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Abstract – 

Semantic segmentation of closed-circuit television 

(CCTV) images can facilitate automatic severity 

assessment of sewer pipe defects by assigning defect 

labels to each pixel in the image, from which defect 

types, locations and geometric information can be 

obtained. In this study, a deep convolutional neural 

network (CNN), namely DilaSeg, is developed based 

on dilated convolution for improving  the 

segmentation of sewer pipe defects including cracks, 

tree root intrusion and deposit. Sewer pipe CCTV 

images are extracted from ins pection videos and are 

annotated to be used as the ground truth labels for 

training the model. DilaSeg is constructed with 

dilated convolution for producing feature maps with 

high resolution. Both DilaSeg and the state -of-the-art 

model, fully convolutional network (FCN), are 

trained and evaluated on the annotated dataset using 

the same hyper-parameters. The results of the 

experiments indicate that the proposed DilaSeg 

improved the segmentation accuracy significantly 

compared with FCN, with 18%  of increase in mean 

pixel accuracy (mPA) and 22%  of increase in mean 

intersection over union (IoU) with a fast detection 

speed. 

 

Keywords – 

Dilated convolution; Convolutional neural 

network (CNN); Semantic segmentation; Sewer pipe 

defect; Defect segmentation; Visual inspection 

1 Introduction 

Sewer p ipe defects such as cracks, root intrusions 

through the pipe jo ints and the deposits inside the pipe 

are major causes of pipe deterioration, leading to serious 

consequences e.g. around 23,000 to 75,000 sanitary 

sewer overflows (SSOs) occurred every  year in the 

United States, causing concerns for the environment and 

human life  [1]. Therefore, d iscovering and repairing 

pipe defects at an early stage is significant to prevent 

sewer system deterioration such that severe 

consequences can be avoided. Currently, visual 

inspection techniques such as closed-circuit television 

(CCTV) are widely utilized for sewer pipe inspection. 

As the manual assessment is time-consuming, error-

prone and subjective, computer vision techniques are 

studied for defect classification, defect detection and 

semantic segmentation. Defect detection and 

classification can inform inspectors of defect type and 

relative locations in the image. However, automated 

assessment of defect severity has been rarely studied, 

although it is important for arranging maintenance 

activities. Semantic segmentation can facilitate defect 

severity assessment by providing the defect type, 

location and geometric information for each pixel.  

Semantic segmentation traditionally relies on 

classifiers such as Support Vector Machines (SVMs) or 

probabilistic graphical models e.g. Markov Random 

Fields (MRFs) and Conditional Random Fields (CRFs) 

for modelling pixel relationships [2], which all require 

handcrafted feature descriptors. In recent years, deep 

learning based models such as fully convolutional 

network (FCN) are developed by learn ing rich features 

automatically and have achieved the state-of-the-art 

performance [3]. However, the consecutive convolution 

and pooling implementations in prev ious deep learning 

models down-sampled the feature maps by a large factor 

and generate feature maps of low resolution. Such 

severe spatial informat ion loss  results in obscure 

segmentation for detailed structures or object 

boundaries after up-sampling. Therefore, the objective 

of this study is to improve sewer p ipe defect 

segmentation by proposing a deep CNN model, namely 

DilaSeg, based on normal convolution, dilated 

convolution and bilinear interpolation. The proposed 

model is constructed to extract important features by 

normal convolution, improve the feature map resolution 

by dilated convolution, refine the segmentation for 

object with mult iple scales by multi-scale d ilated 

convolution and upsample the feature maps using 

bilinear interpolation. Sewer p ipe images with three 

types of defects are collected and annotated to train both 

the proposed model and FCN. Model performance is 
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evaluated and analyzed through experiments.  

2 Related Work 

Computer v ision techniques are studied to facilitate 

the automatic interpretation of visual sewer inspection 

results. Previous studies have focused on the 

classification and detection of sewer pipe defects from 

CCTV images using image processing techniques e.g. 

morphological operations, histograms of oriented 

gradients (HOG) and SVMs [4]. More recently, deep 

learning is applied to address limitations of 

conventional methods by learning rich features 

automatically with convolutional neural networks 

(CNNs). A CNN based model was proposed for 

classifying mult iple sewer pipe defects from CCTV 

images [5] and a region-based CNN method has been 

proposed for identifying and locating defects with 

bounding boxes on sewer pipe images [6]. So far, 

segmentation of pipe images main ly focuses on pipe 

components such as joints or segmenting single types of 

defects using image processing techniques [7]. There 

are limited studies on the segmentation of multip le pipe 

defects of sewer pipes, which could provide important 

references for evaluating the defect severity.  

In conventional semantic segmentation, feature 

extractors such as HOG or scale-invariant feature 

transform (SIFT) are designed to extract expressive 

features, based on which small patches of the input 

image are extracted and classified using local classifiers 

like random decision forest or SVMs [8]. However, 

small spatial windows often lead to noisy prediction and 

require h igh computational cost. MRFs and CRFs have 

been widely  applied for semantic segmentation [9] by 

modelling the correlat ions between variables and 

incorporating the context knowledge. The main 

limitat ion of MRFs and CRFs is that features are 

obtained from conventional classifiers which are 

designed for particular cases, during which expertise 

and efforts are needed. On the contrast, FCN is one 

breakthrough semantic segmentation deep learning 

model with  higher accuracy than traditional approaches. 

FCN is developed by transforming the fully connected 

layers of typical CNNs into convolutional layers and 

developing a deconvolutional layer for upsampling 

feature maps [3]. Based on the FCN, many variant 

networks are proposed, utilizing the architecture of a 

typical CNN as the “encoder” fo r generating feature 

maps and focusing on the development of “decoder” for 

upsampling images [10]. However, the feature maps 

generated by FCN and other similar models are of low 

resolution and predictions are coarse due to the huge 

spatial information loss during downsampling process. 

3 Methodology 

3.1 Workflow of Sewer Pipe Defect 

Segmentation Using Deep Learning 

Models 

As shown in Figure 1, the workflow of 

implementing deep learning models for segmenting 

sewer pipe defects main ly includes: (1) extract image 

from CCTV inspection videos ; (2) pre-process and 

annotate images with different colors for each defect as 

ground truth labels; (3) build the model architecture and 

train the model using the annotated images; (4) evaluate 

and compare the proposed model with the state-of-the-

art model; (5) save the best model and apply for new 

images. Among all the steps in the workflow, the model 

architecture has great influence on the segmentation 

performance while the model evaluation provides 

metrics on the performance. Details of the model and 

the evaluation are introduced in the following sections.  

3.1.1 Architecture of the Proposed DilaSeg  

Figure 1. The workflow of sewer pipe defect segmentation using deep learning models  
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Figure 2. Brief architecture of DilaSeg for generating dense feature maps  

To address the problem of large spatial information 

loss in previous deep learning models , DilaSeg is 

proposed to improve the feature map resolution and to 

produce dense feature maps. As shown in Figure 2, the 

dense feature maps are obtained mainly through (1) 

normal convolution, (2) dilated convolution, (3) multi-

scale dilated convolution and (4) b ilinear interpolation. 

After obtaining the dense feature maps, softmax 

function is applied for calculat ing the loss and 

producing the predicted labels for each pixel.  

 

(1) Normal convolution  

During the normal convolution, each image is fed 

into the network as a three-channel array and a certain 

number of filters are assigned with random weights  at 

the model in itializat ion stage. In the convolutional layer, 

the dot product of filters and the convolved image patch 

is calculated and added with a b ias  value get the 

convolution result. In the activation layer, the 

convolution result is fed into an activation function 

called Rectified Linear Units (ReLU) so as to add non-

linearity to the model. The max-pooling layer is applied 

after the activation layer, during which only the 

maximum value in the covered feature map patch is 

remained to the next layer. The function of the max-

pooling is to reduce the spatial dimension of the feature 

maps such that the computational cost will not exceed 

the capability. The process of performing  a stack of 

convolution, ReLU and max pooling layers  

consecutively can be regarded as a down-sampling 

process, after which the obtained feature maps are of 

low resolution and may lead to difficult ies in the later 

map upsampling process. Therefore, the resolution of 

feature maps is controlled through setting different zero 

padding layers around the feature maps in this study. In 

the end, the original images are only downsampled by a 

factor of 8, which  is s maller than that by using other 

networks such as FCN and hence prevents large spatial 

information loss. 

 

(2) Dilated convolution  
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Figure 3. Example of normal convolution and dilated convolution  

Another method to prevent too much resolution loss 

of feature maps is using s maller stride values during the 

convolution process. For example, the feature map 

resolution is increased in Figure  3 (b) compared  with 

Figure 3 (a) as the stride value is decreased from 2 to 1. 

Nevertheless, one limitation of applying small stride 

values is that the receptive field (i.e . the area convolved 

by the filters with respect to the original input) is still 

small, which means there is not much g lobal 

informat ion incorporated during  the learning process . 

Therefore, dilated convolution [11], is applied in the 

proposed model such that feature map  resolution is 

improved and the receptive field is enlarged, but the 

parameter number will not increase. The dilated 

convolution filters can be treated as normal filters filled 

with certain number of holes (zeros), which is indicated 

by the dilation rate. Filters with dilation rate of k  means 

that there are (k-1) zeros inserted among each 

consecutive columns or rows of original filters . 

Specially, filters with dilation rate of 1 are the same 

with normal filters . Consequently, the scope of the 

convolved pixels of the original input (i.e . receptive 

field) is increased while the number of parameters 

remains the same with that of using normal filters. For 

example, Figure 3 (c) with the dilation rate of 2 

increases the map resolution to the same density as (b) 

while the receptive field becomes larger, which enables 

more contextual information involved. 

 

(3) Multi-scale dilated convolution  

During  segmentation, when aspect ratio of objects is 

different, convolution using the fix-sized filters only 

extract features from objects with certain scale while 

omitting features of different scale objects . Similar case 

exits for the segmentation of sewer pipe defects, 

considering different scales of the sewer pipe defects, 

e.g. scale of cracks is similar to long and thin rectangle 

while deposits tend to have square scale. Therefore, 

multi-scale dilated convolution layers are added in the 

developed model. Specifically, dilated convolution with 

4 d ifferent d ilat ion rates i.e. {6,12,18,24} is performed 

in parallel to generate feature maps  respectively, the 

process of which is similar to convolution using filters 

of different sizes. W ith the aim not to reduce the feature 

map  resolution, zero padding layers are applied 

according to the dilation rate of each layer. The feature 

map values from the four parallel layers are summed 

pixel-by-pixel and the fused results are used for the final 

interpolation.  

 

(4) Bilinear interpolation 

After the parallel d ilated convolution, the generated 

feature maps are upsampled using bilinear interpolation, 

which is a common method used for upsampling. As 

shown in Figure 4, on the feature map to be upsampled, 

the value of each pixel is known. With the information 

of both location and values two pixels, the value of 

pixels in a certain location between them can be 

calculated through linear interpolation. Similarly, the 

value of pixels at other positions can also be obtained. 

For example, based on the known coordinates of all the 

pixels on the feature map, the value of pixel e can be 

obtained through the Pa and Pb while Pf can be 

calculated from Pc and Pd. In the end, Pg is obtained 
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using Pe and Pf. By repeating this process, the feature 

map  can be upsampled  to the orig inal resolution with 

values for each pixel. 

 

Figure 4. Example of bilinear interpolation 

3.2 Model Evaluation   

The proposed model is designed for real-t ime defect 

segmentation, the model implementation and 

computational cost should be feasible for on-site 

inspection while the segmentation accuracy should also 

be satisfying. 

3.2.1 Accuracy   

The four indices in [12] are used for measuring 

segmentation accuracy. As shown in Figure 5, assume 

the total class number is k + 1 (including k objects and 

1 background class), pij  is the number of pixels of 

class i but assigned with class j and can be treated as 

false positives. pji  can be interpreted as false negatives 

while pii  represents true positives. Circle A represents 

the total number o f p ixels of class i, i.e . ti = ∑ pij
k
j=0 . 

Circle B represents all the pixels predicted to be class i 

and the intersection C between A and B represents all 

the true positives.  

 

Figure 5. Graphical representation of the 

predicted results and ground truth 

 (1) Pixel accuracy (PA)  

PA is the simplest evaluation by calculating the ratio 

of pixels correctly  classified  over the total number of 

pixels.  

 

PA =
∑ pii

k
i =0

∑ ti
k
i=0

 (8) 

 (2) Mean pixel accuracy (mPA) 

mPA is calculated based on the pixel accuracy fo r 

each class, by computing the rat io of correctly  predicted 

pixels over the total p ixel amount in each  class and 

taking the average value for all the classes. 

mPA =
1

k + 1
∑

pii

ti

k

i =0

 (9) 

(3) Mean intersection over union (mIoU) 

IoU is the dominant metric for evaluating 

segmentation accuracy and is calculated by taking the 

ratio of the intersection between predicted results and 

ground truth labels over the union between these two 

sets. The intersection is the true positives while the 

union is the sum of false positives and false negatives 

and subtracted by true positives. mIoU is obtained by 

taking average value of the IoUs for all the classes. 

mIoU =
1

k + 1
∑

pii

ti + ∑ pji
k
j=0 − pii

k

i =0

 (10) 

(4) Frequency weighted intersection over union 

(fwIoU)  

As the percentage of pixels belonging to each class 

may be different in the train ing dataset, evaluating the 

accuracy considering pixel occurrence frequency is also 

important. 

fwIoU =
1

∑ ∑ pij
k
j =0

k
i =0

∑
piiti

ti + ∑ pji
k
j=0 − pii

k

i =0

 (11) 

3.2.2 Computational Cost 

The computational cost is a significant evaluation 

aspect to ensure a desired segmentation speed for real-

time segmentation of sewer pipe defects. The 

computational cost of the models is evaluated for the 

inference stage using the segmentation speed as well as 

the training stage using training duration and model 

convergence performance. Compared with training 

stage, evaluation of the inference stage is more 

important as the inference speed affects the real-time 

performance of the model. 

4 Experiments and Results 

To validate the proposed models for sewer defect 

segmentation, experiments are conducted to evaluate 
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FCN-8s and the DilaSeg in terms of accuracy and 

computational cost.   

4.1 Experiment Dataset and Implementation 

Details 

Images containing three types of defects i.e. cracks, 

deposits and tree root intrusions are ext racted from 

CCTV inspection videos of sewer p ipe inspection 

company in the United States. 90% of 1510 annotated 

images are used for train ing (1,359 images) and 10% are 

for testing (151 images). The annotation files are 

generated through LabelMe [13] by p lotting the polygon 

along the boundary of each defect. All the pixels inside 

the same polygon are assigned with the same defect 

class. In the end, each defect is annotated with different 

colors and the background is set to be black. Caffe [14] 

is one common library for building deep learning 

models. As the functions of the dilated convolution are 

not included in the initial Caffe, source code of Caffe 

was revised and recompiled for training the proposed 

model. All the segmentation models are trained on 

Ubuntu system with Intel® Core™ i7-6700 CPU @ 

3.40GHz × 8 and GPU of GeForce GTX 1080. During 

each training iteration, images are fed into the network 

with a min i-batch of 16, to reduce GPU memory 

requirement and improve the train ing efficiency. The 

“poly” learning rate is applied with a base learning rate 

of 0.01, momentum of 0.9 and weight decay of 0.005. 

Each model is trained using the re-compiled Caffe for 

50,000 iterations and saved every 500 iterations to 

evaluate their accuracy on validation dataset. 

4.2 Experiment Results  

4.2.1 Accuracy  

As shown in Figure 6 (a), the pixel accuracies of the 

two models fo llow a similar trend, i.e. within  a certain 

number of iterations, PA increases with the increase of 

training iterat ion. The increase is obvious during first 

few thousand iterations and gradually becomes small in 

the later training period. Finally, the PA reaches a 

plateau and no longer yields increase. The point where 

the model reaching the plateau indicates the 

convergence of the model and is different fo r each 

model depending on the convergence speed. The 

DilaSeg has higher PA values than FCN-8s, indicating 

the effectiveness of dilated convolution. 

As shown in Figure 6 (b), the mPA values of both 

models are increasing during the training process. 

Although FCN-8s has a more obvious increase trend, 

DilaSeg ach ieved much higher mPA value than FCN-8s. 

As shown in Figure  6 (c), in terms  of values of mIoU, 

the overall varying situation is  similar to PA and mPA, 

with an increase at first and reaching a p lateau in the 

end. The mIoU values of FCN-8s also increase with the 

training iterat ions, but the overall mIoU values are 

much lower than the proposed model. The mIoU values 

of DilaSeg are higher than FCN-8s during the whole 

training process, which reflecting the stronger capability 

of the developed model for segmentation. The fwIoU 

values which considers the pixel occurrence frequency 

when calculat ing IoU are shown in  Figure 6 (d). A lmost 

during the whole train ing, the fwIoU values of DilaSeg 

are higher than FCN-8s. 

The best accuracy values of the two models are 

shown in Table 1. It can be seen that accuracies in terms 

of the four indices obtained using DilaSeg are higher 

than FCN-8s. The developed model improved the 

segmentation accuracy largely, especially with 18% of 

increase in  mPA and 22% of increase in  mIoU using 

DilaSeg.  

Some of the segmentation results are analysed. As 

shown in Figure 7 (a) and (b), for crack segmentation, 

FCN-8s can approximately provide the locations but 

cannot detect the correct defect type. One reason is that 

the model cannot recognize the defect type due to the 

color similarity between the cracks and other defects.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. Accuracy of the two models for 

segmentation of sewer pipe defects  

The DilaSeg performed better than FCN-8s, with 

segmentation of more parts of cracks, although some 

cracks are not segmented completely. In terms of 

deposit and tree root, FCN-8s achieved better results 

compared with segmenting cracks. However, 

segmentation of deposit and tree root are mixed with 

each other as shown in Figure 7 (c) and some defects 

are not segmented completely as shown in Figure 7 (d). 

On the contrary, DilaSeg is capable of segmenting both 

deposit and tree root much better with fewer mixed 

segmentation cases. In addition, more areas of the 

defects can be segmented by DilaSeg and more 

complete segmentation results can be provided as 

shwon in Figure 7 (e).  

Table 1. Accuracy of the two models  

 FCN-8s DilaSeg 

PA 0.939 0.949 

mPA 0.623 0.807 

mIoU 0.521 0.742 

fwIoU 0.895 0.915 

 

Figure 7. Examples of segmentation results (red 

color represents cracks, lime color represents 

roots and green color represents deposit) 

4.2.2 Computational Cost  

The computational cost of the two methods is 

evaluated using the detection speed (i.e . the t ime taken 

for detecting each image), training duration (in hours) 

and converge iteration (i.e. the number o f iterations 

taken for the model to obtain convergence). The training 

duration and converge iteration indicate the difficulty 

for training the model to achieve desired performance 

while the detection speed reflects the possibility of real-

time segmentation. As shown in Table 2, a lthough the 

training process of DilaSeg is longer than FCN-8s, the 

detection speed of DilaSeg is relatively  faster during 

model inference. In  addition, the train ing loss of 

DilaSeg is dropping quickly within the first few 

thousand iterations and achieved a plateau at around 

15,000 iterations, as shown in Figure 8 (a). However, 

the loss of FCN-8s was much higher and was dropping 

at a quite slow rate during the whole process, achieving 

a converging point after 45,000 iterations. The training 

loss trend reflects the proposed model can learn image 

features and optimize weights more efficiently. 

Table 2. Computational cost of the two models 

 FCN-8s DilaSeg 

Detection speed 

(s/image) 

0.352 0.265 

Training duration (h) 3.417 17.405 

Converge iterations 45000 15000 
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Figure 8. Training loss of DilaSeg and FCN-8s 

5 Conclusion and Future Work  

Computer vision techniques are attracting attention 

for automat ic interpretation of sewer inspection results. 

Previous studies mainly focus on classifying and 

locating defects in images, which cannot provide 

informat ion about the severity level of different defects. 

In addition, the requirement of the practical 

implementation of models on CCTV robots, e.g. the 

computational cost is rarely  considered. This study aims 

to obtain the segmentation of three different types of 

sewer pipe defects i.e. crack, deposit and tree root, from 

CCTV inspection images to facilitate real-time severity 

assessment in the future.  

To address the problem of large informat ion loss 

during the down-sampling process of most previous 

deep learning models such as FCN, a new model called 

DilaSeg  is developed in  this study for semantic 

segmentation based on dilated convolution to increase 

feature map resolution. The proposed model is featured 

for performing several modules to obtain dense 

segmentation results, including normal convolution, 

dilated convolution, multi-scale dilated convolution as 

well as bilinear interpolation. Important features are 

extracted using the normal convolution and the feature 

maps are down-sampled due to consecutive convolution 

and max-pooling.  Dilated convolution is implemented 

to prevent too much spatial informat ion loss, which is 

also applied for objects with d ifferent scales through 

multi-scale dilated convolution. In the end, the feature 

maps are upsampled to orig inal scale using bilinear 

interpolation. Experiments demonstrate that compared 

with FCN-8s, DilaSeg improved segmentation accuracy 

significantly in terms of all the evaluation indices. 

Especially, there is 18% of increase in mean PA and 22% 

of increase in mean  IoU. Furthermore, the inference of 

the DilaSeg is faster than FCN-8s, which indicates the 

advantage of the proposed model for real-time 

application. Regardless of the improved accuracy, there 

are still some negative segmentations, possible reasons 

and potential solutions need to be validated in  the future. 
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