, Yuling Sun, Stephan Kessler, and Johannes Fottner	513
BIM-SLAM: Integrating BIM Models in Multi-session SLAM for Lifelong Mapping using 3D LiDAR Miguel Arturo Vega Torres, Alex Braun, and André Borrmann	521
A review of Computer Vision-Based Techniques for Construction Progress Monitoring	529
A corpus database for cybersecurity topic modeling in the construction industry Dongchi Yao, and Borja García de Soto	537
Lessons Learned from 'Scan to BIM' for Large Renovation Projects by the U.S. Army Corps of Engineers Tony Cady, Anoop Sattineni, and Junshan Liu	545
Demonstration of LiDAR on Accurate Surface Damage Measurement: A Case of Transportation Infrastructure Nikunj Dhanani, Vignesh V P, and Senthilkumar Venkatachalam	553
DeepGPR: Learning to Identify Moisture Defects in Building Envelope Assemblies from Ground Penetrating Radar	561
Using AI for Planning Predictions – Development of a Data Enhancement Engine Ashwath Kailasan, Vikas Patel, Viranj Patel, and Bhargav Dave	569

Lessons Learned from the "Hack My Robot" Competition and Considerations for Construction	577
Applications	577
Muammer Semih Sonkor, and Borja García de Soto	

F – Services & business applications / Industry papers

AprilTag detection for building measurement	HLE-SLAM: SLAM for overexposed construction environment Xinyu Chen, and Yantao Yu	585
UAV for target placement in buildings for retrofitting purposes. Kepa Iturralde, Wenlan Shen, Tao Ma, Soroush Fazeli, Hükar Suci, Runfeng Lyu, Weihang Li, Jui Wen Yeh, Phillip Hübner, Nikhita Kurupakulu593BIM Implementation Strategy- A proposal for KMRL597Dona James, Berlin Sabu, and Dyna James601Object Detection in Construction Department. Pralipa Nayak601Online Modelling and Prefab Layout definition for building Renovation. Kepa Iturralde, Sathwik Amburi, Sandhanakrishnan Ravichandran, Samanti Das, Danya Liu, and Thomas Bock609Overview of robotic shotcrete technologies with basalt reinforcement. 	AprilTag detection for building measurement Kepa Iturralde, Jungcheng Shen, and Thomas Bock	589
BIM Implementation Strategy- A proposal for KMRL	UAV for target placement in buildings for retrofitting purposes Kepa Iturralde, Wenlan Shen, Tao Ma, Soroush Fazeli, Hükar Suci, Runfeng Lyu, Weihang Li, Jui Wen Yeh, Phillip Hübner, Nikhita Kurupakulu Venkat, and Thomas Bock	593
Object Detection in Construction Department	BIM Implementation Strategy- A proposal for KMRL Dona James, Berlin Sabu, and Dyna James	597
Online Modelling and Prefab Layout definition for building Renovation	Object Detection in Construction Department Pralipa Nayak	601
Overview of robotic shotcrete technologies with basalt reinforcement	Online Modelling and Prefab Layout definition for building Renovation Kepa Iturralde, Sathwik Amburi, Sandhanakrishnan Ravichandran, Samanti Das, Danya Liu, and Thomas Bock	605
Automatic Design of various Reinforced Concrete Structures based on AutoCAD AutoLISP	Overview of robotic shotcrete technologies with basalt reinforcement Thomas Bock, Viacheslav Aseev, and Alexey Bulgakov	609
PExCon: Design and Development of Passive Exoskeleton for Construction	Automatic Design of various Reinforced Concrete Structures based on AutoCAD AutoLISP Dharani V P, and Parvatham Vijay	613
	PExCon: Design and Development of Passive Exoskeleton for Construction	617

G – Technology management & innovation

The Analysis of Lean Wastes in Construction 3D Printing: A Case Study Wassim AlBalkhy, Scott Bing, Saad El-Babidi, Zoubeir Lafhaj, and Laure Ducoulombier	621
Exploring the Digital Thread of Construction Projects Makram Bou Hatoum, Hala Nassereddine, Nadine AbdulBaky, and Anwar AbouKansour	628
The impact of the combined innovations at the Hungarian National Athletics Stadium steel roof structure construction	636
Heidenwolf Orsolya, Juhász Márton István, Kocsis András Balázs, Gáncs Dániel, Kézsmárki Zoltán, Kis Attila, and Szabó Ildikó	
Generative Design for Prefabricated Structures using BIM and IoT applications – Approaches and Requirements	644
Veerakumar Rangasamy, and Jyh-Bin Yang	
LeanAI: A method for AEC practitioners to effectively plan AI implementations Ashwin Agrawal, Vishal Singh, and Martin Fischer	652
Digital Twin as enabler of Business Model Innovation for Infrastructure Construction Projects Sascha van der Veen, Elias Meusburger, and Magdalena Meusburger	660

H – Sustainable construction with automation

Using BIM to Facilitate Generative Target Value Design for Energy Efficient Buildings Saurav Bhilare, Diya Khatri, Salonee Rangnekar, Qian Chen	667
Hardware/Software solutions for an efficient thermal scanning mobile robot Alejandro López-Rey, Amanda Ramón, and Antonio Adán	675
Construction Automation and Robotics for Concrete Construction: Case Studies on Research, Development, and Innovations Rongbo Hu, Wen Pan , Kepa Iturralde, Thomas Linner , and Thomas Bock	683
3D Printing: An opportunity for the sustainable development of building construction Christopher Joseph Núñez Varillas, Marck Steewar Regalado Espinoza, and Angela Cecilia Gago Gamboa	691
Crack Detection and Localization in Stone Floor Tiles using Vision Transformer approach Luqman Ali, Hamad Aljassmi, Medha Mohan Ambali Parambil, Muhammed Swavaf, Mohammed AlAmeri, and Fady Alnajjar	699
Integrating Building Information Modeling, Deep Learning, and Web Map Service for Sustainable Post-Disaster Building Recovery Planning Adrianto Oktavianus, Po-Han Chen, and Jacob J. Lin	706
Life cycle-oriented decision making based on data-driven building models Niels Bartels, Josephine Pleuser, and Timo Schroeder	714
Sustainability in Construction Projects: Setting and measuring impacts Priyanka Ramprasad, Bhargav Dave, Martin Zilliacus, and Viranj Patel	722
State of the art Technologies that Facilitate Transition of Built Environment into Circular Economy Aparna Harichandran, Søren Wandahl, and Lars Vabbersgaard Andersen	730
A review on the Smartwatches as IoT Edge Devices: Assessing the end-users continuous usage intention using structural equation modelling Udit Chawla, Hena Iqbal, Harsh Vikram Singh, Varsha Mishra, Sarabjot Singh, and Vishal Choudhary	738