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Abstract – 

Computer vision and robotics present 

tremendous opportunities for automating routine 

inspections of reinforced concrete bridges. One of 

the most critical aspects of these inspections is 

delamination assessment, as delaminations present 

immediate safety concerns due to falling concrete. 

Current methods of delamination assessment include 

hammer sounding and chain dragging, which are 

time consuming and difficult when accessibility is 

limited. Infrared technology presents an alternative 

method of assessing delaminations. In this work, a 

novel inspection method is proposed that uses an 

infrared camera combined with a convolutional 

neural network to automatically assess 

delaminations in infrared images. MobileNetV2 is 

implemented as an encoder with Deeplab V3 to 

perform pixel-wise segmentation in infrared images 

of delaminations.  

The results show 74.5% mean intersection over 

union (mIoU) for predicting delaminated areas, 

which is comparable with the performance of this 

network architecture on benchmark data sets. 

Reviewing the predicted delamination areas also 

shows that the results accurately predict 

delamination locations, and accuracy limitations 

primarily exist in the fine outline details of the 

delamination. The automated delamination 

assessment method was also tested by mounting an 

upward facing thermal camera on a mobile ground 

robot to perform a bridge soffit inspection.  The 

robotic scanning data set yielded a mIoU of 79.5% 

for delamination assessment. The increase in mIoU is 

likely due to the image data being better structured 

in the robotic images. This displays the ability to 

combine infrared imagery, convolutional neural 

networks, and unmanned mobile robots to meet 

case-specific accessibility needs for more accurate 

and time-efficient delamination assessment.  

Keywords – 

Convolutional neural network; Pixel-wise 

segmentation; automation; Delamination assessment; 

Bridge inspection 

1 Introduction 

Modern technologies in computer vision and 

robotics enable automation of routine tasks, with 

potential for improved efficiency in large-scale work. 

Routine concrete bridge inspection is one task where 

these technologies could provide great benefits [1]. In 

North America, there is demand for improved bridge 

inspections to more efficiently allocate the resources 

invested in bridge management. Routine inspections are 

performed by qualified inspectors following 

standardized guidelines (e.g., OSIM [2]). These 
inspections can be cumbersome and fraught with human 

error when access is limited due to long spans, water 

bodies, traffic conditions, and safety requirements. In 

addition, the results of routine inspections can be 

subjective and variable between inspectors [3]. 

One of the most important defects assessed during 

routine concrete bridge inspections is delamination. 

Concrete delamination can be described as a subsurface 

void in a concrete structure, which is caused by 

excessive internal stresses. The surface concrete next to 

the void is referred to as the delaminated concrete. 
Delaminations are critical, as they pose multiple safety 

hazards. The immediate hazard is that the mass of 

concrete below the void is likely to eventually fully 

detach and fall. This hazard is especially dangerous for 

bridges over high pedestrian or vehicular traffic areas.  

In addition to being critical defects, delaminations 

are also one of the most difficult defects to assess during 

routine visual inspections because they are a subsurface 

defect that can seldom be detected by human vision. 

Currently, delaminations tend to be detected by manual 

process of hammer sounding or chain dragging to listen 
for hollow sounding concrete. These current sounding 

methods are time-consuming, inaccurate, and often not 

performed due to accessibility limitations. This makes 

delamination assessment a good candidate for an 

automated inspection method. 

Infrared cameras combined with mobile robotic 

technologies present the opportunity for an efficient 

method of delamination assessment. The first step 
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towards developing this method is to use hand-held 

infrared cameras to assess delaminations. Delaminations 

can be identified in infrared images of concrete [4], as 

the delaminated concrete heats and cools at a different 

rate than the surrounding concrete. This occurs because 

the internal void acts as an insulating layer, making the 

delaminated concrete an independent, small mass [5]. 

This phenomenon makes delaminated areas often appear 

as a hot or a cold spot in an infrared image, depending 

on the time of day and environmental conditions. 

Detecting delaminations in infrared images is based on 
relative differences in thermal readings, so the absolute 

temperature of the delaminated areas is not critical for 

this study. Figure 1 shows examples of both hot and 

cold delaminations in infrared images of concrete bridge 

soffits. 

  

   

Figure 1. Examples of white-hot (top row) and 

black-cold (bottom row) delaminations in 

infrared images of concrete bridges. 

Another advantage of using infrared cameras to 

detect delaminations is that this creates new possibilities 

for easy access to hard to reach bridge components. 
Many existing infrared cameras come in compact forms, 

ready to be mounted on an unmanned mobile robotic 

vehicle. This has the potential to eliminate many 

accessibility issues, as an infrared camera can be 

deployed on various vehicle types (aerial, ground, water) 

to account for the specific limitations of any bridge 

environment. For example, a bridge over water could 

have an upward facing infrared camera on a water 

vehicle to collect images. This proposed vision based 

infrared and robotic delamination assessment procedure 

provides a reasonable alternative in situations where 
traditional methods (e.g. hammer sounding) are not 

economically feasible due to special equipment and/or 

traffic control requirements. 

Of all the advantages, perhaps the most useful 

advantage of using infrared imagery to assess 

delaminations is the ability to detect and localize the 

delaminations automatically using computer vision. In 

the computer vision community, there are two types of 

approaches that are used to automatically process image 

data for detecting objects of interest (delaminations 

being the objects of interest in this work): knowledge-

driven methods and data-driven methods.  

Knowledge-driven methods are based on the known 

characteristics of the object of interest. For example, 

this knowledge may include known colours and shapes 

of the objects of interest in the images. Knowledge 
based methods will often include human inputted rules 

for determining which features in images correspond to 

which objects. The second approach is data-driven 

methods, which rely on large quantities of labelled 

image data to train deep prediction networks. Once 

these networks have been trained to detect and localize 

the objects of interest based on the inputted data, they 

can then be used to detect and localize those objects on 

new data sets. These methods require large labelled data 

sets and significant processing resources to train the 

networks. Data-driven methods have become the 

method of choice for many computer vision based 
object recognition. These methods have consistently 

dominated computer vision competitions since a data-

driven network first won the ImageNet challenge in 

2012 [6]. 

For the assessment of concrete delaminations, 

knowledge-driven methods are difficult to implement 

successfully as delaminations have no definitive shape, 

and can show as a hot or cold area in the image 

depending on environmental conditions. This makes it 

difficult to determine a set of rules that will work across 

various delamination cases. Little research has been 
done to automatically assess delaminations using 

knowledge-driven methods, but some algorithms exist 

to automatically detect delaminations using a simple 

data-driven method (e.g., k-means clustering [7]). These 

existing methods are limited to specific bridge 

environments and often require some expert supervision. 

Alternatively, convolutional neural networks (CNN) 

present an opportunity to use data-driven methods for 

fully automated detection. CNNs are considered state-

of-the-art in computer vision as they currently dominate 

benchmarks such as [8], and can be leveraged to detect 

and localize objects of interest within images. Thus 
CNNs not only allow detection of images that show 

delaminations, but also provide the location of 

delaminated areas within each image. CNNs have yet to 

be applied to concrete bridge delamination assessment, 

but present a viable opportunity to improve upon 

existing results for delamination detection. This work 

proposes a CNN for semantic pixel-wise segmentation 

of delaminated areas within an infrared image of a 

reinforced concrete bridge.  
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The work presented herein can be divided into three 

main contributions. First, a versatile image labelling 

methodology is presented. This methodology fosters 

rapid pixel-wise labelling of concrete bridge defects in 

images to accelerate dataset building. Second, a novel 

approach is taken to concrete delamination detection 

and localization using infrared imagery combined with a 

convolutional neural network. Lastly, the described 

delamination detection methodology is demonstrated on 

a mobile ground robot. This final demonstration proves 

that the method presented herein can alleviate 
accessibility constraints in many bridge inspections. The 

methodology can be extended to aerial robots as well. 

2 Related Works 

Research work combining computer vision with 

concrete bridge inspection has primarily focused on 

automated crack detection and localization in visible 

spectrum images [9,10]. Some research has also been 
done on spall/delamination detection [11,12], but to a 

far lesser extent. With regards to delamination 

specifically, automated assessment via computer vision 

is still significantly limited. Since this work is focusing 

on delamination detection on concrete bridges using a 

CNN, this section will briefly present the work done to 

date on automated delamination detection as well as a 

the use of CNNs for general defect detection. 

Automated detection of delaminations is fairly novel, 

as computer vision techniques applied to infrared 

imagery is required. Omar et al. [7] presented an 

automated procedure for detecting delaminations in 
concrete bridge decks using infrared thermography. 

They first created a thermal mosaic of the entire bridge 

deck from individual enhanced thermal images using a 

stitching algorithm. They then segmented the mosaic 

and identified objective thresholds using a k-means 

clustering method, to be able to identify delamination 

locations based on changes in heating patterns. This 

algorithm results in a condition map that effectively 

identifies delaminations within bridge decks. 

A convolutional neural network (CNN) is a type of 

feed-forward neural network that utilizes the 
convolution operator in place of typical fully connected 

network layers. These CNNs are commonly applied to 

analyze inputs that have a grid-like data structure (e.g. 

pixel structure of images) [13]. Many practical 

computer vision applications require localization 

information within an image in addition to classification. 

Localization in this context means identifying which 

pixel areas in an image belong to a specific class (e.g., 

which pixels are part of a delamination). There are 

currently two CNN-based methods to achieve this: 

region based CNNs (R-CNN) and CNNs for semantic 
pixel-wise segmentation of images (semantic 

segmentation CNNs). R-CNNs improve on 

classification by adding a bounding box around the 

detected object to provide location information. 

Semantic segmentation CNNs provide structured grid-

like data output, which provides pixel-level location 

accuracy within the image. Some researchers have 

begun to implement CNN algorithms for detection 

and/or localization of structural defects, and have shown 

promising results. However, much work is yet to be 

done for bridge inspections to incorporate the level of 

CNN technology that is currently available. 
Region based CNNs (R-CNN) have been used more 

frequently than semantic segmentation CNNs. Cha et al. 

[14] developed a R-CNN algorithm for detecting cracks 

in high-resolution images. This method is 

computationally inefficient, as it uses a 256x256 pixel 

sliding window approach to classify each region as 

cracked/not cracked. The algorithm reported a high 

accuracy, but results were only tested on images of 

similar locations with a consistent background. This 

method was not proven to generalize to varying 

environments. Cha et al. [15] also used Faster R-CNN 

[16] for assessing five defect types (four types of steel 
defects and concrete cracking). This algorithm is 

efficient and showed promising test results for concrete 

cracks, but was limited to images of two bridges and a 

building complex. In addition, this study primarily 

focused on steel bridges rather than reinforced concrete 

bridges. Kim et al. [17] proposed a R-CNN as part of a 

complete bridge inspection solution. They used an 

unmanned aerial vehicle to collect images and 

combined it with a R-CNN for data processing and 

damage analysis. This work only studied visual images 

for crack assessment and did not investigate thermal 
defect analysis. 

Zhang et al. [18] proposed a semantic segmentation 

CNN called CrackNet. CrackNet automates crack 

detection on 3D asphalt surfaces and maintains the 

shape of the original input image for pixel-wise 

classification/localization. This algorithm was 

successful for pixel-level detection of cracks but the 

results are only tested on asphalt. In addition, the 

algorithm is limited to crack labelling using 3D images 

from a high-quality PaveVision3D road inspection 

system. As a result, it is expected that this system 

cannot generalize to structural bridge inspections. 

3 Methodology 

 The delamination assessment method proposed in 

this work uses a data-driven CNN for semantic pixel-

wise segmentation. The first step to the proposed 

implementation is to collect a training data set large and 

diverse enough to provide high detection accuracy on a 
variety of concrete bridges. The following sections will 
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elaborate on the data collection and the labelling process. 

Finally, the implementation of the CNN will be 

presented in detail. 

3.1 Image Data Set 

A data-driven image segmentation approach is 

highly dependent on the size and quality of the image 

dataset provided. Therefore, collecting an adequate 

dataset to train, validate, and test a neural network is a 

critical step to the success of this method. There exist 
few public online data sets containing infrared images 

of delaminations, and no data sets where these images 

are labelled at a pixel-level to indicate delaminated 

areas. As a result, it is essential that a new infrared 

image data set be created and labelled appropriately. 

The data set collected for this research consists of 

500 infrared images taken of four reinforced concrete 

bridges in the cities of Kitchener and Waterloo, Ontario. 

The four selected bridges were in variable conditions. 

Images were taken at varying times of day, on different 

days, and under different weather conditions to ensure a 
variety in the data set. Of the 500 images, 261 contain 

some delamination, and 239 show no delamination in 

the concrete. All images were collected using a FLIR 

VUE Pro thermal camera. This camera can be mounted 

on small robots, including on unmanned aircraft systems, 

and can be remotely controlled. The camera has a 

512x640 pixel resolution, and has a 7.5-13.5 micrometer 

spectral band. The images for this study were taken 

using the 'white hot' thermal camera setting (i.e., hot 

areas appear white in images, as shown in Figure 1). 

The images that make up the dataset were collected 

in two ways: (1) manually and (2) automatically via 
unmanned ground robot. The manual method was used 

for the majority of the images in the dataset. In this case, 

the inspector held the camera. When the inspector 

suspected an area as delaminated, images were captured 

of that area using the FLIR camera phone application. 

The automatic image collection was done by mounting 

the FLIR camera in an upward facing configuration on a 

Husky unmanned ground robot (manufactured by 

Clearpath Robotics). Figure 2 shows this configuration 

including the robot and other sensors integrated into the 

system. This configuration allows the images to be 
captured at precise intervals and be synchronized with 

the other images taken on-board the robot. Furthermore, 

the exact position that the images were taken from can 

be determined based on the known coordinates of the 

robot.  

The second collection method not only proves the 

additional benefits of integrating this defect detection 

method with other robotic sensors (e.g., GPS and visible 

spectrum cameras) but it also shows that this 

methodology can be used on any generic unmanned 

robot. As a result, this approach is suitable to address  

 

Figure 2. Husky unmanned ground vehicle with 

upward facing thermal camera. 

the accessibility problems with delamination assessment 

by utilizing the mobility of aerial, ground, and surface 

robotics. 

3.2 Image Labelling 

To train the proposed CNN to detect objects in 

images at a pixel level, each training image needs all the 

pixels to be labelled as one of the classes. In this case, 

only two classes are used: (1) sound concrete, and (2) 

delamination. Semantic pixel-wise image labelling is a 

tedious task, even with only two classes. To help with 

the labelling, a labelling graphical user interface (GUI) 

was created using MATLAB [19]. The goal of this GUI 

is to be generic enough that it can be used to label image 
pixels for any number of defect types on concrete 

bridges. This GUI makes use of basic image processing 

techniques to provide an initial estimate of the defect 

locations, and then provides tools to manually fine-tune 

the labelling.  

Figure 3 shows the process used to provide the 

initial estimate of the pixel labels, prior to manual 

editing. First the image is converted to grayscale. This is 

required as grayscale thresholding is used to generate 

the initial delamination segmentation estimate. Even 

though most of the images used for this dataset were  
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Figure 3. Flowchart of the image processing 

techniques used to simplify pixel-wise labelling. 

collected in grayscale, this approach would generalize to 

any visible spectrum image or infrared images that use 

coloured heat gradients. The second step is to perform a 

complement binary switch (if required) to ensure the 

delamination consistently appears as back in the image 

mask. The three filters can then be applied including the 

thresholding, connectivity, and median filters. Each of 

these filters is applied using a sliding adjuster to allow 

easy editing of the three filters' sensitivities. Finally, a 
manual editing tool is used to remove unwanted areas or 

add missing areas. 

Figure 4 shows the two main steps of the graphical 

interface for the image labeller. The top image shows 

the sliding filters. The bottom image shows the interface 

used for manually editing the initial mask. 

 

 

Figure 4. Image processing sliders to adjust 

delamination mask estimate (top) and GUI tools 

to manually adjust image mask (bottom). 

These image processing techniques provide a good 

pixel-wise estimate of delaminated locations, but have 

several shortcomings. First, there tend to be other 

artifacts in the image that will be included during 

thresholding and cannot be removed by other filters. For 

example, girder edges tend to also heat/cool quicker 

than the surrounding concrete, giving them similar 

thermal patterns to a delaminated area. These edges are 

an example of an object requiring manual removal from 

the mask. Second, there can be some small gaps in the 

detected delamination area that cannot be fixed by the 
connectivity or median filters. This is an example of 

areas required to be manually added to the mask. 

The described labelling approach allows for accurate, 

time-efficient labelling, which is necessary to be able to 

generate an adequate, well labelled data set. This 

approach has also been tested for labelling cracks, spalls, 

corrosion stains, and exposed reinforcement in concrete 

structures. 

3.3 CNN Implementation 

In order to properly assess delaminations in infrared 

imagery, both detection and pixel-level localization of 

the defect is required. In other words, it is not sufficient 

to say there is a delamination in the image, as the 

location of the delamination in the image is essential. 

The current state-of-the-art method for achieving this is 

a CNN algorithm. Many CNN algorithms exist to 

perform semantic pixel-wise segmentation, and often 

report exceptional results on standard segmentation data 

sets, such as Pascal VOC [8] or Cityscapes [20]. These 

datasets contain more classes, and more variable images 

compared to a dataset for delamination detection. Thus 
a similar quality of results should be expected when 

applied to delaminations, since the complexity of the 

data does not increase. 

The network chosen for this application is 

MobileNetV2 [21] as a feature extractor with Deeplab 

V3 [22] to perform semantic pixel-wise segmentation. 

This network architecture was developed for mobile 

deployment, where time-efficiency is considered more 

important than accuracy. This is preferable as certain 

applications may benefit from real-time delamination 

assessment. For example, an inspector benefits more 
from real-time viewing of detected delamination 

locations on site than obtaining higher-resolution 

localization information about the exterior-boundary of 

the delaminated area. 

The main building blocks of the network are from 

[21,22]. However, minor modifications were made to 

suit this specific application of this network to 

delamination assessment. The network input size is 

adjusted to be 512x640 to match the infrared image size. 

The last layer of the delamination prediction network is 

programmed to be a pixel-wise softmax activation layer, 
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which is given by the equation, 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)𝑖 =
exp⁡(𝑥𝑖)

∑ exp⁡(𝑥𝑗)
𝑛
𝑗=1

 
 

(1) 

where 𝑥𝑖  represents the network's calculated output 

score for a given class and 𝑛 represents the number of 

classes [9]. In this case, 𝑛 = 2  and the softmax 

activation is applied to predict each output pixel 

individually. This activation function restricts the output 

scores of each pixel to be between 0 and 1 so that the 
model can be trained using the categorical cross entropy 

(CCE) loss function, given by the equation, 

𝐽(𝜃) = −∑ 𝑦𝑖
𝑛

𝑖=1
log⁡(𝑃(𝜃)𝑖) 

 

(2) 

where 𝜃  represents the network weights, 𝑛  is the 

number of possible classes, 𝑦𝑖 is a binary classifier if the 

pixel does (𝑦𝑖 = 1) or does not (𝑦𝑖 = 0) belong to class 

𝑖, and 𝑃(𝜃)𝑖 is the network predicted likelihood that the 

pixel belongs to class 𝑖  [9]. This combination of 

softmax output layer and CCE loss was used as it is 

generally considered best practice for multiple-class 

single-label classification. For this case it is also 

possible to use a sigmoid activation function with a 

binary cross entropy loss function, but this algorithm is 

intended to be scalable to include more defect classes in 

the future so the binary method was not preferred. 

The network was trained using stochastic gradient 
descent [9], with a learning rate of 0.005, momentum of 

0.9, and weight decay of 0.005/number of epochs. 

Image augmentation was used during training help 

prevent overfitting. Before each epoch, random 

transformations were applied to the training images only. 

These randomized image transformations include: flip 

horizontal, flip vertical, rotation, width and height shift, 

and zoom. This data augmentation ensured that the 

network would highly likely not see the exact same 

image twice during training. 

4 Results 

The collected 500 image data set was split into two 

main structures. The first structure consisted of 

randomly sorting the images into a 400 image training 

set, 50 image validation set, and 50 image test set. This 

yields a 80/10/10 dataset split. The second structure 

separated the images into a validation set consisting of 

images that were taken from the ground robot (Figure 2) 
under a bridge, and the training set consisted of all other 

images. This data split will be referred to as the robotic 

scanning split, where 62 images taken from a robot were 

used in the validation set and 436 of the remaining 438 

images were used in the training set. Two images were 

left out to keep the number of training examples 

divisible by four (the desired batch size for this 

application).  

The CNN algorithm for delamination assessment 

was reviewed for accuracy using the CCE loss 

(Equation 2) and mean intersection over union (mIoU) 

metrics. IoU is a common metric to compare 

segmentation results on benchmark datasets and is given 

by the equation, 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

(3) 

where 𝑇𝑃 is true positives, 𝐹𝑃 is false positives, and 𝐹𝑁 

is false negatives. In this application, positive is 
considered predicting a delamination and negative is 

considered predicting no delamination. CCE and mIoU 

were calculated and tracked at the end of each epoch for 

both the training and the validation set. Figure 5 shows 

the results of training on both dataset splits and Table 1 

summarizes the final results. 

 

 

Figure 5. CNN results tracking mIoU during 

training for the 80/10/10 split (left) and robot 

scanning split (right). Blue represents training 

data and green represents validation data. 

Table 1. Network Evaluation Metrics 

Dataset Split CCE mIoU 

80/10/10 

Train 0.0182 76.0% 

Val. 0.0163 72.7% 

Test 0.0169 74.5% 

Robotic 

Scanning Split 

Train 0.0166 71.1% 

Val. 0.0560 79.5% 

Pascal VOC 
2012 

Benchmark n/a 77.3% [8] 

The results measured by CCE and mIoU show the 

network achieves comparable results for delamination 

assessment when compared to its performance on 

benchmark datasets. However, numbers cannot be 

compared to existing delamination assessment methods, 

as no fully automated methods exist on a similar 

infrared image dataset. To review the quality of the 

method, the output of the network was assessed on its 
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ability to predict delaminations for a typical inspection. 

Figure 6 shows delamination locations predicted by the 

network. The first three examples show results on 

images of bridge deck soffits that contain a various 

number of delaminated locations. The results show that 

the proposed methodology is capable of detecting nearly 

all delaminations, while avoiding false positives. 

 

 

 

Figure 6. CNN example prediction results. Image 

(left), prediction (middle), true label (right). 

The main source of error in these examples is the 

fine details. The edges of delaminations in the 

prediction are more rounded compared to the label, and 

small or thin delaminations are not well detected. This is 

a limitation based on the number of parameters used in 

the network and can be solved by adding more trainable 

parameters in the network. However, this limitation is 

not of great concern for concrete bridge inspection since 
precise knowledge of the delamination borders is not a 

requirement for bridge inspection. As discussed earlier, 

real-time visualization of the delamination assessment 

results is more valuable. In addition, traditional 

inspection procedures such as chain dragging and 

hammer sounding are not capable of precisely detecting 

edges and therefore this methodology is already a major 

improvement over current practice. 

The fourth example in Figure 6 shows an example 

where there are a few potential areas that the network 

could falsely predict as a delamination. There is a 
scaffolding structure underneath the bridge, a small dark 

area and a small white area. In this case, the network 

successfully avoids false positives, showing that it has 

successfully learned some characteristics of a 

delamination and is not easily misled by similar artifacts. 

It is also worth noting that the validation set of the 

robotic scanning split achieved the highest mIoU rating. 

This is most likely because the images taken by the 

robotic scan contained a large number of fairly clear 

delaminations. This is evidence that the quality of the 

image can influence the ability of the network to predict 

delamination locations.   

5 Conclusion and Future Work 

This work presents a novel automated concrete 

delamination assessment methodology using infrared 

imagery, robotics, and CNNs. A versatile pixel-wise 

defect labeler was first developed specifically for 

concrete bridge defects and was shown to help expedite 

the pixel-wise labelled image dataset creation. 

MobileNetV2 (Deeplab V3 implementation) was used 

to perform pixel-wise segmentation on infrared images 

of reinforced concrete bridges. This method was able to 

achieve high performance when evaluated on a data set 

of 500 infrared images by accurately detecting and 
locating delaminations under varying bridge 

environments. Quantitatively, the mIoU score for 

delamination assessment was shown to be comparable 

to what this network achieved on the Pascal VOC 2012 

benchmark dataset. Qualitatively, the network was 

shown to predict delaminated areas correctly and avoid 

areas that have high potential to be classified as a false 

positive. The majority of the errors lowering the mIoU 

score are due to fine details around the edges of the 

delaminations which is of little concern to bridge 

inspections.  

The network was also shown to be able to combine 
with a mobile ground robot (or any other unmanned 

mobile robotic platform). 62 images of a concrete 

bridge soffit and girder were taken by an upward facing 

compact infrared camera mounted on the robot and 

delaminated areas were predicted by the network. This 

test achieved high mIoU, which illustrates the ability of 

the delamination assessment network to integrate with 

robotic inspection. This is highly beneficial, as different 

unmanned robots can be used to accommodate specific 

accessibility limitations. Overall, this methodology 

presents significant improvements over state-of-the-art 
bridge inspection. 

Future work will involve collecting a larger dataset 

to improve results, but a more complex network is likely 

not necessary as finer details are redundant for 

delamination assessment. In addition to more data, a 

quantitative comparison will be performed between the 

automated robotic assessment results and results from 

traditional sounding methods. Lastly, this methodology 

will be extended to other concrete bridge defects such as 

spalls, cracks, corrosion stains, and exposed reinforcing 

bar in visible spectrum images. 
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