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Abstract – 

In the modular construction industry of Canada, 

workers experience awkward postures and motions 

(reaching above shoulder, back bending backward, 

elbow/wrist flex, etc.) due to improper workstation 

designs. The awkward postures often lead to worker 

injuries and accidents, which do not only reduce the 

productivity but also increases the production cost. 

Therefore, the ergonomic posture analysis becomes 

essential to identify, mitigate and prevent the 

awkward postures of workers when workstation 

designs are changed. This paper proposes a novel 

framework to conduct the worker ergonomic posture 

analysis through the 3D reconstruction of human 

body from the video sequences captured by a 

monocular camera. The framework consists of four 

components: tracking worker of interest; detecting 

worker joints and body parts; refining 2D worker 

pose; and generating 3D human body model. The 

human body model generated from the framework 

could be used to estimate the joint angles of the 

workers to identify whether their postures meet the 

ergonomic requirements. The proposed framework 

has been tested on real construction videos, and the 

test results showed its effectiveness. 
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1 Introduction 

The modular construction has gained significant 
interest in recent years. According to the annual report 

from the modular building institute, the gross revenue in 

the modular construction industry in 2016 was roughly 

$3.3 billion in North America, which was increased by 

more than 60% from the year of 2015 [1]. Compared 

with the traditional, onsite construction, the factory-

controlled processes in the modular construction 

provides the benefits of generating less material waste 

and reducing potential site disturbances [2]. They 

mitigate the adverse weather impacts on the project and 
faster the construction schedule [3]. Also, the factory 

controlled working environments are supposed to be 

safer for the workers involved.  

However, workers’ awkward postures are often 

noticed in several modular construction workshops [4]. 

These awkward postures might be due to the improper 

workstation designs in the factory controlled working 

environments. As shown in Figure 1, the workbenches 

are not high enough. Then, the workers have to bend 

their backs forward and strain their necks in order to 

reach materials and tools. The foot pedals in the 
machines are set too close. As a result, the workers have 

to bend their backs backward in order to reach the 

pedals. Sometimes, the workers are required to lift the 

materials from one spot to another over their shoulders, 

twist their wrists and elbows, and kneel or crouch to 

complete their assigned tasks in the production lines. 

 

Figure 1. Awkward postures of the workers in 

modular production lines 

The awkward postures easily lead to work-related 

musculoskeletal disorders [5, 6]. For example, the 

frequent kneeling will cause workers’ pain and strain in 

their low backs and knees, which pose a high risk of 

developing muscle and joint problems. The 

musculoskeletal disorders hurt the health of the workers 
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and result in the absenteeism [6]. Also, they impact the 

employers simultaneously. Additional time and efforts 

must be spent on handling the lost-time and disabling 

injury claims with high compensations; and the 

workflow in the production lines are delayed [7]. New 

workers need to be hired to replace the injured ones, 

which might not always be easy.  

In order to reduce the occurrences of the work-

related musculoskeletal disorders, the employers in the 

modular construction workshops are encouraged to 

conduct the Physical Demand Analysis (PDA) [8].  
PDA is a systematic procedure to help the employers 

quantify and evaluate the physical and environmental 

demands of a job [9]. One important step in the Physical 

Demand Analysis is to measure the frequency of the 

body posture of a worker in a job, such as percentage of 

the worker’s back forward or backward; and then 

identify any potential ergonomic risk for the worker 

from the measurements 

Traditional measures heavily rely on direct manual 

observations and self-reporting [10], which are easy to 

implement with little costs associated in the workshops. 

However, the manual observations and self-reporting 
are subjective; and the measurement results are always 

error-prone [11]. Recently, the idea of attaching 

physical sensors or tags on the worker’s body to record 

their motions, postures and even muscle activity in the 

work to indicate whether the muscle is fatigue [12, 13]. 

The sensors can provide the accurate measurements, but 

their implementation cost is high. Also, it is not widely 

acceptable by the workers in practice, who are not 

willing to wear these sensors and tags during the work 

[14]. 

An alternative solution is to use digital video 
cameras that could be set up in the workshops by the 

employers. This paper combined different computer 

vision techniques and proposed a novel framework that 

relies on the video from one monocular camera to 

reconstruct the 3D human body of a worker. The 

framework consists of four main components. First, the 

worker of interest in the video sequences is identified 

through the visual tracking. Then, the 2D joints and 

body parts of the worker are detected. The detected 

joints and body parts are combined to refine the 

worker’s 2D pose in the video sequences. The 3D 

human body model is further generated by matching the 
model with the refined 2D pose in the video sequences. 

This way, the 3D posture and joint angles of the worker 

could be estimated for the corresponding ergonomic 

posture analysis.  

The proposed framework has been implemented in 

Python 2.7 with the support of GPU (Graphic 

Processing Unit) computing. It was tested with the 

videos of two real working scenarios. The first video 

was recorded in the production line of the Fortis LGS 

Structures Inc., where a worker was cutting and 

transporting boards. The second one was provided by 

Alwasel et al. [15], where a worker was laying masonry 

units. The test results from both scenarios showed that 

the framework could generate the 3D human bodies of 

the workers of interest and obtain their joint angles 

effectively and efficiently. Moreover, the joint angle 

information could be further input to existing ergonomic 

posture analysis tools, such as 3D Static Strength 

Prediction Program (3DSSPP) [16], to identify whether 

the postures of the workers meet the ergonomic 

requirements. 

2 Related Work 

This section first provides a holistic view on the 

techniques available for ergonomic posture analysis and 

their limitations. Then, 2D and 3D human pose 

estimation methods in the field of computer vision are 

presented. The 2D pose estimation methods are 
reviewed, since they are the solid foundation to most of 

existing 3D pose generation methods. 

2.1 Ergonomic Posture Analysis 

Existing techniques available for ergonomic analysis 

can be classified into the categories of self-reporting, 

manual observation, sensor-based direct measurement, 

and vision-based analysis. Self-reporting is to collect the 

data from worker diaries, interviews, and web-based 

questionnaires [10] to conduct the ergonomic analysis. 
It is straightforward to implement in a wide range of 

workplaces and appropriate for surveying large numbers 

of workers at low cost. However, it was found that the 

self-reporting data were not always precise and/or 

reliable [11]. Also, the levels of comprehension and 

question interpretation may increase the difficulty, when 

adopting the self-reporting in practice [17].  

Manual observation mainly relies on experienced 

experts to record the body postures of the workers in a 

workplace to conduct the ergonomic analysis. Several 

tools have been designed and developed to facilitate the 

observations and evaluation of ergonomic risk factors, 
such as Ovako Working Posture Analysing System 

(OWAS) [18]. The observation produces the minimal 

disturbances to the workers, which makes it applicable 

in various working environments. On the other hand, the 

manual observation results are error-prone due to the 

influence from the subjective judgement of the experts.  

Sensor-based direct measurement is to complement 

or replace the self-reporting or manual observation. A 

wide range of direct measurement sensors have been 

developed, and they are directly attached to the workers 

to improve the measurement accuracy. For example, the 
Lumbar motion monitor (LMM) [12] was developed to 

assess the risk of the worker’ low back injury. The 
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electromyography (EMG) [13] was used to study the 

muscle exertions. Also, the retroreflective markers were 

attached on the worker bodies. This way, the 3D motion 

of the joints and body segments of the workers could be 

tracked with infrared cameras [19]. The measurements 

with sensors and/or markers are accurate and detailed. 

However, the workers complain about the physical 

requirement of attaching sensors and/or markers on the 

bodies, and not willing to wear them in practice [14].  

The vision-based analysis tried to capture the joint 

motions of the workers and assess their body postures in 
a marker-less way. For example, Diego-Mas and 

Alcaide-Marzal [20] computerized the OWAS and 

processed the RGB-D data from a Microsoft Kinect 

camera to identify the risk level of each recorded 

posture. Ray and Teizer categorized the ergonomic or 

non-ergonomic body postures captured by a Kinect 

camera with a predefined set of rules [21]. Both 

methods solely focused on the classification of simple 

postures, such as lifting and crawling, in the indoor 

environments.  

In addition to the Microsoft Kinect cameras, video 

cameras are also adopted. For example, in the method of 
Han and Lee [22], they extracted and matched the visual 

features of a worker in 2D video frames and then the 

worker’s 3D skeleton can be extracted through the 

triangulation. This way, the unsafe actions could be 

detected by comparing the skeleton with pre-trained 

motion templates and skeleton models.  

Compared with sensor-based direct measurement, 

the vision-based analysis does not have to physically tag 

workers, which makes it more acceptable in the 

workplaces. However, the vision-based analysis mainly 

relies on the data from the range or video cameras to 
approximate the joint motions of the workers. The 

accuracy and robustness of such approximation are 

always affected by environmental factors. Any 

illumination change, occlusions, and/or far shooting 

distance might lead to the vision-based analysis 

inaccurate and non-robust. So far, several methods were 

proposed to improve the accuracy and robustness of the 

vision-based ergonomic analysis. 

2.2 2D Human Pose Detection 

A classical method for 2D pose detection refers to 

the use of a pictorial structural (PS) model, in which the 

spatial relationships between various body parts are 

represented with kinematics priors. One example of the 

PS models is a tree-like structure, which was adopted by 

Lan and Huttenlocher [23] in their work of determining 

the human body pose. Andriluka et al. [24] combined 

the PS model with a strong human body part detector to 

make the human pose detection more generic. In 

addition, the mixture of the deformable parts model 

(DPM) was also introduced [25]. The introduction of 

DPM extended the application scope of the PS models, 

but it requires the substantial computations. 

Recently, the 2D human pose detection has been 

significantly advanced with Deep Learning technologies. 

For example, DeepPose [26], the first method for human 

pose estimation with Deep Neural Networks (DNNs), 

was built on a 7-layered convolutional neural network 

(CNN). It formulated the pose detection as a joint 

regression problem and each joint could be directly 

regressed from a full image [26]. Pfister et al. [27] 

created the Flow ConvNets to detect 2D human poses, 
which benefitted from video temporal contexts to 

improve the pose estimation performance. Also, 

researchers developed the convolutional pose machines 

(CPM) [28] and stacked hourglass [29], both of which 

estimated the human pose without the need of an 

explicit human body model. 

The methods described above have been used only 

for single-person pose estimation. They typically fail 

when multiple persons are captured into one image or 

video frame. This issue was overcome in the method of 

DeepCut [30], but the computational intensity is high. 

Its upgraded version, DeeperCut [31], was introduced to 
adapt to the newly proposed residual network for body 

part extraction. This way, the computation is reduced 

significantly and the robustness to the human body pose 

detection is maintained.  

2.3 3D Human Pose Generation 

The generation of 3D human pose from 2D images 

or videos is still one of the promising and popular 

research directions. Existing methods could be divided 

into two categories: i.e. multi-view vs. monocular view, 

depending on the number of video cameras adopted. 

Multi-view methods were inspired by human vision and 
infer a 3D human pose from two or more cameras [32]. 

The main mechanism is to obtain the 2D pose in each 

camera view first, and then reconstruct the 3D skeletal 

pose from the 2D poses [33].  

Compared with the multi-view methods, it is much 

challenging to generate the 3D human pose with the 

monocular view methods. The methods tried to recover 

the depth information by creating a relationship between 

the 2D visual features (e.g. silhouette) and 3D skeletal 

pose [34]. This relationship could even ben learned with 

deep learning technologies, such as Vnect [35], which 

regressed 2D and 3D poses jointly through a CNN-
based pose prior with Kinematic skeleton fitting. 

Moreover, Federica et al. [36] described how to 

automatically generate the 3D pose of a human body as 

well as its 3D shape from a single unconstrained image. 

3 Research Objective 

The monocular view methods for 3D human pose 
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generation are supposed to achieve better performance 

in terms of the cost-effectiveness and wide-range 

applicability for ergonomic posture analysis. However, 

they have not been well studied yet. It is still necessary 

to improve the 3D pose generation accuracy before the 

methods could be adopted in practice. One important 

aspect for improvement is to locate the body joints in 

the images or videos more precisely, considering that 

the locations of the body joints are directly related to 

body angles calculation for the ergonomic analysis.   

The main objective of this research is to investigate 
whether it is possible to improve the 3D pose generation 

accuracy with the integration of existing computer 

vision techniques. A novel framework is proposed here 

for the 3D reconstruction of human poses with one 

monocular video camera. The overview of the 

framework is illustrated in Figure 2. Under the 

framework, the worker of interest is first tracked 

visually in the video sequences, and represented as a 

rectangular bounding box. Then, the 2D joints and body 

parts of the worker are detected. Based on the detection 

results, the 2D pose of the worker is refined and the 3D 

human body model is further generated by matching the 
model with the refined 2D pose in the videos. The joint 

angles are computed based on the 3D joint coordinates 

to serve as the input for the ergonomic posture analysis. 

The proposed framework is expected to function in real 

modular construction scenarios, which could help to 

identify the awkward and improper postures of the 

workers in modular construction workshops.  

 

 

Figure 2. Overview of the proposed framework 

4 Research Methodology 

4.1 Visual Tracking 

Visual tracking here is to locate the worker of 

interest along the consecutive video sequences. It could 

narrow down the image region with the less irrelevant 

background information contained for processing. Here, 

the CNN-based tracking algorithm MDNet [37] was 
selected due to its significant performance on the 

human-tracking challenge competition. It is worth 

noting that the tracking results need to be appropriately 

resized, since the accuracy of the pose estimation is 

easily affected by the image size. The size of 150 (width) 

x 350 (height) pixels was adopted in this study, based 

on the previous finding that the human pose detection 

could always perform well, when the standing height of 

the persons was scaled at around 340 pixels in the 

images [31]. 

4.2 Joints and Body Parts Detection 

The resized visual tracking results are further 

processed to detect the worker’s joints and body parts. 

Here, the joint detection is conducted by the DeeperCut 

algorithm [31]. It could identify a total of 14 joints from 

their corresponding heat maps, where the probability of 

each pixel in the image region to be a joint is indicated.   

As for the body parts detection, the Deeplab v2 

method [38] is modified to have the method only detect 

6 body parts, i.e. head, torso, upper /lower arm and 

upper/lower leg, instead of 24 detailed body parts 

shown in the Pascal-Person-Part dataset [39]. Moreover, 

the reliability of the body part detection results is 
evaluated with the heatmaps produced by the DeeperCut 

algorithm [31]. A detected body part is considered 

reliable only when it has a high probability of 

containing a joint (larger than 0.2 in this research study). 

For example, the detected head body part is reliable 

when its probability of containing the head joint is high. 

The high probability does not mean that it must include 

the head joint. 

4.3 2D Pose Refinement 

The joints detected in the previous step compose an 

initial pose for the 3D reconstruction later. However, 
this initial pose is not always accurate. This is mainly 

because each joint is not located perfectly at the joint 

detection stage. For example, it is highly possible that a 

left shoulder joint is located on the right shoulder area 

instead of the left one. Therefore, the initial pose from 

the joint detection needs to be refined by combining the 

joint and body part detection results. 

The refinement first checks whether the initial joints 

lie in their corresponding body parts. If not, the joints 

are relocated in the body parts based on the confidence 

Visual tracking 

Joints & body 

parts detection

2D pose refinement

3D body generation

- Refined 

locations
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values of the body part regions in the heat maps. For 

example, if the initial head joint does not lie in the head 

part, then it is relocated in the head part region. The 

position where the highest confidence value to be the 

joint point in the head part area is selected. If the initial 

joints lie in their corresponding body parts, the 

refinement is then conducted on a case-by-case basis. 

For example, the head joint will be preferred in the top 

of the head part area. More details for the adjustment of 

the joints with the body part detection results could be 

found in the authors’ recent work [40]. 

4.4 3D Human Body Reconstruction 

Based on the refined 2D pose, the 3D human body 

of the worker of interest is reconstructed. Here, the 

generative Skinned Multi-Person Linear (SMPL) model 

[41] is adopted in the reconstruction process. The SMPL 

model could represent a wide variety of natural 3D 

human poses with body joints and shapes [41]. 

Following the workflow of Bogo et al. [36], these 3D 

poses are projected onto the camera view and compared 

with the refined 2D pose from the previous step. The 

one that optimally matches to the refined 2D pose is 

selected as the final reconstruction result. 
The joint angles are further calculated from the 

reconstructed 3D human body. There are a total 14 joint 

angles under the consideration: clavicle (left and right), 

upper arm (left and right), lower arm (left and right), 

hand (left and right), upper leg (left and right), lower leg 

(left and right), and foot (left and right). Each joint 

angle is described both horizontally and vertically. 

These joint angles could be input into the 3DSSPP 

program [16] with other work-related information (e.g. 

external loads, worker’s gender, age, height and weight), 

and assess the risk factors that may produce excessive 

physical loads on the worker’s body. 

5 Implementation and Results 

5.1 Implementation and Tests 

The proposed framework has been implemented in 

the Python 2.7 environment. It runs under the Ubuntu 

16.04 LTS operation system and relies on the support of 

the GPU computing from an NVIDIA Titan Xp. Two 
real scenarios were selected to test the framework. In 

the first scenario, the video was collected from the 

production line of the Fortis LGS Structures Inc., where 

the worker was cutting boards in a sheathing table. The 

second scenario was provided by Alwasel et al. [15]. 

The worker in the scenario was laying concrete masonry 

units. He is also equipped with a motion capture suite 

with the attachment of 17 sensors to record his joint 

angles during the work. 

5.2 Results 

Figure 3 showed an example of the results from the 

first test scenario. Figure 3a illustrated the visual 

tracking of the worker of interest, where the red 

bounding box indicated the tracking result. Figure 3b 

indicated the detection of worker’s body parts, which 

were represented with different colors. Figure 3c 

showed the refined locations of the 2D joints through 

the combination of the joints and body parts detection. 

Figure 3d was the final 3D human body reconstructed 

from the refined 2D joints.   

 

 
Figure 3. Results from the first test scenario 

Figure 4 showed the examples of the results from the 

second test scenario. In the figure, the reconstructed 3D 

human body was placed beside the worker in the video 

sequences, in order to compare their visual similarity.  It 

could be seen that the reconstructed 3D human body 

generally reflect the worker’s posture during the work. 

Also, the human body could be generated, even when 

the worker experienced partial occlusions. In Figure 4c, 

both worker’s head and arm were occluded, the human 

body was still reconstructed through the references from 
other visible 2D joints.  

Moreover, the joint angles estimated from the 3D 

human body were compared with the sensory data from 

the motion capture suite in the second test scenario. The 

suit has the sampling rate of 125 Hz, and the video was 

captured at 25 frames per second. Therefore, the sensory 

data from the motion capture suite were down sampled 

for the frame-by-frame comparison.  

Table 1 summarized the estimation error for each 

joint type. It could be seen that the minimum error (4.5°) 

occurs on measuring the horizontal angle of the lower 
arm joint. The maximum error (45.2°) occurs on 

measuring the horizontal angle of the upper leg joint. 

The errors for the remaining horizontal and vertical joint 

angles range from 10.0° to 28.0°. In average, the 

measurement error is around 17.5°. 

726



36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

 

Figure 4. Results from the second test scenario 

Table 1. Estimation error for each joint type  

Joint Type Horizontal 

Angle  

Vertical Angle 

Clavicle 11.7° 13.2° 

Upper Arm 15.9° 10.0° 

Lower Arm 4.5° 10.8° 

Hand 14.2° 10.1° 

Upper Leg 45.2° 20.2° 

Lower Leg 14.2° 20.7° 

Foot 19.4° 28.0° 

6 Discussion 

The errors for measuring the joint angles may come 

from several aspects. First, the joint definitions in the 

SMPL model and the measurement from the motion 

capture suites are not one-on-one matching. The SMPL 

model has defined 24 joints, while the motion capture 

suite measured a total of 28 joint data. Therefore, those 

close to the joint definitions in the SMPL model were 

selected for the comparison, which may introduce the 

measurement errors. 

Also, the occlusions affect the joints and body parts 
detection, as well as the quality of the 3D human body 

generation. Therefore, they may increase the joint angle 

measurement errors. Figure 5 illustrated the frame-by-

frame comparison of the horizontal angle measurements 

for the lower arm from the 3D human body and motion 

sensory data in the second test scenario. The worker’s 

head and arm were severely occluded from the 234th to 

the 388th video frames. As a result, the difference of the 

joint angle measurement fluctuated significantly during 

the occlusion period, as shown in Figure 5.  

Also, the 2D pose refinement played an important 

role on the quality of the 3D human body reconstruction. 

In order to highlight its effectiveness, the pose similarity 

is calculated and compared for the 3D human bodies 

generated with and without the refinement step. It was 

found that the refinement improved the horizontal and 

vertical measurements of the pose similarity by 7.0% 

and 2.1%.  

 

 

Figure 5. Comparison of the horizontal joint 

angle measurements for lower arm 

7 Conclusions and Future Work 

 This paper presented an integrated framework for 
the 3D reconstruction of human body from the videos 

captured by monocular video cameras. The framework 

includes four main components: visual tracking, joints 

and body parts detection, 2D pose refinement, and 3D 

human body generation. The 3D human body generated 

from the framework could be used to estimate the body 

joint angles. This information could be input into the 

ergonomic posture analysis tool, 3DSSPP, to evaluate 

the risk factors that the worker may experience in a job.  

The proposed framework was tested in two real 

scenarios. The joint angles of the 3D human body from 
the framework were also compared with the sensory 

data directly captured by a motion capture suite. The 

comparison results indicated that the average error for 

measuring joint angles was around 17.5°. The error for 

measuring the horizontal angle of the lower arm was as 

low as 4.5° and the error for measuring the horizontal 

angle of the upper leg reached up to 45.2°.  

Future work will focus on reducing the errors of 

joint angle measurements. The temporal continuity in 

consecutive video frames and the worker’s silhouettes 

in the video frames will be considered. They may 

improve the accuracy of joints and body parts detection 
and 3D human body reconstruction in the framework. 

This way, the joint angle measurement from the 3D 

Fluctuations due to 

visual occlusions
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human body could be more accurate. 
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