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Abstract – 

Various image-based building object recognition 

approaches have been developed to create as-is 

Building Information Models (BIMs) of existing 

buildings. However, existing approaches generally 

rely on human-designed features to automatically or 

semi-automatically recognize building objects, which 

makes them sensitive to input images and difficult to 

extend to new building objects. Furthermore, when 

constructing object geometries, most of these 

approaches are limited to rectangular or pre-defined 

surface shapes. To address these limitations, this 

study presents a human-designed features-free, 

shape constraints-free and fully automatic approach 

to construct as-is BIM objects from images of a 

building. This approach adapts Mask R-CNN, a 

deep convolutional neural network, to automatically 

recognize and segment building objects with 

arbitrary shapes (i.e., surface boundary shapes) 

from images. The segmented objects, characterized 

by object types and pixel masks, are further 

geometrically fitted to construct surface geometries. 

Finally, the constructed building objects are defined 

in the Industry Foundation Classes (IFC) data 

format. Three types of building objects (i.e., walls, 

doors, and lifts) are used in this study. Total 430 

images containing these objects collected from the 

interiors of 4 university buildings are used to train 

and test the Mask R-CNN model. The test results 

show that the trained model is accurate and robust 

to recognize and segment all the three types of 

building objects. Furthermore, the feasibility of the 

proposed approach is preliminarily validated by 

successfully extracting IFC building objects from an 

image.  
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1 Introduction 

As-is building information models (BIMs) are 

characterized by containing up-to-date building 

information that can be used to support effective 

operations and maintenance of existing buildings [1, 2]. 

In the current practice, creating such a BIM remains a 
laborious, time-consuming, and costly process [1, 3]. 

Recent studies have focused on developing automatic 

approaches to create as-is BIMs. Although considerable 

progress has been made by exploring approaches that 

consume 3D point clouds [4], image-based modelling 

approaches have received increasing attentions. 

Compared to point clouds-based approaches that usually 

rely on a laser scanner to collect the data, image-based 

approaches have significant advantages in the 

conveniences, efficiency and cost of as-is data 

collection [1, 5].  
Image-based as-is BIM creation generally consists 

of four steps [1, 6, 7]: (1) data collection, to capture 

images of a building and/or corresponding “location” 

data; (2) object recognition and construction, to 

recognize building objects and extract their geometries 

from the images; (3) geometry merging, to align 

constructed building objects in a common coordinate 

system; and (4) semantic enrichment and as-is BIM 

generation, to add required semantic information and 

save the enriched model in a specific data format (e.g., 

IFC or gbXML). Among these steps, the second step 

plays a foremost and challenging role. Most of existing 
approaches in this step rely on carefully hand-crafted 

features to recognize building objects. The commonly 

used features include colors [8], textures [8], edges [9], 

shapes [8, 10, 11], and so on. Unfortunately, these 

appearance-related features could vary under different 

environments (e.g., lighting conditions, and camera 

positions and poses) and/or be affected by uninterested 

objects (e.g., decorations and small devices that 

commonly exist in building interiors) in the images. 

Thus, these approaches are often sensitive to input 

images and usually require a manual pre-processing to 
remove noises from the input images or make the 

features required in downstream detection processes to 

be more easily extractable. Furthermore, for every new 

building object, corresponding detection features need 

to be additionally designed, which largely limits the 
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scalability of these approaches. In addition, when 

constructing object geometries, most of these 

approaches are limited to rectangular and pre-defined 

(e.g., arch) shapes. As an effort to address the first 

limitation, Lu et al. [12] developed a neuro-fuzzy based 

system, which can robustly recognize five types of 

building objects (i.e., beams, columns, windows, doors, 

and walls) in complex environments with few 

appearance features. However, this system is also a 

hand-crafted features – based approach and does not 

address the latter two limitations. Moreover, the system 
is semi-automatic. To recognize objects in an image, 

considerable manual efforts are required, including 

drawing the ground line and the ceiling line first and 

then orderly clicking the corners of the target objects to 

be recognized. 

To address the aforementioned limitations, this study 

aims to develop a fully automated (i.e., without manual 

pre-processing of input images and human intervention 

in the algorithmic process), scalable (i.e., human-

designed features-free), and shape constraints-free 

approach to construct as-is IFC BIM objects from 

digital images of existing buildings. This approach is 
based on Mask R-CNN [13], a deep neural network, to 

recognize and segment building object instances from 

images. In the remainder of this paper, the principles of 

Mask R-CNN are introduced first. Then the proposed 

approach is explained. Next, the implementation of the 

approach as well as a simple experiment is detailed, 

followed by the conclusion and discussion of future 

work. 

2 Mask R-CNN for Instance 

Segmentation  

In the computer vision community, instance 

segmentation refers to detect all interested objects in a 

given image while also precisely segmenting each 
instance [13]. It combines two classical computer vision 

tasks [14]: object detection, which aims to detect 

interested object instances and return their spatial 

locations (e.g., via a bounding box) with their category 

labels; and semantic segmentation, which aims to 

classify each pixel into a predefined object category list 

without differentiating object instances. 

In the past several years, deep learning techniques 

have driven significant advances in various computer 

vision tasks including instance segmentation [14]. 

Compared to conventional recognition models that 

consume human-designed features, deep neural 
networks are powerful as they automatically learn 

important features from training data themselves [15]. 

Among various types of deep neural networks, Mask R-

CNN surpassed prior state-of-the-art instance 

segmentation results [13]. It was developed based on 

another two powerful baseline deep neural frameworks, 

Faster R-CNN for object detection [16] and Fully 

Convolutional Network (FCN) for semantic 

segmentation [17], respectively. Figure 1 shows a high-

level Mask R-CNN architecture. 

 

Figure 1. High-level Mask R-CNN architecture 

based on He et al. [13] and Ren et al. [17]. 

The Mask R-CNN architecture consists of two 

connected modules: a backbone network and a head 

network. The convolutional backbone network is used 

to extract feature representations from an input image. 

Then the produced feature maps are fed to the head 

network for succeeding three parallel tasks, namely 

object classification, bounding box regression and 
instance mask prediction. According to He et al. [13], 

the backbone of Mask R-CNN can achieve excellent 

gains in both accuracy and speed by combining ResNet 

[18] and Feature Pyramid Network (FPN) [19]. For the 

head network, Mask R-CNN was mainly designed by 

extending the Faster R-CNN head (see the blocks with 

grey background in Figure 1). The Faster R-CNN head 

for object detection includes two stages. In the first 

stage, a Region Proposal Network (RPN) is 

implemented on top of feature maps produced by the 

backbone network to propose candidate object bounding 
boxes (i.e. Region of Interests (RoIs)). In the second 

stage, high-level features are extracted from each RoI, 

and then object classification and bounding-box 

regression are performed. In this stage, Mask R-CNN 

adds a mask prediction branch, which is a small FCN on 

top of a feature map, and is parallel with existing 

classification and bounding box regression branches. 
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In this study, Mask R-CNN is adapted to achieve a 

fully automatic building object segmentation from 

images of buildings. Due to the automatic feature 

learning ability, Mask R-CNN based building object 

recognition is expected to be robust to various and 

complex environmental conditions, and to be scalable to 

customized building object types. Furthermore, Mask R-

CNN allows predicting pixel-accurate masks of objects 

in images, which provides the potential of constructing 

building objects with arbitrary-shape surfaces. 

3 The Proposed Approach 

The proposed approach aims to automatically extract 

IFC building objects from images of existing buildings 

to support as-is BIM construction. It consists of three 

modules (see Figure 2): building objects recognition and 

segmentation, building object geometry construction, 

and IFC BIM object generation.  

 

Figure 2. The proposed approach 

3.1 Module 1: Building Object Recognition 

and Segmentation 

This module takes building images as an input and 

produces a list of object instances segmented from each 
image. Each output instance consists of an object class 

and a mask boundary of the instance in the image. To 

link the pixel dimensions with real-world dimensions 

for object surface construction in the next module, a 

ruler with a known length (e.g., 1 meter) is used as a 

reference object in each image. Specifically, this 

module contains three successive steps: building image 

collection and labelling (Section 3.1.1), Mask R-CNN 

model training (Section 3.1.2), and building object 

instance segmentation (Section 3.1.3). 

3.1.1 Building Image Collection and Labelling 

Building images (most images, if not all of them, 

should contain the reference ruler) are collected and 

labeled to fit the Mask R-CNN model for building 
object segmentation. To ensure the generalization and 

the robustness of the model, images of building objects 

in diverse environmental conditions (e.g., building 

facades and building interiors, various lighting 

conditions, and spaces with various usages) need to be 

considered. Images can be conveniently collected by 

using handheld digital cameras or smartphones. For 

each image, all the building objects and the ruler (if 

present) need to be manually annotated by outlining 

their masks and adding corresponding class tags. In this 

study, images are annotated by the “VGG Image 

Annotator” web tool [20].  

3.1.2 Mask R-CNN Model Training and 

Evaluation 

The whole labeled image dataset is randomly split 

into the following three subsets: a training subset, a 

validation subset, and a test subset. The Mask R-CNN 

model is trained based on the image – annotation pairs 

in the training subset. The goal of the training is to find 

optimal weight parameters of Mask R-CNN that can 

map the training images to corresponding annotations 

with minimal loss. According to He et al. [13], the loss 

function of Mask R-CNN is defined as a multi-task loss 
(L) which refers to the sum of the classification loss 

(𝐿𝑐𝑙𝑠), the bounding-box loss (𝐿𝑏𝑜𝑥), and the mask loss 

( 𝐿𝑚𝑎𝑠𝑘 ). Details of 𝐿𝑐𝑙𝑠  and 𝐿𝑏𝑜𝑥  can be found in 

Girshick [21] and details of 𝐿𝑚𝑎𝑠𝑘  in He et al. [13]. The 

validation subset is used to inspect the training process 

to minimize overfitting. Generally, various training 

strategies involving the configurations of 

hyperparameters need to be implemented to obtain an 

optimal model. For a trained model (i.e., with minimal 

training loss on the premise of minimal overfitting) 
obtained under a specific training strategy, it is further 

evaluated with the test subset. The model that can 

accurately and robustly segment building objects and 

the ruler in the test subset is identified and used in the 

downstream processes.  

3.1.3 Building Object Instance Segmentation 

Once the Mask R-CNN model is well trained, it can 

perform the building object segmentation on input 
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images. Although the model could segment building 

objects captured in various camera poses, the input 

images are required to be captured right in front of the 

target building objects to construct their surface 

geometries as accurate as possible in Module 2. For the 

same reason, each input image should contain a well-

placed (i.e., vertically or horizontally) ruler (the same 

ruler used in the training process). By using the scikit-

image package (http://scikit-image.org/), the boundary 

of the predicted mask of each segmented object instance 

is extracted as a polygon consisting of pixel points in 

image coordinates. 

3.2 Module 2: Building Object Geometry 

Construction 

This module takes the pixel-level mask polygons of 

objects generated from Module 1 as an input, and 

produces the surface geometries of objects in two steps: 

shape extraction (Section 3.2.1) and coordinate 

transformation (Section 3.2.2). 

3.2.1 Shape Extraction 

The pixel-level mask polygon of an object is in great 

detail in terms of shape representation. This step 

simplifies the shape representation by detecting corner 

pixels, and then constructing boundary edges (see the 

example in Figure 3).  

 

Figure 3. Object shape extraction from a 

segmented mask 

A corner pixel refers to the pixel shared by two 

adjacent edges to be constructed. Corner pixels are 
detected by the following procedure. First, for any two 

adjacent pixels in a mask polygon, the direction vector 

from one pixel to the other is computed. Second, the 

angle between two adjacent direction vectors is 

calculated. Each angle involves a group of three 

successive pixels. When an angle is larger than a pre-set 

threshold (e.g., 10 degrees), the corresponding second 

pixel is recognized as a corner pixel (see CP1, CP2, CP3, 

and CP4 in Figure 3(a)). Once all the corner pixels are 

detected, an edge is constructed by fitting two adjacent 

corner pixels and other pixels between the two corner 

pixels with a line segment or a circular arc. These two 

geometric primitives are used in this study is because 

they are common in representing building object shapes 

and easy to be processed. As a result, the object shape 

can be extracted and approximately represented by the 

constructed edges. 

3.2.2 Coordinate Transformation 

This step transforms the extracted object shapes 

represented in an image coordinate system (ICS) into a 

world coordinate system (WCS), which is used to define 

the objects’ geometries with real dimensions. In each 
image, objects (e.g., a wall and its hosting openings) on 

a common plane are assigned with a common WCS. 

The WCS of an object is set up by taking the lower left 

point as the origin and keeping x-axis and y-axis of the 

ICS (see Figure 3 (b)). In this manner, the 

transformation only involves a translation. To calculate 

the real dimensions of building objects, the segmented 

ruler with a known length (i.e., 1m) is used to calculate 

the pixel dimension by: 

 

𝑑𝑝 =
1

√(𝑥𝑟_𝐶𝑃1−𝑥𝑟_𝐶𝑃2)
2

+(𝑦𝑟_𝐶𝑃1−𝑦𝑟_𝐶𝑃2)
22
          (1) 

 

Where (𝑥𝑟_𝐶𝑃1, 𝑦𝑟_𝐶𝑃1) and (𝑥𝑟_𝐶𝑃2, 𝑦𝑟_𝐶𝑃2) refers to 

the image coordinates of two endpoint pixels of a long 

edge of the segmented ruler instance, respectively. 

Then for any P ( 𝑥𝑖𝑚𝑎𝑔 , 𝑦𝑖𝑚𝑎𝑔) , its world 

coordinates (𝑥𝑤𝑜𝑟𝑙𝑑 , 𝑦𝑤𝑜𝑟𝑙𝑑) can be computed by  

 

[
𝑥𝑤𝑜𝑟𝑙𝑑

𝑦𝑤𝑜𝑟𝑙𝑑
] = 𝑑𝑝 × [

𝑥𝑖𝑚𝑎𝑔𝑒 − 𝑥𝑜_𝑖𝑚𝑎𝑔𝑒

𝑦𝑖𝑚𝑎𝑔𝑒 − 𝑦𝑜_𝑖𝑚𝑎𝑔𝑒
]          (2) 

 

Where (𝑥𝑜𝑖𝑚𝑎𝑔
, 𝑦𝑜_𝑖𝑚𝑎𝑔)  refers to the image 

coordinates of the origin of the world coordinate system. 

Since each extracted shape is defined by a 

combination of line segments and/or circular arcs, the 

transformation of a shape essentially refers to transform 
all relevant geometric primitives into the corresponding 

WCS. For a line segment, its two endpoints are 

transformed via Equation (2). For a circular arc defined 

by a center, a radius, two trimming points and an arc 

direction, the center and the two trimming points need 

to be transformed via Equation (2). 

3.3 Module 3: IFC BIM Object Generation 

This module defines the constructed building objects 

as IFC objects. For each building object, only the visible 
sections of surfaces (i.e., exposed to a space or the 

outdoors) are constructed. Thus, the IFC concept of 

space boundary (SB) (i.e., IfcRelSpaceBoundary) [22], 

which defines the surface partition of a building object 

that bounds a space or contacts outdoors, is proper to 
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store the constructed information. Figure 4 shows the 

IFC entities and data structure used to define a SB in the 

IFC4 specification. To be more specific, each building 

object is defined by an IfcRelSpaceBoundary instance. 

To store the object type information, this instance 

references a building element instance that matches the 

type via the attribute “RelatedBuildingElement”. For 

example, for a wall object, an IfcWallStandardCase 

instance is created and linked to the 

IfcRelSpaceBoundary instance via that attribute. The 

object surface geometry is defined by the 
IfcRelSpaceBoundary instance via the attribute 

“ConnectionGeometry” (see Figure 4). It is noteworthy 

that the created IFC SB instances do not constitute a 

valid IFC model as other IFC instances (e.g., IfcProject, 

IfcSite, IfcBuilding and IfcSpace) required by the IFC4 

specification are not yet included. All the missing 

instances can be automatically inferred and added by 

using the semantic enrichment approach developed by 

Ying et al. [6]. 

 

Figure 4. Instantiation diagram to define a space 

boundary in IFC4 schema 

4 Implementation and Experiment 

A prototype system implementing the proposed 

approach was developed in multiple programing 

languages. Module 1 was implemented in Python. 

Module 2 and Module 3 were implemented in C#. In the 

rest parts of this section, the implementation details of 

Mask R-CNN for building object segmentation are first 

elaborated and then a preliminary experiment of the 

entire approach is presented. 

4.1 Mask R-CNN Model Implementation 

4.1.1 Dataset Preparation 

The authors created a 2D image dataset to train a 

Mask R-CNN model for building object segmentation. 

The dataset includes 430 images from interiors of 4 

multifunctional buildings in the University of Hong 

Kong with significantly different decoration designs 

(see some examples in Figure 5). All the images were 

captured by a smartphone and their sizes are 

3024×4032. The dataset also includes the ground truth 

annotation of each building object contained in each 

image. The authors randomly split the annotated dataset 

into three sub datasets: 80% (344 images) for training, 

10% (43 images) for validation, and 10% (43 images) 

for testing. Table 1 shows the number of building object 
instances in each sub dataset. In this test, only three 

types of building objects (i.e. walls, doors and lifts) and 

a reference ruler were considered. Other objects such as 

columns, beams and windows will be taken into account 

later. 

 

Figure 5. Varieties of collected building interior 

images in the dataset 

Table 1. The number of building objects in each dataset 

Dataset Wall Door Lift Ruler 

Training dataset 599 443 34 99 

Validation dataset 68 49 6 11 

Test dataset 73 53 2 12 
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Whole dataset 740 545 42 122 

4.1.2 Training  

The authors implemented the Mask R-CNN model 

using an open-source package built on Keras and 

Tensorflow developed by Matterport [23]. ResNet-101 

+ FPN are used as the backbone network. Parameters of 

the sub models of the Mask R-CNN (e.g., ResNet-101, 

FPN, RPN, FCN etc.) are left in default settings in 

Matterport’s implementation, which basically follows 

the suggestions in He et al. [13]. It is noteworthy that all 

the input images (3024×4032) are automatically resized 

as 1024×1024 for training in the Matterport’s 
implementation. Instead of training the model from 

scratch, the authors used the weights of a pre-trained 

Mask R-CNN model on MS COCO 

(http://cocodataset.org/#home) to initialize the model. In 

addition, to make the resulting model more robust, a set 

of image argumentation operations (e.g., horizontal 

flipping and Gaussian blurring) were randomly used to 

introduce variety in the training images. The model was 

trained on a desktop with 61GB RAM and a NVIDIA 

Tesla K80 GPU with 12 GB memory. The training 

process consists of two stages. In the first stage, only the 

head layers that do not use pre-trained weights from MS 
COCO are trained to adapt the building object 

segmentation task. In the second stage, all layers are 

trained to fine-tune the weights to achieve the best 

performance. The authors set the batch size of 2, the 

learning momentum of 0.9, and the weight decay of 

0.0001 for both training stages, and the learning rate of 

0.001 for the first stage and the learning rate of 0.0001 

for the second stage. The authors adopted an early 

stopping strategy to minimize overfitting with the 

validation dataset. The model was trained with 60 

epochs to record the full learning curve. Finally, the 
model trained at the 50th epoch was selected as the 

model began to get overfitting after 50 epochs (i.e., the 

validation loss began to increase). 

4.1.3 Assessment 

The performance of the trained model was evaluated 

with the hold-out test dataset from two aspects: (1) the 

object classification accuracy, which aimed to evaluate 

the performance of the model in terms of building 

object and ruler recognition; and (2) the object 

segmentation accuracy, which aimed to evaluate the 

performance of the model in terms of the instance mask 

generation. A positive classification of an instance is 
acknowledged if the following two criteria are satisfied: 

(1) the predicted mask of the instance has an overlap 

with the ground truth; and (2) the predicted class of the 

instance is correct. Table 2 shows the overall 

classification accuracy and the object-level 

classification accuracy with precision and recall. The 

results show that the trained model can accurately and 

robustly recognize the building objects and the 

reference ruler. 

Table 2. Classification accuracy of the trained model on 

the test dataset 

  P N Precision Recall 

Wall T  72 0 
97.3% 100% 

F 2 0 

Door T  48 0 
100% 90.6% 

F 0 5 

Lift T 2 0 
100% 100% 

F 0 0 

Ruler T 11 0 
100% 91.7% 

F 0 1 

Overall T 133 0 
98.5% 95.7% 

F 2 6 

Note: P – Positive; N – Negative; T – True; F – False; 

Precision = TP / (TP + FP); Recall = TP / (TP + FN). 

For the segmentation accuracy evaluation, the 
authors use the metric called mAP (the mean of average 

precision values of all classes), which is commonly used 

in computer vision community to evaluate the 

performance of an object detector. Given that the 

quality of a predicted mask would have a significant 

effect on corresponding surface construction, the 

authors set a large threshold value - 0.75 - of IoU 

(Intersection over Union: the ratio between the 

intersection and the union of the predicted mask and the 

ground truth mask of an instance) for the mAP 

computation. The mAP IoU = 0.75 of the trained model on 
the test dataset reaches 0.912, which indicates that the 

trained model can generate effective masks. 

4.2 Experiment 

A new image (i.e., not in the dataset used for the 

Mask R-CNN model training, validation and testing) 

taken in an interior space at night, as shown in Figure 

6(a), is used to validate the feasibility of the proposed 

approach. The image mainly contains three building 

objects, a reference ruler, as well as a noisy object – the 

emergency exit sign. The three building objects (from 
left to right in Figure 6 (a)) includes a wall showing a 

small surface region, a wall showing the entire surface, 

and a door showing the entire surface. The latter two are 

the target building objects to be constructed. Figure 6(b) 

– (f) shows the whole flow of generating interested IFC 

objects from the image by the proposed approach. In 

Figure 6 (b), all three building objects and the ruler are 

correctly segmented by the trained Mask R-CNN model. 

Then the two target building objects are further 

distinguished from the segmented wall instance with a 

partial surface region, and proceed to the downstream 
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steps with the ruler to construct surface geometries (see 

Figure 6(c) – (e)). Finally, two corresponding IFC 

objects are successfully generated (see Figure 6(f)).  

Regarding the geometry construction accuracy in the 

result, the areas of the constructed wall surface and door 

surface are 8.69 𝑚2  and 4.78 𝑚2  respectively. 

Compared to the real values (measured with a laser 

range finder), 7.97 𝑚2 for the wall and 4.184 𝑚2 for the 

door, the errors are +9% and +13.97% accordingly. As 

seen in Figure 6, these errors are mainly caused from 

the imperfection in the reference ruler placement and its 

segmentation (Figure 6(b)) as well as the process of 

determining building object shapes from the extracted 

mask boundaries (from Figure 6(c) to Figure 6(d)). In 

future, the Mask R-CNN model needs to be improved to 

generate more accurate masks for segmented objects. 

 

Figure 6. The flow of processing an image by the 

proposed approach 

5 Conclusion and Future Work 

In this study, a fully automatic approach is presented 

to construct IFC building objects from digital images of 

existing buildings. Unlike previous image-based 

approaches that rely on human-designed features to 

recognize building objects, the proposed approach 

automatically learns important features from training 

data themselves to segment building object instances. 

This makes the approach to be robust in various 

building indoor conditions, and to be efficiently scalable 

to customized building object types. Furthermore, the 

approach is able to construct building objects with 

complex surface shapes. The proposed approach was 

implemented with three modules: Mask R-CNN based 
building object recognition and segmentation, building 

object geometry construction and IFC BIM object 

generation. 430 images containing three types of 

building objects (i.e., walls, doors, and lifts) were 

collected and used to train and test the Mask R-CNN 

model. The test results show that the trained Mask R-

CNN model can accurately and robustly recognize the 

three types of building objects and the reference ruler 

(with average precision of 98.5% and average recall of 

95.7%), and can generate effective masks for the 

recognized building object and ruler instances (with 

mAP IoU = 0.75 of 0.912). Based on the trained Mask R-
CNN model, the feasibility of the entire approach was 

examined by successfully extracting IFC BIM objects 

from an image, while the geometry construction 

accuracy still has room for further improvement. It is 

expected that the approach can be useful for researchers 

and practitioners to develop semantically rich as-is 

BIMs of existing buildings. 

In future, the approach will be further improved in 

the following aspects. First, the Mask R-CNN model 

will be improved to generate more accurate masks of 

segmented objects to support accurate surface geometry 
construction. Second, the size of the image dataset will 

be increased with more images from different 

environments (e.g., building exteriors) and different 

building types (e.g., residential buildings and 

commercial buildings) to improve the performance and 

enhance the generalization of the Mask R-CNN model. 

Other common building objects such as windows, 

beams, columns, and curtain walls will be included. 

Third, more flexible and accurate dimension 

measurement method (e.g., photogrammetry technique) 

will be introduced to address the constraint on input 

image capturing (i.e., taking images right in front of 
target building objects). Finally, the performance of the 

proposed approach will be further examined by more 

case studies. 
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