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Abstract – 

Automation and robotics offer significant 

potential to address some of the challenges faced by 

facility managers to efficiently operate and maintain 

indoor building environments. Previous efforts have 

focused on deploying mobile service robots for 

scheduled and periodic tasks such as monitoring, 

inspecting, and collecting data. Localization and 

navigation are two of the fundamental capabilities 

required for any robotic system to accomplish these 

periodic tasks successfully. Most of the existing 

approaches for achieving semi/fully autonomous 

indoor mobile robot navigation either require dense 

instrumentation of the physical space (e.g., Bluetooth 

beacons) or are computationally burdensome (e.g., 

Simultaneous Localization And Mapping). To 

address these issues, the authors previously developed 

localization, navigation, and drift correction 

algorithms based on cost-effective and easily-

reconfigurable fiducial markers (e.g., AprilTags). 

However, these algorithms were based on context-

specific assumptions regarding the marker 

characteristics, sensor capabilities, and 

environmental conditions. This study 

comprehensively investigates the design 

characteristics of a fiducial marker network 

localization system to achieve autonomous mobile 

indoor navigation. A generalized framework in the 

form of a process flow chart is proposed that is 

agnostic of indoor building environment application, 

marker category, robot, and facility type. That is, the 

proposed framework can be used to systematically to 

design the desired robot, required sensors, and create 

the optimal marker network map. The feasibility of 

the proposed approach is explained with the help of a 

facility management related example. The outcomes 

of this study can be generally applicable to any mobile 

robot, building type (e.g., office), and application (e.g., 

construction progress monitoring).   
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1 Introduction 

Recent advancements in technology have given rise 

to the use of intelligent robots for several service 

applications. Some of the examples of deployed indoor 

robotic systems for professional and domestic service 

applications include museum guide robots [1], hotel 

butler robots [2], vacuum cleaning robots [3], and 

surveillance robots [4]. As per a report published by the 

International Federation of Robotics in 2018, the annual 

growth rate in service robots is about 21% [5]. In addition, 

Baeg et al. [6] emphasized the significance, usability, and 

the potential of service robots for everyday activities. It 

can thus be reasoned that intelligent robots will soon be 

ubiquitous and there is a strong need to explore the 

potential of robots to improve autonomy in the operation 

and utilization of today’s buildings.  

Two of the fundamental capabilities robots need to 

possess to enable such autonomy are localization (i.e. 

identify and orient their location in the physical 

environment) and navigation (i.e. direct to the respective 

locations of interest). Previous approaches and methods 

either require dense instrumentation (e.g., bluetooth 

beacons) of the physical environment (i.e., significant 

upfront costs, suffer from low accuracy (e.g., wireless 

local area network), or made application-specific 

assumptions (e.g., marker-based systems). To address the 

limitations of existing studies, the authors propose a 

general framework for marker-based localization and 

navigation systems in the form of a process flowchart that 

is agnostic of the indoor building environment 

application, marker category, robotic platform, and 

facility type. The proposed framework is general, not 

domain specific, and can be used for several single and 
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swarm indoor robotic system applications. The use and 

feasibility of the proposed framework are illustrated with 

the help of several built environment examples. 

In the context of this paper, localization is defined as 

the robot’s ability to identify its current location in a 

given indoor environment setting [7]. For example, a 

robot being able to recognize that its location is in room 

201, or knowing its location and orientation in the global 

coordinate reference system. The robot’s navigation can 

be briefly defined as the robot’s ability to plan a course 

of action to reach the destination location while 

accurately localizing itself in its frame of reference at 

strategic locations [7].  

Several indoor localization and navigation techniques 

have been explored previously. Literature suggests that 

every method has advantages and limitations. Some of 

the previous approaches explored for robot localization 

include Wireless Local Area Network (WLAN), Ultra-

Wide Band (UWB), Bluetooth, Cameras, and Lasers. Wi-

Fi is an economical solution because most of the existing 

infrastructure consists of wireless nodes required for 

localization. However, it suffers from a significant error 

in localization accuracy [8,9]. Bluetooth based 

localization tends to be expensive, time-consuming and 

also have space constraints because of the requirement of 

wireless infrastructure deployment indoors [8,10]. 

Similarly, UWB-based systems require a large number of 

receivers making it inconvenient and infeasible (due to 

space constraints) indoors [11,12].   

Laser scanner based techniques eliminate the need to 

instrument the physical space but they are highly 

expensive, sensitive to obstructions and require high 

computational capabilities [1,13-17]. To summarize, 

common disadvantages affecting a majority of the 

reviewed methods include low accuracy, significant 

upfront investments, high computational requirements 

and complex instrumentation of the indoor environment. 

Vision-based methods using fiducial or natural 

markers are particularly immune to the disadvantages 

mentioned above. This is because, markers offer high 

accuracy in estimating the relative three-dimensional 

pose in an environment, require relatively less computing 

capabilities, are cost-effective, and are easy to install [18-

20]. In addition, fiducial markers can store virtual 

information regarding a multitude of things such as 

information regarding physical location (e.g., room 

number), emergency evacuation directions, indoor 

navigational information, and inspection-related data 

regarding building systems helpful for facility managers 

[14]. Feng and Kamat [14] demonstrated how markers 

having virtual information and navigational directions 

can help humans navigate indoors.  

To take this further, Mantha et al. [21] showed that 

the virtual location information (for localization), 

navigational direction (for navigation), and 3D pose 

estimates (for drift correction) can be used to achieve 

autonomous behavior of the mobile robot. However, this 

was just a proof of concept which used a specific type of 

robotic platform, camera, marker type, marker size, and 

facility type which cannot be generally applicable to 

other scenarios or built environment applications.  

1.1 Importance of the Research 

Robots have become increasingly pervasive in our 

day to day lives, with global experts predicting that 

intelligent robots will soon be ubiquitous [22]. Baeg et al. 

[6] emphasized the usability of service robots for 

everyday activities. Building Service Robots have 

numerous advantages such as a) high productivity: can 

perform tasks significantly faster without getting tired 

(e.g., laying bricks) [23], b) improve safety: can work in 

harsh and unsafe environments where humans are 

unwilling or unable to work (e.g., gas pipe inspection) 

[24], c) reduce cost: cheaper than human counter parts 

(e.g., it is very cheap to deliver items in hospitals/hotels 

with robots) [2, 25], d) improve quality: robots can be 

more precise and accurate than humans (e.g., structural 

monitoring) [24], e) provide better quality of life: can 

help the people with restricted mobility or handicaps with 

several mundane tasks (e.g., help blind people navigate 

indoors) [26]. The demand for Building Service Robots 

is also reflected in the exponential increase in the venture 

capital investment in robotics [27]. More importantly, the 

world robotics executive summary released in 2016 

estimates around 23 billion USD in sales for the 

professional service robot installations between 2016 and 

2019. In addition, a study published by McKinsey shows 

that the price of these robotics systems continues to drop 

(almost halved), whereas, the labor costs have 

consistently increased [28].  

Thus, there is a strong need to investigate the 

potential of these systems, especially for facility 

management applications. Most of the existing service 

robotic systems still rely on expensive sensors, 

computationally intensive methodologies and complex 

instrumentation for semi and fully autonomous 

navigation. In addition, these systems are particularly 

disadvantageous for temporary or one-time applications 

such as air quality assessment, retrofit decision making, 

occupant schedule detection, and structural health 

monitoring [21]. On the contrary, marker-based systems 

offer significant potential since they are easily 

reconfigurable, cost-effective (can be printed on paper), 

and computationally efficient [14].  

Different types of markers have been developed and 

studied in the recent past. For example, Xu and 

McCloskey [29] developed a 2D barcode-based 

localization system. Though this is an economical 

solution when compared to the previous alternatives, 2D 

systems fail to provide 3D orientation information. This 
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is particularly important for successful indoor robot 

navigation. Olson [20] developed AprilTags that can be 

printed on a regular paper but have the capability to 

determine 3D relative pose information.  

Feng and Kamat [14] used these markers for indoor 

wayfinding applications. Furthermore, Babinec et al. [19] 

showed how a mobile robot can be localized using planar 

markers. Extending this further, Mantha et al. [21] used 

these markers for mobile robot navigation. However, all 

these aforementioned methods were just proof of 

concepts with context-specific assumptions regarding 

marker size, marker placement, and camera type. On the 

other hand, several other studies focused on improving 

individual marker characteristics such as successful 

detection rate, performance of the detection algorithm, 

size of the marker, and camera configurations. For 

example, Romero-Ramirez et al. [18] compared the 

speed performance of detecting different markers such as 

ArUco, Chili tags, AprilTags, and ArToolKit+. Lundeen 

et al. [30] compared the accuracy performance of 

different marker sizes, relative marker camera distances, 

and its relevance to the operation of an autonomous 

robotic excavator. However, none of the aforementioned 

studies, nor other existing studies, integrate, investigate, 

and identify the appropriate selection of marker networks 

for autonomous indoor robot navigation. That is, none of 

these studies establish a procedure to determine the 

optimal marker network design characteristics (e.g., 

marker camera configurations) based on a given set of 

inputs (e.g., facility type, and application objectives).  

Thus, the objective of this research is to develop a 

general framework that can be used by facility managers 

or stakeholders to identify optimal camera marker 

network design characteristics based on different inputs 

(e.g., application objectives). The proposed framework is 

applicable to single or multiple robotic systems with and 

without constraints such as performance speed, 

occlusions, and lighting conditions. The feasibility of the 

proposed framework is explained in detail with the help 

of a facility management related example involving a 

variety of robotic platforms and marker types. 

2 Proposed Framework 

The framework is divided based on four main roles 

namely facility manager, real building, robot, and 

markers of the whole camera marker network design 

process for the autonomous robotic navigation. Each of 

these directly or indirectly influence, possess or are 

responsible for certain tasks and/or actions. Figure 1 

shows the proposed framework including each of the 

aforementioned roles, their tasks, actions, processes, and 

sub processes. The different tasks of the proposed 

framework are illustrated using the example of ambient 

robotic data collection presented by Mantha et al. [21]. It 

has to be noted that for simplicity and easier 

understanding of the reader, tasks are described as sub 

sections of each role rather than in the chronological 

order of the process flow shown in Figure 1.    

2.1 Facility Manager 

One of the important roles of this framework is the 

facility manager who is responsible to define the 

objectives pertaining to the application context and the 

corresponding inputs. The objectives can be derived from 

the targeted action or intended tasks that need to be 

performed. In the example considered, the objective is to 

monitor ambient parameters in buildings. Therefore, the 

intended action is to gather data regarding ambient 

parameters such as temperature, relative humidity, and 

lighting, and compare it with the standard parameter 

range or the occupant preferences. Other relevant inputs 

can be the locations in the building and the frequency at 

which the data needs to be collected.      
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Figure 1. Design of marker network map for 

autonomous indoor robotic navigation. 

2.2 Built Environment 

Service robotic systems are designed to navigate in 

the built environment and perform the assigned tasks.  

Hence the built environmental attributes along with the 

users (or occupants) actions will significantly influence 

the design parameters of the robotic navigation system 

(marker network system in the context of this paper). 

Each of these categories is described below in detail.    

2.2.1 Select Attributes 

Attributes primarily represent the physical properties 

and characteristics of the built environment such as 

facility type, floor plans, equipment, surface geometry, 

flooring type, thermal zones, lighting, acoustics, and 

other services. In the previous ambient parameter 

monitoring example discussed at the beginning of section 

4, some of the relevant attributes can be indoor 

temperature, relative humidity, light intensity, sound 

levels, and indoor air quality.  
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2.2.2 Identify Occupants Actions 

Occupants are users of the built environment who 

directly or indirectly interact with the robotic systems. 

Though this task is not part of a technical process flow as 

can be seen in Figure 1, this can impact the characteristics 

of the markers (i.e., marker placement in particular) and 

determination of sensors (e.g., camera in this case) on the 

robot. Thus, identifying occupant actions is important as 

they have the potential to impact the successful 

accomplishment of the goals and objectives. Some 

examples of the behaviors and actions of the occupants 

include their movement, schedule, use of the built 

environment, and routine. In the example case considered, 

occlusions due to occupant movement and their 

interaction with these systems to provide feedback in the 

form of a questionnaire regarding their preferences are 

some of the most important factors to be considered. 

Further details regarding the significance of occlusions is 

described in the marker placement section of this paper.     

2.3 Robot 

In the context of this paper, three important tasks that 

encompass the role of an indoor robot are the type of 

platform, sensors (e.g., camera for detecting markers), 

and navigation performance (e.g., error accumulation). 

Though other elements such as task allocation, path 

planning, and motion planning for task execution are 

critical, they are not considered in the scope of this study 

and hence are not elaborated. However, interested 

readers are referred to [30,31] for further information.  

One of the other considerations which did not receive 

much attention in the past is the cybersecurity 

implications of these intelligent autonomous agents [32]. 

This is particularly important in this case because of the 

potential human-robot collaboration and the accessibility 

of these robotic systems in these facilities. It has to be 

noted that the cyber threats are not just limited to data 

breaches but can cause some serious safety concerns to 

the infrastructure and the occupants [33,34]. So, with the 

increasing popularity of artificial intelligence enabled 

autonomous mobile robots, it is necessary to keep a check 

on the cybersecurity aspects, safety standards, and risk 

assessment of the robot chosen.     

2.3.1 Determine Platform 

As the name suggests, the goal of this step is to 

determine the ideal robotic platform based on the defined 

objectives (refer to section 4.1). The classification of 

robots can be dependent on several things such as the 

type of work, mechanical structure, or morphology [35]. 

Here, the goal is to determine the mechanical structure of 

the robot whether it is a mobile robot with wheels, legs, 

wings, tracks, or any other existing automated platform. 

In the example application, since the mobile robot needs 

to collect data and get occupant feedback, a mobile robot 

with wheels and a display platform for interaction might 

be ideal. Though a legged locomotion-based robot might 

also serve the purpose, a mobile robot with wheels might 

outpace the legged robots and can be more efficient 

(faster) in collecting data.  

2.3.2 Determine Sensors 

Though several sensors will be required on the robot, 

in the context of this paper, the sensor (camera) for the 

purpose of localization and pose estimation is discussed. 

One of the advantages of marker-based pose estimation 

systems is that they do not require expensive cameras. 

The type of cameras available on mobile phones these 

days can be used. Typically, most of the robotic systems 

come with a built-in camera. These cameras are of 

sufficient quality to be used for the purpose of marker-

based localization and pose estimation [18].     

2.3.3 Estimate Pose Error 

One of the most important factors that have a direct 

impact on whether the robot will successfully navigate to 

desired locations or not, is the relative pose error 

accumulation of the robot. This is because there is always 

a difference between the robot’s actual and ideal pose. It 

is important to estimate this at regular intervals and 

rectify it accordingly. Relative pose between camera and 

marker can be determined by a total of six components, 

three of which correspond to translation (e.g., x, y, and z) 

and three of which correspond to the rotation (e.g., roll, 

pitch, and yaw angles). This is represented in the form of 

a homogenous transformation matrix (H) in which R (3*3) 

denotes a rotation matrix and T (3*1) denotes a 

translation matrix (Eq. 1). However, depending on the 

type of application, only some of these six components 

might be required. For example, in case of ambient data 

collection, only the lateral distance (distance between the 

camera and the marker) is extracted and hence the pose 

error is estimated only using the variance of this 

parameter with respect to the ground truth values.  

𝐻 =  
𝑅11 𝑅12 𝑅13 𝑇𝑥
𝑅21 𝑅22 𝑅23 𝑇𝑦
𝑅31 𝑅32 𝑅33 𝑇𝑧

 (1) 

Where, 

H is part of the Homogeneous transform matrix  

R (3∗3): Rotation matrix 

T (3∗1): Translation matrix     

A generalized procedure of the sub process for 

estimating the pose error is shown in Figure 2. First, 

assume a zero yaw angle (as shown in Figure 3) and 

determine the camera marker distance range. That is, the 

minimum and maximum lateral distance between the 

marker and the camera (i.e., robot) to be able to detect the 

marker. Then, identify the ideal marker to camera 

distance to maximize the allowable error accumulation 
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based on the environmental attributes and robotic 

platform. Further discussion regarding the reason for 

maximizing the allowable error is provided in section 

4.4.3. If further optimization is required for the pose error, 

relative camera marker orientation can be varied to 

achieve the same. Though it might seem counter-intuitive, 

it is possible that a non-zero yaw angle (e.g. -15 degrees) 

gives better results than a zero yaw angle [30].   
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Figure 2. Sub-process to estimate pose error 
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Figure 3. An illustration of marker yaw 

For example, in the case of ambient robotic data 

collection, the robot’s ideal path is along the centerline of 

the corridor to maximize allowable drift as shown in 

Figure 4. This is because, if the robot’s ideal path is closer 

to the wall, the allowable drift accumulation will be very 

less (compared to the robot’s path being on the centerline 

of the corridor) to avoid the robot colliding with the wall. 

The allowable drift accumulation, in this case, will be 

less than half the width of the corridor considering the 

width of the robot.  

2.4 Markers 

A fiducial marker is an artificial landmark with 

prescribed geometry and features to distinguish itself 

from the naturally occurring objects and other markers. 

The detection is usually done by capturing videos of 

markers using optical cameras and subsequently 

analyzing the image to determine the relative camera 

marker pose [30].  

Unique fiducial markers are required to be placed at 

strategic locations along the navigational path of the 

robot (e.g., corridors, entrances to rooms, etc.) to form a 

Marker Network Map (MNM). These markers will act as 

landmarks, and the strategic locations can be the end of 

the corridors, the intersection of hallways, and entrances 

to the rooms. A graphical network G = {N, E} can then 

be generated where N represents nodes representing 

locations of markers and E represents edge links 

connecting these nodes (e.g., corridors and stairs). The 

network formed henceforth can be used to determine the 

optimal paths in the building and subsequently for the 

autonomous navigation of the robots. The subsections 

below provide further discussion regarding different 

marker characteristics (e.g., type and placement), 

detection of markers (e.g., placement), and threshold 

marker distance (i.e., maximum distance between two 

consecutive markers).  

 

Figure 4. Illustration of drift accumulation and 

marker to marker distance for an indoor mobile 

robot (adapted from [21]) 

2.4.1 Determine Characteristics 

At this stage, the building attributes are known and 

the robotic platform was chosen. This section describes 

the selection process for different marker characteristics. 

Type, Size, and Library Size 

One of the significant factors that drive the selection 

of the marker type and size is the error tolerance range 

and the type of pose requirements for the intended 

application based on the identified objectives. Several 

different types of markers were developed and studied by 

researchers such as planar markers, 2D bar codes, 

ARToolKit, BinARyID, AprilTags, ArUco, and 

ChiliTags [18,20,36,37]. Some of these markers are 

shown in Figure 5. Based on the accuracy, detection, and 

library sizes, ArUco and AprilTags are currently the best 

for marker detection [18,30]. 

The marker library (or dictionary) size is the number 

of unique markers available in chosen given marker type. 

For example, AprilTags have more than 4,000 unique 

codes, whereas ARTags have about 2,000 [20]. Therefore, 

it is important to check for the size of the library for the 

chosen marker to ensure that it meets the corresponding 

application before proceeding further (Figure 6). That is, 

estimate the number of unique markers required for the 

type of application and compare it with the available 

marker size. For example, in the monitoring example, the 

number of unique markers is approximately equal to the 
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number of distinct notable locations (e.g., in front of a 

room, end of the corridors, and elevators) along with 

other possible places where data needs to be collected 

inside the building.  

2D Bar Code ARToolKit AprilTag ArUco

 

Figure 5. Different types of markers 
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Figure 6. Sub process to determine marker 

characteristics  

In addition, some of the built environment attributes 

such as surface geometry can influence the marker type 

and size selection. For example, if the built environment 

does not have planar surfaces, then larger size planar 

markers cannot be used because of field-of-view issues 

in the detection of the markers. In the ambient data 

collection example, the facility type is buildings with 

mostly planar surfaces, limited number of locations, and 

require relative 3D pose requirements. Thus, it is 

reasonable to assume that AprilTags are suitable because 

they are planar markers, have a decent library size, and 

can be used for determining 3D relative pose [20].   

Placement 

Different marker placement techniques such as wall 

mounted, ceiling mounted, and floor mounted have been 

explored for built environment settings [21,38,39]. 

However, it has to be noted that each of these methods 

has their own advantages and disadvantages depending 

on the built environment attributes such as ceiling heights, 

occlusions, and occupant actions such as occupant 

movement.  

Floor mounted markers have shown promising results 

in a structured industrial/warehouse setting where Kiva 

robots manage the entire storage area of the warehouse 

[39]. Horan et al. [40] used a tape-based path sensing 

method for mobile indoor robot navigation. A similar 

study was performed by the National Institute of 

Standards and Technology (NIST), in which additional 

boundary markers were introduced along with the tape 

line [38]. However, the aforementioned floor based 

marker mounting techniques would suffer from frequent 

wear and tear in an unstructured building environment 

with frequent occupant movement. Ceiling mounted 

marker-based techniques were explored in warehouses as 

an alternative to the laser triangulation method [38]. 

However, in the context of ambient data collection, 

Mantha et al. [21] suggested that the ceiling heights 

(especially near the atrium areas) might have a significant 

effect on the pose estimation of the robot. Hence a wall 

mounted technique is ideal in this scenario or a 

combination of wall and ceiling mounted if multiple 

cameras placed on the robot. 

2.4.2 Marker Detection 

The immediate next step after selecting the marker 

characteristics is to develop a corresponding marker 

detection algorithm. In general terms, the marker 

detection algorithm works as follows. First, images are 

captured at a very high rate and are analyzed for the 

presence of a marker. This process is called segmenting. 

Second, the computer decodes the information from the 

markers in the form of 1s and 0s and determines the 

unique identification of the marker by cross-referencing 

(matching) with the library of markers. Further details 

regarding the detection algorithm can be found in [14,18].   

Two of the important factors to be considered in the 

marker detection are false positive and false negative 

rates. False positive rate implies the rate of falsely 

reporting the existence of a marker in the captured image 

when there is no marker present in reality. On the 

contrary, false negative implies that there is a marker 

present in the image but the algorithm does not detect the 

maker. It is particularly important to check these rates 

before finalizing the marker type and size. Though the 

comparison of rates sometimes depends on the library 

size, an acceptable rate can be anything less than 0.1% 

[20,42]. If these rates are not acceptable, it is 

recommended to alter the aforementioned categories 

until desired results are obtained.  

2.4.3 Estimate Threshold Distance 

At this stage, the robot’s camera can detect markers 

(landmarks), localize itself in the built environment, and 

navigate based on the relative pose. Since there will be 

errors accumulated along the navigational path as 

discussed previously (for e.g., as shown in Figure 4), it is 

necessary to place the markers at strategic locations to 

rectify the errors and ensure the robot reaches its next 

intended destination without drifting too much (e.g., 

colliding with the wall as shown in Figure 4). So, in 

addition to placing markers at the locations of interest, 

additional markers need to be placed along the way.  

The objective of this specific task is to determine the 

threshold distance (dth) between any two successive 

markers. That is, determine the maximum distance 
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between two consecutive markers along the navigational 

path of the robot. This is a result of the maximum 

allowable drift of the robot and hence a direct measure of 

the camera marker distance and drift accumulation 

pattern of the robot. To calculate the threshold distance, 

several robot runs should be performed to estimate the 

distance the robot will travel with an allowable drift (less 

than or equal to the maximum possible drift). The 

threshold distance is the minimum of these distances 

travelled for that particular case. Figure 7 shows the 

representative flowchart of the sub-process estimate 

threshold distance. This is subject to change depending 

on different factors such as flooring type (e.g. wheeled 

robot) and payload (e.g. drones). It has to be noted that 

the density of the markers and threshold marker to 

marker distance are inversely proportional. The density 

of the markers is basically the number of markers per area 

(e..g., m2) or length (e.g., running meter). So, higher the 

threshold distance, lesser the density.  
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Figure 7. Sub process to estimate threshold 

distance 

If 𝑑𝑡ℎ needs to be optimized, then the following 

modifications to the existing system such as a) sensors 

(on robot), b) markers, and c) platform (robot) can be 

explored. For example, multiple cameras (e.g. pointing in 

different directions as shown in [43]) instead of a single 

camera can be used to overcome occlusions and avoid 

more frequent placement of markers. 3D markers (i.e., 

multiple planar markers in the shape of a book used as a 

benchmark marker in [43]) can also be explored to 

improve visibility, optimize pose error, and subsequently 

optimize threshold distance.  Further to that, multiple 

small markers instead of a single big marker can also be 

used to achieve the same. Finally, platform changes (e.g., 

other wheel types) can also be explored to optimize the 

error accumulation and hence 𝑑𝑡ℎ.  

3 Conclusions and Future Work 

A generalized framework to design a reliable fiducial 

marker network for autonomous indoor robotic 

navigation is proposed. The framework is general and 

can be applied to different robotic platforms operating in 

the built environment. Four key roles affecting the design 

process such as facility manager, built environment, 

robot, and markers are identified. The corresponding 

tasks and actions by these key roles that influence the 

marker network design characteristics such as marker 

type, size, library size, environmental attributes, 

occupant actions, robotic platform, camera marker 

configurations, threshold marker to marker distance are 

established and described in detail. In addition, four 

process flow diagrams are proposed that describe a step 

by step procedure of the proposed theoretical framework. 

The feasibility of the proposed framework is explained 

with the help of a real-world built environment example. 

That is by relating each of the integral task elements in 

the framework with an autonomous mobile robotic data 

collection case study. Future work aims to design two 

different marker network systems using AprilTags and 

ArUco for autonomous navigation of a specific robotic 

platform (e.g. Turtlebot3) in a real-world setting. The 

objective is to compare and analyze different design and 

performance factors such as threshold distance, marker 

density, error accumulation, optimal camera and marker 

configurations. Results of this study are generally 

applicable to any indoor robot, building type (e.g., office, 

retail), and application (e.g., environmental data 

collection). Other potential applications include 

construction progress monitoring, on-site worker safety 

identification, and real-time inventory management.      
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