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Abstract – 

Proactive approaches designed to prevent 

incidents before they occur are essential for 

achieving effective safety management. Emerging as 

an important component of proactive safety 

management, leading indicators are used to assess 

and control safety performance. With the aim of 

reducing the number or severity of worksite 

accidents, methods capable of predicting future 

safety performance using leading safety indicators 

have been developed. However, these methods have 

been developed for a specific set of leading indicators. 

This has substantially limited their application in 

practice, as leading indicators with the greatest 

impact on safety performance vary considerably 

between organizations and projects. An approach 

for predicting accident occurrence on construction 

sites that can be applied to any combination of 

leading indicators is proposed to address these 

limitations. Data used to develop the proposed 

approach were collected by a construction company 

from eight construction projects over a period of two 

years. Feature selection techniques were used to 

filter the original factors into the most critical subset, 

which were then used as inputs. Various supervised 

learning algorithms, namely support vector machine 

(SVM), logistic regression, and random forest, were 

then tested to determine which algorithm(s) yielded 

the highest prediction accuracy. The results 

demonstrate that the proposed procedure can be 

used for early recognition of potentially hazardous 

project characteristics and site conditions regardless 

of the number or type of leading indicators available 

within an organization. Research in this area is 

expected to facilitate the implementation of targeted 

safety management controls and to improve safety 

performance. 

 

Keywords – 

Safety Leading Indicators; Safety Management; 

Safety Performance; Machine Learning  

1 Introduction 

Safety leading indicators are an essential component 

of proactive safety management, providing valuable 

information regarding organizational safety 

performance [1]. Leading indicators, defined by 

Grabowski et al. [2], Hinze et al. [3], and Kjellén [4], 

are conditions, events, or measures antecedent to 

undesirable events that can be used to predict the 

occurrence of accidents, near misses, or any undesirable 

safety state. Measuring leading indicators allows 
practitioners to define a threshold value for metrics 

below which corrective actions should be taken, with 

the aim of reinstating the performance above the 

required level [5]. Accordingly, leading safety 

indicators have emerged as a more effective alternative 

than traditional lagging indicators, which are measured 

after the occurrence of an accident [5].  

Safety professionals have contended that the careful 

selection, measurement, and mitigation of leading 

indicators can result in real improvements in practice [3]. 

Practical improvements are attributed to the ability of 
leading indicators to be linked causally and proactively 

with safety outcomes in terms of accidents [6]. Criteria 

for selecting useful leading indicators have been defined 

[7] and include validity, reliability, sensitivity, 

representativeness, openness to bias, and cost-

effectiveness. Øien et al. [8] have expanded on this, 

indicating that successful safety indicators should also 

be measurable on a numerical scale, updated regularly, 

and reflect selected determinants of overall safety.  

Because of the potential interactive effect associated 

with combining and analyzing various leading 
indicators, a comprehensive set of leading indicators is 

believed to provide the best predictive result [9]. Indeed, 

many researchers, including Garza et al. [10] and Hinze 

et al. [9], recommend that companies should use a 

combination of leading indicators to assess safety 

performance rather than depending on a single indicator. 

Furthermore, companies should consider indicators 

outside of the safety department that have been found to 

reliably predict safety performance, such as those 
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associated with project performance. While construction 

companies collect a liberal amount of project-

performance data to track the overall performance of their 

projects, they struggle to make use of these data for safety 

performance assessment purposes. 

A number of leading indicator-based methods 

capable of predicting safety performance have been 

reported in the literature. However, these methods have 

been developed using only a specific set of leading 

indicators. Accordingly, many of these methods are 

dependent on certain dataset types or formats, making it 
difficult for practitioners to generalize the application of 

these methods in practice.  

This study proposes an approach capable of 

proactively assessing safety performance regardless of 

the number or type of leading indicators available to a 

specific construction organization or project. The first 

part of this work is published in [11] where the authors 

showed that project performance data collected by 

different departments can be used as inputs for creating 

machine learning algorithms for safety leading 

indicators. Using a machine-learning approach, the 

proposed methodology can be applied to any dataset. In 
this particular case, the dataset is collected for non-

safety associated purposes (e.g., cost, quality, and 

schedule) to predict the occurrence (i.e., yes/no) of an 

accident. The proposed approach was used to assess the 

safety performance of an organization based on data 

collected from eight projects over a period of two years., 

Various measures not traditionally associated with 

safety performance (i.e., quality, cost, and schedule) 

were included in the analysis to demonstrate the 

adaptability of the proposed approach. The various 

machine-learning algorithms were compared. 

2 Literature Review 

While several theoretical safety leading indicator 

studies have been conducted [3, 5, 12], few construction 

companies have successfully implemented programs 

capable of monitoring safety leading indicators in 

practice. In cases where companies have implemented 

such systems, there is little information available in the 
literature detailing which specific leading indicators 

have been applied by these companies [9]. Several 

factors identified by the Construction Industry Institute 

(CII) and other academic researchers may explain why 

successful leading-indicator monitoring programs have 

yet to be widely used in practice (i.e., knowledge gaps).  

2.1 Predictive Models in the Safety Domain 

Previous investigators have suggested that personal 

protective equipment (PPE) and proactive detection-
based strategies are not sufficient for facilitating a zero 

injury state [13] and that predictive models of safety 

performance may play a key role in bridging this gap 

[14]. Predicting and understanding anticipated changes 

in safety performance can assist organizations in 

developing accident mitigation strategies more 

efficiently and effectively. Indeed, Schultz [13] has 

demonstrated the ability of one company to reduce 

injury rates through the application of advanced and 

predictive analytics together with a growing safety 

dataset. A number of predictive models have been 

developed with the aim of proactively forecasting where 

and when workplace injuries will occur. Ghodrati et al. 
[14] built various models to predict construction safety 

outcomes at the macro level. They demonstrated that the 

number of companies in any liable earnings category 

predicted safety outcome as well as the number of 

claims and entitlement claims in all constructed models. 

They also found a positive and significant relationship 

between the number of companies in various liable 

earnings categories and the severity of associated 

occupational injuries. In another study, Esmaeili et al. 

[15] used principal component analysis and a linear 

prediction model to test the validity of risk attributes for 

predicting safety outcomes. Although their method was 
able to predict safety outcomes effectively, it was 

limited to small-scale projects. A Bayesian-network 

hybrid model has been proposed by Xia et al. [16], to 

holistically explore safety risk factors in construction 

projects and predict the probabilities of project safety 

states.  

2.1.1 Machine Learning-Based Models 

Machine-learning algorithms function by learning 

from historical data in a manner that easily 

complements expert opinion. Although machine 

learning has been used widely in construction research 
for more than two decades, its application in the field of 

construction safety remains limited [17]. Poh et al. [18] 

presented a machine-learning approach to develop 

leading indicators that classify construction sites by 

their safety risk. A machine-learning approach using 

occupational accident data was also used by Sarkar et al. 

[19] to predict occupational accident outcomes, such as 

injuries, near misses, and property damage. Although 

the results of the studies mentioned above demonstrate 

considerable promise, the specificity of the datasets that 

the researchers used to develop these methods renders 

the widespread application of these methods difficult in 
practice for organizations with dissimilar data; in 

particular, generalization is difficult for datasets related 

to project performance rather than safety performance. 

3 Research Methodology 

Figure 1illustrates the research methodology. This 

methodology is a standard data mining process, as 
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defined by Witten et al. [20]. First, data are collected 

and studied to determine if the dataset is suitable for 

further processing. Second, raw data are cleaned and 

prepared (i.e., removal of missing data and outliers) for 

input into machine-learning algorithms. Data cleaning 

and preparation attempts to address any empty fields in 
records, data entry errors, and instances where data have 

been collected in an ad hoc manner [21]. This step 

ensures that the machine-learning algorithms produce an 

ideal model with improved performance. Finally, 

various prediction models are developed, and their 

performances are evaluated.  

 

 

Figure 1. Research methodology 

3.1 Data Collection  

The dataset used in this research was obtained from 

a large construction company in Alberta, Canada, with a 
broad range of construction expertise including building, 

industrial, and infrastructure projects. The dataset, 

which encompassed eight industrial projects completed 

over two consecutive years (2016 to 2017), initially 

contained 123 biweekly records of each project’s 

performance- (e.g., cost, schedule, and quality 

performance) and safety-related data (e.g., direct worker 

hours, foreman hours, shift hours, and accident 

occurrence). Biweekly accident records were associated 

with biweekly project performance- and safety-related 
data. More details about the definition of each of these 

features and integration of data from different 

departments is provided in [11]. A description of the 

variables collected is presented in Table 1.  

3.2 Data Cleaning and Preparation 

Features and variables that were not useful for this 

work were first removed. For example, three variables 

related to the budget and contract value (i.e., original 

budget, re-baseline budget, revised contract value) all 
provided similar information. Here, only one variable 

(re-baseline budget) was considered and kept. Second, 

missing values were removed or substituted by values 

that allowed for the development of the model while, at 

the same time, not adversely affecting model 

performance [20]. In this particular dataset, the value 

“Years of Experience Direct Hours” was missing in 

over 50% of the total records. Due to the limited 

number of data points, associated columns were 

removed. The features listed in Table 1 were filtered, 

resulting in a dataset of 23 features.  

3.2.1 Data Labeling 

Two labels were selected: (1) True, indicating an 

accident occurred in the worksite or (2) False, indicating 

no accident occurred. 

Table 1. Collected variables 

Performance 

Category 
Variable/Feature 

General Project ID, Contract Type, Report Date, Contract Change Order (CCO), Outstanding 

CCO, CCO Submitted to Date, Request for Information (RFI), RFI Submitted to Date, 

Open RFI 

Cost Original Budget, Re-Baseline Budget, Approved Changes, Revised Contract Value, 

Pending Changes, Forecast at Completion, Earned Value, Incurred Value, Outstanding 

Change %, Work Order CPI 

Schedule Work Order % Complete, Work Order SPI, Work Order HPI 

Quality Non-Conformance Report (NCR), Open NCR, Field Surveillance Report (FSR), FSR 

Submitted to Date, Open FSR. 

Safety (0-1) Years of Experience Direct Hours, (1-2) Years of Experience Direct Hours, (2-3) 

Years of Experience Direct Hours, (3-4) Years of Experience Direct Hours, +4 Years of 

Experience Direct Hours, Foreman Hours, Shift Hours, Exposure Hours, Accident 
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3.2.2 Class Imbalance Problem 

Machine-learning algorithms perform best when the 

number of observations is approximately equal in each 

class [20]. After data cleaning and feature selection, a 

total of 79 “no accident” and 23 “accident” cases were 

recorded. Random over-sampling techniques [22] were 

used to overcome the class imbalance and to reduce the 

negative impact this may have on algorithm 

performance.  

3.2.3 Principal Component Analysis (PCA) 

In machine learning, Principal Component Analysis 

(PCA) is useful for dimension reduction when analyzing 

high-dimensional datasets, reducing the number and 

increasing the independence of predictors [23]. Each 

principal component is a normalized principal 

component or linear combination of original variables. 

Based on the concept that principal components are 

orthogonal to each other (and correlation coefficients 

are all zero), PCA allows for the removal of 

multicollinearity in the features. In PCA, the first 

principal component is the one that captures the 

maximum variance of the data set. In other words, it 

determines the direction of the highest variability in the 
data. 

Scatter plots and correlations between the 

independent variables are depicted in Figure 2. Of note, 

the highest correlation observed was between Shift 

Hours and Foreman Hours, (r=0.93; Figure 2). The 

results of PCA showed that PC1 explained 59% of the 

variability in the data set and that the first four principal 

components explained 90% of the variability in the 

dataset. 

 

Figure 2. Correlation between independent 

variables 

3.3 Model Generation 

After the dataset was cleaned, various machine-

learning models were generated and tested. In the 

current study, classification models were developed 

using the statistical package R [22]. While a large 

variety of classification models are available in the 

literature, this study selected models that (1) are widely 

used for investigating construction problems; (2) have 

been used in previous studies to predict safety 

performance and accident occurrence; and/or (3) are 

useful for modeling complex relationships. The models 

chosen include k-nearest neighbours (k-NN), logistic 

regression (LR), random forest (RF), support vector 

machine (SVM), Kernel support vector machine 

(KSVM), and Naïve Bayes.  

4 Results  

Model error is estimated using cross-validation or 

split validation, and often repeated several times [20]. In 

this study, the classification models were trained and 

validated using a 70/30 split validation approach, where 

the dataset was randomly divided into two parts used for 
(70%) training and (30%) testing purposes.  

Models were evaluated and chosen based on several 

performance metrics derived from the confusion matrix 

(Table 2)[24]. These metrics include the following: 

Recall, which describes the probability of correctly 

predicting “True” relative to the total number of actual 

“True” and “False False” (FF)  in the dataset [Eq. (1)]; 

Precision [Eq. (2)]; and Accuracy, which describe the 

probability correct predictions relative to the total 

number of predictions [Eq. (3)] [20]. These measures 

are commonly applied as performance indicators by 

researchers due to their straightforward interpretation. 

Table 2. Description of confusion matrix 

 Predicted False Predicted True 

Actual False True False (TF) False True (FT) 

Actual True False False (FF) True True (TT) 
 

Recall = 𝑇𝑇 (𝑇𝑇 + 𝐹𝐹)⁄  (1) 

Precision = 𝑇𝑇 (𝑇𝑇 + 𝐹𝑇)⁄  (2) 

Accuracy = (𝑇𝑇 + 𝑇𝐹) (𝑇𝑇 + 𝐹𝑇 + 𝐹𝐹 + 𝑇𝐹)⁄  (3) 

Table 3. Summary of performance metrics of models 

Table 3. Model performance 

Model 
Recall 

(%) 

Accuracy 

(%) 

Precision 

(%) 

LR 71.4 93.5 100 
KNN 85.7 87.0 66.6 

SVM 57.1 87.0 80.0 

Kernel SVM 28.5 80.6 66.6 

NB 85.7 87.0 66.6 

RF 57.1 87.0 80.0 
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Although Accuracy offers a simple measure of the 
overall performance of a model, it (1) does not consider 

the type of prediction errors being made and (2) does not 

consider the distribution (i.e., relative frequencies) of the 

classes.  

Recall is considered the most suitable metric for 

selecting a model when there is a high cost associated 

with True/ False. For instance, in accident prediction, if 

an accident (True True) is predicted as no accident 

(True False), the consequence can lead to enormous 

costs for the company. For this reason, Recall is used to 

identify the best model in this study. Both KNN and 

Naïve Bayes classifiers were associated with the 
greatest Recall, indicating that these models were able 

to best predict the low-frequency class (in this case, 

accident occurrence).  

Figure 3 visualizes the decision boundaries and the 

performance of the mentioned classification methods on 

a randomly selected subset of data. A dimension 

reduction algorithm (PCA) was applied to reduce the 

dimensions of the feature vector to two dimensions. As 

mentioned, the first PCA captures the highest amount of 

variance in the feature vector, and the second PCA is a 

component orthogonal to the first one. In Figure 3, as 
indicated in the legend, the gray and black areas 

represent proportions predicted by the classifier to be 

True (i.e., accident) or False (i.e., no accident), 

respectively. Gray triangles and white squares represent 

data points that are actually True or False, respectively.  

5 Conclusion 

While many research studies have been conducted 

investigating the impact of safety leading indicators on 
safety performance of construction sites, their use 

remains limited by certain practical challenges. Due to 

the approach in which the models were designed in 

particular, the implementation of prediction methods is 

often limited to a specific set of leading indicators.  

This research study used a machine-learning 

approach to develop a model that can forecast safety 

performance from leading indicators regardless of the 

number or type of leading indicators available. First, the 

dataset is cleaned and pre-processed. Then, feature 

selection techniques are applied to reduce the 

dimensionality of the dataset and to identify the 
important features affecting safety performance. Finally, 

machine-learning algorithms are applied for training and 

validating purposes. 

The method was tested using a dataset provided by a 

large construction company in North America. Out of 

23 features, only 10 were found to have a notable 

influence on safety performance. After evaluation, 

Naïve Bayes (NB) and K-Nearest Neighbours (KNN) 

were found to be the best performing algorithms, 

achieving a Recall of 0.857.  

Unlike previous studies, which have used theoretical 
or statistical approaches, this study has used a machine-

learning approache to develop a safety performance 

prediction metric. The results of this study can be used 

by safety practitioners to (1) improve safety practices or 

(2) guide the allocation of resources towards monitoring 

indicators with the most influence on safety 

performance, saving organizations time and money. For 

future research, the authors suggest further segmenting 

the variables of safety (safety hours) with respect to 

weather conditions, overtime, or other impacting factors. 

Figure 3. Hyperplanes and decision boundaries of different classifiers 
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