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Abstract – 

Crane operators fatigue is one of the significant 

constraints should be monitored. Otherwise, it may 

lead to inefficient crane operations and safety issues. 

Recently, many deep neural networks have been 

developed for fatigue monitoring of vehicle drivers 

by processing the image or video data. However, the 

challenge is to distinguish the slight variations of 

facial features among still and motion frames (e.g., 

nodding and head tilt, yawning and talking). It can 

be exacerbated in the scenarios for crane operators 

due to their constant head moving to track the loads’ 

position and recurrent communication (talking) with 

crane banksman. In contrast to previous approaches, 

which models spatial information and traditional 

temporal information for sequential processing, this 

study proposes a hybrid model can not only extract 

the spatial features by customized convolutional 

neural networks (CNN) but also enrich the modeling 

dynamic motions in the temporal dimension through 

the deep bidirectional long short-term memory (DB-

LSTM). This hybrid model is trained and evaluated 

on the very popular dataset NTHU-DDD, and the 

results show that the proposed architecture achieves 

93.6% overall accuracy and outperform the previous 

models in the literature. 
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1 Introduction 

In prefabricated construction, the prefabricated 

products become more and more complicated for 

assembly, with the evolution from components (light-

weight, e.g., facade) and modules (large and heavy, e.g., 

volumetric precast bathroom) to pre-acceptance 

integrated units (larger and heavier, e.g., completed with 

finishes, fixtures, and fittings) [1]. Given this course of 

prefabricated products evolution, cranes, with their 

excellent transportation capacity, perform a decisive 
role in the assembly of prefabricated products by lifting 

them vertically and horizontally [2]. To achieve smooth 

crane operations, the crane operators should not only 

have enough physical strength but also be agile in the 

hearing, eyesight, and reflexes. As such, the operations 

and judgment of the crane operator will be a crucial 

factor for safety and productivity particular in the 

construction site of Hong Kong due to the high level of 

congestion and dynamics. However, the fatigue or 

drowsiness has been identified as the critical constraint 

in disturbing the operator’s operations and judgment, 
which leads to the decreased attentiveness and vigilance, 

as well as casualties by collisions or falling loads [3,4]. 

In addition, Tam and Fung [3] revealed that around 60.5% 

of the crane operators would continue to work even 

feeling fatigue due to the long working hours (tight 

construction schedule) and about 52.6% of the crane 

operators are lack of breaks due to the inconvenient and 

narrow workspace (inconvenience of frequent in and 

out). Thus, automatically monitoring and warning the 

fatigue can provide timely support for crane operators, 

site superintendents and safety directors to make the 

scientific shifts and breaks. 
Although there are seldom studies on developing 

fatigue monitoring and warning systems for the crane 

operator, numerous objective approaches have been 

proposed for detecting the fatigue or drowsiness of 

vehicle drivers from vehicle trajectory [5], physiological 

signal [6], and facial expression [7]. The first two 

approaches in crane operation can measure the fatigue 

by several parameters such as trolley movement speed, 

loads path deviation, jib rotation speed, heart rate, 

electroencephalogram (EEG), electrooculogram (EOG), 

electromyogram(EMG), and electrocardiogram (ECG). 
These two methods have shown a good accuracy when 

monitoring physical fatigue of vehicle drivers. However, 

crane operation trajectory may be affected by other 

factors (e.g., operation errors due to inexperience, 

inefficient communication with site signaller) and the 

physiological signal should be collected by an annoying 

680



36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

 

and invasive way to crane operators. Thus, monitoring 

the fatigue reflected by facial expressions (e.g., eye state, 

yawning, nodding) can be a more convenient, fast-speed 

and cost-effective approach. This kind of approach can 

analyze the facial features extracted from the 

videos/images of crane operators, and it performs a high 

accuracy after the boosting of various deep neural 

networks as it facilitates the computer to learn by itself 

for capturing the key features. For example, Zhang et al. 

[8] adopted the convolutional neural network (CNN) to 

detect the yawning by using the features in nose region 
instead of mouth area due to the head turnings of 

vehicle drivers. However, it is still difficult to 

distinguish easy-to-confuse fatigue states, such as 

blinking and closing eyes. Huynh et al. [9] provided a 

more practical solution with the 3D-CNN by 

considering the broader features on the face and 

temporal information (sequence of video frames). 

However, it is still a challenge to distinguish the fatigue 

states with long-term dependencies, such as yawning 

and talking. Guo and Markoni [10], and Lyu et al. [11] 

improved the learning model on the temporal 

information by integrating CNN with Long Short-Term 
Memory (LSTM) network, which is a type of recurrent 

neural network (RNN) that can distinguish the states 

with long-term  dynamical features over sequential 

frames. However, the potential of CNN-LSTM is far 

from being fully exploited in the domain of 

driver/operator fatigue monitoring. The primary 

limitation in previous studies on CNN-LSTM in fatigue 

monitoring is that the long-term dependencies of 

periodic fatigue behavior (e.g., distinguish nodding and 

head tilt along with loads movements, yawning and 

talking) are learned from positive-sequence video 
frames considering only forward dependencies, while 

backward dependencies learned from reverse-order 

frames has never been explored that means some useful 

information may be missed.  

To address this issue for improving the accuracy in 

monitoring and alerting of crane operator fatigue, this 

study develops a hybrid deep neural network by 

integrating CNN with deep bidirectional LSTM 

(DBLSTM) network. The specific objectives of this 

study are: (1) to accurately detect and align the facial 

regions with critical fatigue features; (2) to extract the 

effective facial fatigue features on single-frame images; 
(3) to distinguish the fatigue state by mining 

bidirectional temporal clues of sequential features.   

2 Literature Review 

Crane operator executes the repetitive lift tasks 

under the fatigue state in a complex construction 

environment may lead to catastrophic casualties as same 
as the vehicle drivers. There are apparent signs that 

suggest an operator/driver is fatigue, such as repeatedly 

yawning, inability to keep eyes open, swaying the head 

forward, face complexion changes due to blood flow 

[12]. As the facial features of operator/driver in a 

fatigued state are significantly different from that of the 

conscious state, the real-time monitoring the 

operator/driver’s face by the camera can be an efficient, 

non-invasive and practical approach to alert the 

drowsiness and avoid the accidents [13]. PERCLOS 

(percentage of eyelid closure over the pupil over time) 

is a reliable measure to monitor the fatigue [14]. In 
addition, numerous machine learning-based approaches 

have also been applied to fatigue monitoring. For 

example, Mbouna et al. [15] developed an approach to 

extract the visual features from the eyes and head pose 

of the drivers, and then support vector machines (SVMs) 

was used to classify the fatigue levels. Choi et al. [16] 

trained the hidden Markov models (HMMs) to model 

the temporal behaviors of head pose and eye-blinking 

for identifying whether the driver is drowsy or not. 

However, these approaches relied on hand-crafted 

features which have shown limited efficacy in real-time 

monitoring and can be inaccurate when driver/operator 
wear the sunglasses or under considerable variation of 

illumination conditions [17]. Concurrently, features 

learned from unlabelled data based on the deep neural 

networks such as the convolutional neural network 

(CNN) have been proved to have a significant 

advantage over hand-crafted features in real-time 

monitoring of fatigue [14].  

CNN is the class of deep and feed-forward neural 

networks that involves three main elements including 

local receptive fields, shared weights, and spatial or 

temporal pooling [18]. The process of fatigue 
monitoring and alerting by CNN is the same as other 

machine learning-based methods that can be shown in 

Figure1. The previous studies regarding fatigue 

monitoring and alerting by using CNN related models 

have also been summarized in Table 1. CNN was first 

applied to fatigue monitoring as the features extractor of 

static facial fatigue images by Dwivedi et al. [19]. Then, 

Zhang et al. [8] used the CNNs as both face and nose 

detectors to show their performances that are quite 

better than the conventional face detectors such as 

AdaBoost and WaldBoost with Haar-like features. To 

achieve real-time fatigue monitoring, Reddy et al.[20] 
utilized multi-task cascaded CNN with the compression 

technique to achieve a faster fatigue recognition than 

existing models of VGG-16 and AlexNet at a reasonable 

accuracy rate. As the fatigue states are dynamic (e.g., 

yawning, nodding) and it is difficult to distinguish 

whether the driver/operator is yawning or talking when 

only capturing their open mouths, a 3D CNN was 

proposed to capture the motion information of 

numerous adjoining frames from videos, and 3D filters 
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(kernel) were adopted to extract spatiotemporal features 

[9]. Furthermore, Part et al. [17] integrated three 

existing CNN-based models including AlexNet, VGG-

FaceNet, and FlowImageNet in terms of their efficiency 

in the extraction of image features, facial features, and 

temporal features. However, these methods can only 

extract features with fixed temporal length, and the 3D 

convolution processes may spend numerous resources 

and time to impede the real-time monitoring. 

Long Short-Term Memory networks (LSTMs) has 

been proved to be effective in learning long-term 
temporal dependencies by solving the exploding and 

vanishing gradient problems that is a Gordian knot for 

the traditional recurrent neural network (RNN) [21]. 

And an LSTM comprises typically a cell and three gates 

(input,output, and forget). The cell can remember values 

over arbitrary time intervals, and the gates control the 

information flow out and into the cell. Thus, the 

integration of CNN and LSTM can be an alternative in 

fatigue monitoring and alerting. Several studies have 

adopted CNN to extract frame-level features and then 

feed them into LSTM to extract the temporal features 

for determining whether fatigue or not. And several 
refinement techniques help them achieve the high 

accuracy such as reducing the hidden layer of LSTM 

[10], noisy smoothing in post-processing [22], and 

alignment technology to learn the most critical fatigue 

information [11]. However, to improve the accuracy, all 

information included in time series data should be 

entirely employed. The frames of video are sequentially 

fed into an LSTM that lead to an information flow with 

positive direction from time step t-1 to t along the chain-

like structure. Therefore, the LSTM can only utilize the 

forward dependencies, and it is very likely that valuable 
information is filtered out or not efficiently passed 

through the chain-like gated structure [23]. Thus, it may 

enrich the temporal features by considering the 

backward dependencies. Moreover, the facial 

expressions of fatigue can be periodical and regular, and 

even short-term periodicity such as nodding can be 

detected. Learning the periodicity of time series data, 

particularly for recurring fatigue patterns, from both 

forward and backward temporal information can 

improve the performance of fatigue monitoring and 

alerting. However, to the authors’ knowledge, few 

studies on crane operator fatigue monitoring considered 
the backward dependencies. To fill this gap, a deep 

bidirectional LSTM (DB-LSTM) is integrated into the 

CNN to form the architecture of fatigue monitoring and 

alerting system. 

 

Figure 1. The machine learning-based process of 

facial fatigue monitoring and alerting  

Table 1. The summary of studies by using deep neural 

networks for fatigue monitoring 

Research Techniques Database Accuracy 

Dwivedi et 
al.2014 

CNN, Viola and 
Jones algorithm 

Customi
zed 

78% 

Zhang et al. 
2015 

CNN, Kalman filter 
with track-learning-

detection (TLD) 
YawDD  92% 

Huynh et al. 
2016 

3D CNN, Gradient 
Boosting 

NTHU 87.46% 

Park et al. 
2016 

AlexNet, VGG-
FaceNet, 

FlowImageNet 
NTHU 73.06% 

Shih and 
Hsu, 2016 

VGG-16, LSTM NTHU 85.52% 

Reddy et al. 
2017 

Multi-Task 
Cascaded CNN, 

Customi
zed 

89.50% 

Guo&Marko
ni, 2018 

MTCNN,VGG-
11,LSTM 

NTHU 84.85% 

Lyu et al. 
2018 

Multi-granularity 
CNN, LSTM 

NTHU 90.05% 

3 Proposed Solution 

Figure 2 shows the architecture of the proposed 

hybrid deep neural networks, which comprises three 

steps and each step maps to a specific model. Firstly, the 

multi-task cascaded convolutional networks (MTCNN) 

are adopted as the face detector to locate and align the 

facial area in each frame of the video. Secondly, the 

customized CNN model is designed to extract facial 
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fatigue features from individual-frame images. Finally, 

a sequence of features within a specific time interval is 

fed into DB-LSTM to model the temporal variation of 

fatigue. And the Gaussian smoothing is adopted to 

reduce the noise and improve the fatigue monitoring 

performance. Each step of the proposed method is 

detailed in the following sections. 

 

 

Figure 2. The architecture of the hybrid deep 

neural networks for fatigue monitoring and 

alerting 

3.1 Face Detection 

Precisely detecting and aligning the facial area of 

crane operator from an image is very critical to achieve 

efficient extraction of facial fatigue features and fatigue 

recognition. One of the famous face detectors proposed 

by Viola and Jones, [24] uses Haar-Like features and 
AdaBoost to train cascading classifiers, which achieves 

high detection rate in a real-time manner. However, 

previous studies have proved and indicated that the 

accuracy and efficiency of this face detector might 

reduce with large variations of facial regions [9,16]. 

These challenges could be exacerbated for face 

detection and alignment during crane operations in the 

real-world situations, such as the large pose variations 

of the operator who should change pose along with the 

moving loads, extreme lightings or darkness in 

operation cabin, and occlusions in front of the face. To 

fill this gap, the multi-task cascaded convolutional 
networks (MTCNN) proposed by Zhang et al., [25] 

shows the significant performance improvement in both 

accuracy and efficiency compared with other face 

detectors. This study adopts MTCNN to conduct the 

face detection and face alignment tasks with several 

stages. Firstly, the input images with various scales 

should be resized to build an image pyramid. Secondly, 

a shallow CNN (P-Net) with the input size of 12×12 to 

fast generate the candidate facial windows that are 

calibrated based on the bounding box regression vectors, 

and the highly overlapped candidates are fused by using 
non-maximum suppression (NMS). Thirdly, a complex 

CNN (R-Net) with the input size of  24×24 is adopted to 

reject the non-facial candidates with the same process of 

calibration and fusion. Finally, a more powerful CNN 

(O-Net) with the input size of 48×48 is applied to refine 

the results and produce five landmark points including 

positions of left-eye, right-eye, nose, left-lid-end, and 

right-lip-end. 

3.2 Spatial Features Extraction 

The objective of the features extraction is to learn a 

CNN-based spatial-domain feature extraction model E 

for capturing fatigue features F from the individual 
facial images I. As the feature extraction model E would 

go through each individual image in I, the extracted F 

should be general and robust to different input noises. 

Thus, this study chooses VGG-16 as our basic model 

which has achieved good performance in various 

datasets of image recognition [26]. On the basis of 

original VGG-16, several improvements are conducted 

to balance the efficiency and accuracy for extracting 

fatigue feature in a real-time condition. Figure 3 

demonstrates the improved VGG-16 architecture V. The 

original VGG-16 which includes 13 convolutional 
layers (grouped into Conv 1-5), 5 max-pooling layers 

(pool 1-5), and 3 fully connected feedforward network 

layers. However, the input of this study has a smaller 

size image (64×64 RGB images) than the original VGG-

16 (224×224 RGB images), which means the number of 

parameters can be reduced by using smaller fully 

connected (Fc) network layers (Fc-6, Fc-7, binary 

classifier) to avoid over-fitting in the improved VGG-16.  

Given the input to the improved VGG-16 is a fixed-size 

64×64×3 face image, the features both in max pooling 5 

and max-pooling 3-4 can be used to obtain the 

discriminative representation. This considers the fact 
that forward layers of CNN include more detailed 

information, while the backward layers summarize the 

global information. This improvement can be beneficial 

for improving the accuracy of extracting the small 

region features that are easily ignored by max-pooling, 

such as the eyes. To this end, a 1×1 convolutional layer 

is applied into each of pool 3-5 to approximate the Fc 6 

by generating three vectors with the same depth (e.g., 

256 in this study). This approximation strategy can not 

only reduce the number of parameters of Fc layers but 

also facilitate the Fc layers to extract fatigue-related 
features by pooling operation automatically. The pooled 

vectors are concatenated to feed into Fc 7 with fewer 

parameters to extract the more critical features, which 

forms the F. 

To enable the faster and stable training process in 

generating the feature extraction model E with good 

generalization, another improvement for VGG-16 is to 

use Batch Normalization (BN) [27]. BN is a kind of 

feature scaling technique that can normalize the sample 

mean and variance of hidden units before or after the 

process of activation functions over mini-batch data. 
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This normalization process helps lessen the internal 

covariate shift for allowing using the larger learning 

rates. Meanwhile, the mini-batch including various 

samples may lead to randomness, which can reduce the 

risk of over-fitting. In this study, there are 5 BN layers 

placed before max-pooling layer and Fc layer. Lastly, a 

binary classifier is placed after Fc7 to predict the fatigue 

score Y. Given both Y and ground truth label L ϵ {0,1}, 

the cross-entropy loss function with the Adam optimizer 

is adopted to minimize the loss. If the Y is larger than 0 

and is close to 1, the fatigue degree of the input is 
higher, and vice versa. 

 

 

Figure 3. The architecture of CNN-based spatial-

domain feature extraction model 

3.3 Temporal Features Extraction 

Although the feature extractor E has already enabled 

to predict the fatigue score of each frame based on the 

spatial features, sometimes it is still hard to discriminate 

the slight dynamic variations that have strong temporal 
dependencies such as yawning and talking. Therefore, it 

can be meaningful to consider both backward and 

forward information in the sequential frames. To this 

end, the deep bidirectional long short-term memory 

(DB-LSTM) is applied to model the temporal features F. 

DB-LSTM can process the sequential data from two 

directions by two separate hidden layers and then feed 

them into the same output layer. The outputs of forward 

and backward layers (as shown in Figure 4(b)) are both 

computed by using the basic structure of standard 

LSTM, See Figure 4.   
DB-LSTM has a memory cell to save the state 

vector which is the sequence of the past or future input 

data. The current state can be updated on the basis of the 

current input, output, and the previous state saved in 

that “cell.” DB-LSTM has a gated structure which 

allows the network to forget the previous state saved in 

cells or to update the latest state based on the new input 

data. At time t, the input gate vector, forget gate vector, 

output gate vector and the state of the memory cell can 

be denoted as it, ft, ot, and ct respectively. then ct can be 

updated by the equation (1)-(6). 

 

 

Figure 4 (a). The structure of the standard LSTM 

[28] 

 

Figure 4 (b). The architecture of the DB-LSTM 

𝑖𝑡 = 𝜎𝑖(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)             (1) 

𝑓𝑡 = 𝜎𝑓(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)          (2) 

𝑜𝑡 = 𝜎𝑜(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)          (3) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐)      (4) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡                         (5) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡)                                   (6) 

Where xt is the input and σ is the gate activation 
function, which usually is the sigmoid function. gt is the 

state update vector that has activation function ‘‘tanh’’ 

(hyperbolic tangent function) and is computed from the 

input of the current state and previous state. Forget gate 

ft allows the LSTM to forget its previous memory cell ct-

1 or further memory cell ct+1, and the output gate ot 

adopts a transformation to the current memory cell to 

produce the hidden state ht. For three gates, the gate can 

accept the input vector only if the gate value is 1 and 

reject the input vector when the gate value is 0. Weight 

matrices W and biases b are the trained parameters. ⊙ 
indicates the element-wise product with the gate value. 

Then, the vector Yt  in feature sequence F is the 
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concatenated vector by combining the outputs of 

forward and backward processes as follows: 

𝑌𝑡 = ℎ⃗ 𝑡 ⊕ ℎ⃖⃗𝑡                 (7) 

Where ⊕ represents the concatenate operation. 

      In this study, each video can be randomly sampled 

as the training data by dividing it into numerous video 

clips with fixed length 50. The DB-LSTM temporal 

network includes 64 hidden units to predict the refined 

fatigue score Yt of each frame (t=1,…,50). The cross-

entropy loss function with the Adam optimizer is still 

applied to minimize the loss. 

      In the previous stages, both spatial network (CNN) 

and temporal network (DB-LSTM) are applied to 
predict the fatigue score of each frame. However, there 

are still certain noises during the testing on the 

validation set. In order to achieve a better performance 

of accuracy, the post-processing techniques including 

Gaussian smoothing, moving mean/median filtering can 

be adopted to “smoothing” the predicted fatigue scores. 

4 Results and Conclusions 
 

      Figure 5 demonstrates the average loss among 20 

videos of the training set (orange line), and the 

evaluation set blue line). The spatial features extraction 

model E already achieves 85.82% accuracy of fatigue 

even though its prediction is merely based on a single 

frame. Figure 6 represents the comparison of DB-LSTM 

and LSTM on accuracies and convergent performance 

in the evaluation set. The temporal network LSTM 

models the temporal variation of the fatigue status, and 

thus improves the accuracy of fatigue to 92.20%. It is 
worth noting that a longer clip length T during testing 

achieves higher accuracies. Finally, after adopting DB-

LSTM, it achieves 93.60 % accuracy.   

 

 

Figure 5. Loss curve of DB-LSTM for both 

training set and evaluation set 

 

Figure 6. The comparison of DB-LSTM and 

LSTM on accuracies and convergent 

performance in the evaluation set 

      Table 3 represents the average F1 scores and 

accuracies on the evaluation set. In term of accuracy, 

the proposed hybrid neural network works pretty well 

under the sunglasses scenario (98.82%) and Non-

Glasses scenario (95.41%). In terms of F1 score, the 

balanced F1 score among all scenarios shows that the 

proposed method does not make a biased prediction.   

 

Table 3. Average F1 scores and accuracies for different 

scenarios 

  F1-Score Accuracy Number of clips 

Night_nonglasses 0.8080 0.8800 125 

Night_glasses 0.6061 0.8839 112 

Glasses 0.9617 0.9440 125 

Non_glasses 0.9655 0.9541 109 

Sunglasses 0.9870 0.9882 170 

All 0.9286 0.9360 641 

 

     This study proposes a hybrid neural network to 

monitor and alert the fatigue status of the crane operator 

on the videos. The improvements and contributions in 

this study are threefold: (1) expand the vehicle driver 

drowsiness detection to the crane operator fatigue 

monitoring and alerting; (2) to detect and align the face, 

and extract the spatial features, the customized CNN is 

developed based on the baseline models which have 
excellent performance; (3) a deep bidirectional LSTM 

(DB-LSTM) is developed by considering both forward 

and backward dependencies to model the temporal 

pattern, which can learn compositional representations 

in space and time. The experiment results indicate that 

the effectiveness of the proposed hybrid neural network 

in comparison with several state-of-the-art methods. 

Further improvements and extensions can be made 

based on this study. Firstly, the dataset for crane 

operators should be established instead of using datasets 
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from the vehicle drivers. Additionally, devising more 

powerful features by combining multiple signals such as 

ECG, human audio, other physiological signals can be 

considered to achieve better accuracy and efficiency in 

fatigue monitoring. 
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