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Abstract – 

Throughout the life cycle of civil assets, 

construction, operation and maintenance phases 

require monitoring to assure reasonable decision 

makings. Current methods always involve specially-

assigned personnel conducting on-site inspections, 

which are work-intensive, time-consuming and error-

prone.  Computer vision, as a powerful alternative to 

manual inspection, has been extensively studied 

during the past decades. On the basis of existing 

summary papers, this paper reviews a wide range of 

literatures, including journal articles, conference 

proceedings and other resources. Current 

applications of computer vision during construction, 

operation and maintenance stages of civil structures 

are concluded, with a special focus on operation and 

maintenance phase. This review aims to provide a 

comprehensive insight about the utilization of 

computer vision in civil engineering and an inspiring 

guidance for future research. 

1 Introduction  

In construction, operation and maintenance phases of 

civil assets’ life cycle, monitoring is required for 

reasonable resource allocation and decision making. To 

be specific, monitoring of construction sites paves way 

for progress tracking, quality control, safety assurance 

and productivity analysis. When it comes to in-service 

structures, understanding of their current situations can 

help engineers to determine repair, retrofit and replace 

plans. Traditional methods always involve specially-
assigned personnel conducting on-site inspections, 

during which physical measurements can impose 

extensive workload and potential danger to inspectors 

[1]. Such manual inspection processes are also time-

consuming and prone to the biased judgement of 

inspectors. Alternatively, the development of reality 

capture technology and image processing techniques 

facilitate the utilization of computer vision in 

Architecture, Engineering & Construction and Facility 
Management (AEC & FM) industry. As an 

interdisciplinary field, computer vision aims to generate 

human-like understanding from digital images or videos, 

and thus attracts focused attention from researchers 

worldwide. Numerous studies have been done and 

impressive progress has been achieved. This paper goes 

through computer vision’s applications in construction, 

operation and maintenance stages of built assets in a large 

scale, with a focus on recent researches that are published 

after existing review papers [2, 3].  

The structure of this paper is as follows. Section 2 
illustrates research methods. Section 3 presents analysis 

results and in-depth discussions about current researches. 

Section 4 provides envisions for future work. 

2 Research Methods 

2.1 Data Collection 

Aiming to obtain a comprehensive insight about 

vision-based practices in civil engineering, the research 

started with initial searching and scanning in both web 

search engine, google scholar, and academic databases 

such as ScienceDirect and IEEE Xplore. Direct search 

method based on title, abstract and keywords was 

employed to collect a wide range of literatures, so as to 

form a fundamental concept about how computer vision 

is combined with civil engineering. “Computer vision”, 

“civil engineering” and other related terms such as 

“machine vision” were search keywords. Different types 
of literature including journal articles, conference 

proceedings, even book sections were collected and 

reviewed. Apart from the relevance, publishing date was 

regarded as another sift criteria. The emergence of this 

topic was largely facilitated by the development of 

computer science and image processing techniques, thus 

the time limit was set to year 2000 to exclude unrelated 

studies. After the initial stage of review, top journals 

embodying high-quality articles in this field were 
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identified, some (but not all) of which are: Computer-

Aided Civil and Infrastructure Engineering, Automation 

in Construction, Advanced Engineering Informatics, 

Journal of Computing in Civil Engineering and IEEE. 

Key authors who made advanced contributions to this 

field were also recognized. Existing review papers were 

referred to and set as a time mark for further selection of 

data. Focused search was then conducted centring on the 

above-mentioned journals and authors. In total, 71 papers 

were collected and analysed (Figure 1), including 54 

journal articles, 16 conference proceedings and 1 book 
section. EndNote X7 was used for data storage, 

management and citations. 

 

Figure 1. Chronological distribution of articles 

2.2 Data Analysis 

Preliminary data analysis was completed during data 
collection by scanning titles and abstracts, followed by 

context analysis, a typical method for qualitative data 

analysis. Regarding the application scenarios of 

computer vision, the literature was divided into two 

blocks: one that focused on construction phase and the 

other on operation and maintenance phase. Papers in two 

parts were then analysed separately. Excel tables were 

created for note takings while reviewing, with critical 

information and peculiar contributions of each article 

highlighted. Notable information included the main 

purpose of application, area of use, equipment demand, 

methodology, outcome quality, and future agenda. A 

comparison was made based on the systematic review.  

3 Results and Discussions  

Current applications of computer vision in civil 

engineering are categorized into two groups: (1) 

construction phase and (2) operation and maintenance 

phase in structure’s life cycle. 

3.1 Computer Vision in Construction Phase 

Due to an early start of computer vision on 

construction sites, a thorough research in this area has 

been developed in the last decade. Summaries and 

overviews are available in existing literatures [2]. 

The utilization of computer vision technology in 

construction jobsites can be categorized into four classes 

regarding the main purpose of application, namely 

progress monitoring, quality control, operational 

productivity analysis [4-7] (which is to what extent onsite 

resources are being utilized) and safety assurance [8-12]. 

Combination of multiple purposes was achieved in some 

researches [13, 14]. Apart from fatality prevention, there 

is another safety concern named occupational health 

assessment, referring to [15]. Seo, J., et al. integrated 

vision-based human kinematics data to biomechanical 

analysis, so as to evaluate the risk of musculoskeletal 
disorders faced by workers when conducting lifting tasks. 

One important constitution in a vision-based 

monitoring system is object detection. Typical methods 

follow two sequent steps, feature extraction and object 

classification. The most frequently employed image 

descriptors include, but are not limited to, shape-based 

features like edges [16] and texture-based ones like 

Histogram of Oriented Gradients (HOG), which is a local 

spatio-temporal feature particularly suitable for action 

recognition. Extracted features are then fed into 

classifiers for object recognition. In addition to 

traditional classification algorithms like support vector 
machine (SVM), deep learning techniques, e.g. faster 

region-based convolutional neural network (faster R-

CNN) in [11], are rising up in recent studies. Its core part 

is an artificial neural network (ANN) as an analysis 

kernel during object recognition, categorization and other 

information extraction [17]. Luo, H., et al. [6] presented 

a three-stream CNN dealing with RGB images, optical 

flow images and grayscale images, separately, then fused 

the results together to identify workers’ states in 

reinforcement installing activities. 

Another core task in job sites involves the tracking of 
detected construction entities (i.e. workforce and 

equipment). Xiao, B. and Z. Zhu [18] summarized and 

compared 15 2D tracking methods in past studies 

regarding the outcome quality (i.e. overlap score and 

centre location error), highlighting the superiority of 

methods using sparse representations and generative 

classification algorithms. The 2D tracking results are 

then transformed into 3D space through triangulation to 

gain trajectories of the target, for example, crane jib [19] 

and excavators [16]. 

Subsequently, activity recognition of either workers 

[6, 9] or equipment (especially excavator and dump trunk 
in earthmoving operations [4], and cranes [19]) 

constitutes the next level of image processing, allowing 

the detection of un-safe behaviour and understanding of 

onsite situations. Moving personnel and equipment were 

monitored in [20] and by fuzzy inference, potential 

dangers like struck-by accidents were evaluated in a 

numerical way for an efficient safety management. Luo, 

X., et al. [21] managed to identify 20 activity patterns in 

sites assisted by prior knowledge (i.e. whether two 
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certain objects cooperate in an activity and their 

proximity). Similar relevance information was adopted in 

[5] for interactive analysis of individualized action 

recognition. Both one-to-one- and group-level analysis 

led to a precision of 91.27% in situation understanding. 

Combination of computer vision and other state-of-

the-art technology is also emerging. For example, Jeelani, 

I., et al. [10] utilized eye-tracking techniques to obtain 

workers’ viewing patterns, which was then integrated 

into a computer-vision-based localization system to 

indicate workers’ ability to recognize onsite hazards. 

3.2 Computer Vision During Operation and 

Maintenance Phase 

The utilization of computer vision in structural health 

monitoring (SHM) and performance evaluation has been 

increasingly studied in recent years. Such a scheme can 

positively contribute to a reasonable management of 

construction resources, leading to a sustainable built 
environment. Koch, C., et al. [3] concluded the 

achievements and challenges faced in this field and since 

then, notable improvements have been accomplished.  

3.2.1 Reality Capture Technology 

For data acquisition, two main reality capture 

techniques include laser scanning and photogrammetry, 

where point clouds and images/ videos are input and 

analysed, respectively. Aiming to lower inspection cost, 

digital imaging was favoured in the literature. 49 out of 

51 studies extracted information from photos or video 

frames, most of which relied on consumer-grade devices 

like digital single-lens reflex (DSLR) camera [22-25], 
action camera [26], video camcorder [27], existing 

closed-circuit television (CCTV) [28], or even smart 

phone cameras [29-32]. Un-manned Aerial Vehicle 

(UAV) [33] or flying robot [34] can be utilized to mount 

cameras to free workers from hand-held cameras and on-

site tour for inspection. To note, Dorafshan, S. et al. [35] 

studied the robustness of crack detection in steel bridges 

against various camera specifications. Three types of 

cameras, i.e. Nikon COOLPIX L830, DJI Mavic and 

GoPro Hero 4, were tested, indicating different crack-to-

camera distance requirement for a desirable result. 

3.2.2 Image Processing Algorithms 

A typical computer vision-based defect detection 

method involves four levels of image processing, namely 

image pre-processing, segmentation, feature extraction 

and pattern recognition. Satisfactory segmentation 

results can lead to a high accuracy of detection, which, in 

most cases, was ensured by the use of thresholding-based 

segmentation algorithms. Defect detection leverages 

similar features as job-site monitoring, covering edges, 

diverse interest points, region proposals (especially in R-

CNN algorithms), HOG, gradient magnitude and 

orientation, entropy, and even colour-based ones. Edge 

detection dominates in previous studies, and Qizhen, H. 

et al. [36] concluded two classes of edge detection 

algorithms: ones dependent on first-order derivative, i.e. 

image gradient, and ones based on second-order 

derivatives.  

In higher-level image processing, deep learning 

algorithms have gained popularity as mentioned. The 

form of the core network, ANN, evolves from CNN [37, 

38], fully convolutional neural network (FCN) [39], fast 

R-CNN [29], to faster R-CNN [24, 28]. Along with the 
superiority to eliminate multi-step image processing, 

such algorithms are further supported by acceptable 

performances and adaptability to diversified structures 

and defect types. 

3.2.3 Area of Use 

In real life, defect inspection and condition 

assessment procedures are carried out both regularly 

(routine inspection) and after disasters.  

• Post-disaster inspection 

Past work for post-disaster inspection focuses on 

damaged reinforced concrete (RC) columns due to their 

critical role to resist lateral seismic loads. Lattanzi, D., et 
al. [40] established relationship between visual defects 

(e.g. cracks and spalls) and the maximum experienced 

displacement of concrete bridge columns for post-

earthquake condition assessment. The peak drift 

estimated through machine learning regression models 

can facilitate triage evaluation. Similarly, German, S., et 

al. [41] first adopted computer vision algorithms (e.g. 

edge detection, region-growing detection, thresholding, 

etc.) to identify and measure cracks and spalling on RC 

columns, based on which, a framework for vision-based 

structural analysis is completed. 

• Routine inspection 

The allocation of past researches in different areas of 

use is shown as Figure 2.  

 

Figure 2. Literature distribution (area of use) 
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Comparatively, a wider range of civil structures are 

studied in routine inspection, and an almost even 

distribution is shown. The aging problem of architectures 

and buildings attracts the most attention (making up 28% 

of the literature). 12 out of 51 studies focus on the health 

of bridges. Roadways (asphalt pavements in particular) 

and Underground structures (including sewer pipes [28, 

42], tunnels [38, 43, 44] and subway system [17]) are also 

frequently studied fields, accounting for 9 out of 51 

papers equally. Different from the majority of studies, 

Kamal, K., et al. [45] classified various knot defects in 
wood structures. 

There are about 12% researchers developing their 

proposals in a general scale, testing on laboratory 

specimen [46] and existing point cloud datasets [47], and 

aiming to tackle prevailing or critical challenges 

encountered during applications. 

3.2.4 Defect Types 

Figure 3 illustrates the allocation of past work in 

various defect detection.  

Cracks appeal the most intensive studies by far, 

accounting for more than 35% of the literature. Among 

them, 17 articles study on concrete structures, 3 
researches target fatigue cracks on steel structures and 5 

papers recognize cracks on road pavement. Around a 

quarter of past work focus on displacement, based on 

which structural vibration properties (e.g. natural 

frequency and mode shapes [48]) are further retrieved. 

Pothole, as a distress peculiar to roadways, are 

recognized in 3 out of 51 papers. Other defects include 

cavities [29, 49], spalling [50], rebar exposure [29, 50], 

moisture marks on subway structures [17], loosened bolts 

[44], etc.  

 

Figure 3. Literature distribution (defect types) 

In addition, a few of  studies (nearly 20%) recognize 

multiple defects [51] and cover more damage patterns,  

such as deposits, tree root intrusions and water 

infiltrations on pipes [28], steel corrosion, bolt corrosion 

and steel delamination on general structures [24]. 

 Particularly, artificial markers or specific objects (e.g. 

lane marker, manhole and patches on roadways) on the 

asset were utilized to clarify novel methods in [52].  

3.2.5 Level of Detection Details 

To what extent computer vision can benefit 

maintenance decision making is fully dependent on the 

level of detail of the inspection results. The outcome of a 

computer-vision-based inspection system develops from 

the mere detection of defects’ presence, classification of 

multiple damages, defect localization, to numerical 

measurement of critical properties. The progress so far is 

shown in Table 1. And detailed achievements in each 

category are illustrated below.

Table 1. Current research progress  

                      Level of detail 
 Defect type 

Defect detection Defect property 
retrieval presence localization 

Crack [23-25, 30, 33, 34, 37, 53-55] [28] [22, 39, 56-59] 
Pothole  [60, 61]  

Spalling   [50] 

Cavity  [49]  

Moisture marks   [17] 

Displacement  - [26, 27, 46, 48, 62-65] 

Dynamic responses  - [66] 
Note: The grey area means that this level of defect details has been successfully retrieved using computer vision techniques in the literature 

(with relevant references listed), while blank area means that few researches included the extraction of such information so far. 

• Classification. Identification across defect types 

were realized in [31] to classify pothole, 

longitudinal-transversal cracks, and fatigue cracks 

on pavement. Other researches define category 

based on damage severity (major/ minor cracks in 

[42]), defect features (crack orientation in [56]), or 

different maintenance demand (sealed or ordinary 

cracks in [67]). 

• Localization. Several researches locate the defect-

included bounding box in the identified image [28, 

60, 61], requiring further processing to gain their 

positions in global coordination. Additional devices 

Crack

Displacement
Potholes

Others 

Multiple defects
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are deployed as supplementary, such as GPS [31], 

infrared camera and laser range finder for cavity 

localization on roadways [49]. 

• Property quantification. For crack measurement, its 

length, orientation, max width and mean width are 

extracted either through skeletonizing operations in 

static images [39, 68] or by tracking surface 

discontinuities in video streams [22]. Properties of 

spalling area, i.e. its length and depth, are obtained  

by analyzing the region with exposed longitudinal 

reinforcement [50]. The severity of wet marks on 
subway structures is quantified in terms of the 

area’s percentage [17]. Displacements are retrieved 

in almost all relevant researches. One notable 

improvement is that early studies rely on manually-

created markers [64] or speckle created by a laser 

pointer [66], while recent work achieve target-free 

inspection using “key points” [63, 69] on structures. 

Another progress is multi-point displacement 

measurement using multiple synchronized low-cost 

cameras [26] or a multithread active camera with 

Galvano-mirror [48]. Displacements can be further 

converted to natural frequencies through the Fast 
Fourier Transform (FFT) [63].  

• Structural analysis. Limited research manages to 

complete this step with vision-based defect 

information. Post-earthquake fragility curves of RC 

columns were generated in [41], indicating 

structural damage states and estimated retrofit cost. 

Davoudi, R. et al. [32] estimated structural load 

levels of RC beams and slabs based on crack 

patterns. Combination with other technology like 

robotics [58] further facilitates this process.  

4 Conclusions and Future work 

This paper presents an overview about the 

applications of computer vision in civil engineering. 

Researches in construction sites start early and form a 

relatively mature system, and there are considerable 

advances in defect property retrieval for existing civil 

assets. However, challenges remain in this field and 

promising future work on the basis of current 
achievements is demonstrated as below.  

Currently, vision-based defect information is 

underutilized due to the lack of relationship between 

visual data and structural responses. Thus, the integration 

and utilization of defect information in structural analysis 

so as to facilitate maintenance decision makings is in the 

future agenda.  

Another task is to establish an enlarged dataset for 

computer vision. For construction phase, images with a 

wider range of personal protective equipment (PPE) [8], 

construction entities, and their activity patterns [11] 
should be collected. As for operation and maintenance 

stage, images containing more defect patterns under 

various environmental conditions can largely contribute 

to this field. Such enlarged datasets can be used to train 

classifiers for higher detection accuracy and achieve 

comprehensive monitoring of both construction sites and 

aging structures. 

Robustness of analysis results against adverse factors 

encountered during data acquisition should be tested and 

improved. In jobsites, though effects of various 

illumination, varying object-to-camera distances, and 

different levels of occlusion on the accuracy of object 
tracking have been studied [7], further evaluation 

concerning other uncertainties, like shadows, should be 

included in future work. Similar envision applies to in-

service assets, even if the impacts of surrounding lighting 

conditions on crack detection have been assessed [35]. 

For practical considerations, real-time analysis is 

desired. In routine inspections, real-time defect 

recognition and feedback to inspectors are enabled by the 

simplification of image capturing devices [31]. The 

leverage of Graphics Processing Unit (GPU) can further 

shorten computation time. However, when faced with 

cluttered construction sites and existence of various 
deterioration patterns, further improvements are in need.  

In the future, combination with other advanced 

technology is encouraged. The utilization of deep 

learning methods has been proved efficient. Data-driven 

algorithms also facilitate the vison-based condition 

assessment [32] , calling for more multidisciplinary 

applications. Moreover, devices like GPS providing 

additional information for vision-based system also 

deserve consideration. 
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