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Abstract 

Recent advances in the development of Internet-
of-Things (IoT) devices have enabled researchers to 
apply such on building automation systems (BAS). 
Especially in existing BAS, one big challenge is the 
diversity of communication methods. In such systems, 
gateways are required to connect various devices. 
However, while there are very few IoT-gateways able 
to interface a wide variety of common sensors and 
actuators, those often implicate high costs, entailing 
inacceptable investments for larger field tests. 

To overcome this issue, we prototyped a low-cost 
plug-and-play and freely programmable IoT-gateway, 
which supports common analog signal interfaces like 
0-10 V or 0-20 mA current loop, and digital ones via 
RS-485 serial communication. The gateway is based 
on the ESP32-PICO-KIT development board, a fully 
functional board with a microcontroller and 
embedded WiFi. Accordingly, we enhanced this 
board by adding custom-designed peripherals and 
developing the required firmware for acquiring 
sensor data and driving actuators. 

In order to validate the functionality of the 
interfaces, we conducted an experimental test series. 
The experiments comprise measurements of inputs 
and outputs for either the IoT-gateway or the 
connected sensors and actuators. The results show an 
average relative error for analog interfaces of 7 %, 
hence being sufficient for building automation 
applications. The RS-485 was successfully tested with 
a Modbus RTU slave device. 

Therefore, the prototyped IoT-gateway is directly 
applicable to both analog and Modbus-based sensors 
and actuators, shows acceptable errors in analog 
readings and can be manufactured at a relatively low 
price, facilitating test benches containing several 
plug-and-play gateways. 
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1 Introduction 
In Germany, potential energy savings due to building 

automation system (BAS) improvements estimate 
roughly 20 % [1]. Additionally, in existing non-
residential buildings, wireless IoT devices constitute a 
promising resource to enable BAS without causing high 
expenses due to elaborate cable installations. However, 
the beneficial installation of radio-based devices only 
applies if the configuration effort is not as high as in 
conventional systems on the other hand. Furthermore, 
local wired automation systems are well-known and 
widely adopted due to their reliability. However, there is 
no comprehensive study on a real BAS yet, which is 
completely operated via IoT devices. Hence, our research 
is focussed on the stability and properties of such systems 
utilizing several IoT devices. 

When investigating IoT applications in BAS, the 
most cost-efficient approach is to use an existing 
infrastructure. Instead of exchanging sensors and 
actuators, gateways can be used. With BAS often 
comprising sensors and actuators with various 
communication interfaces, there are only few IoT-
gateways directly applicable to all these devices. Some 
of the most popular communication interfaces used are 0-
10 V and 0-20 mA analog signal transmission and bus-
based communication e.g. via Ethernet, BACnet, LON, 
KNX and Modbus [2]. Some examples for multi-
communication gateways are the BASremote at a price 
of 350 € [3], the EWIO-9180-M at 425 € [4], the UCM-
316 at 325 € [5] and the WISE-4470-S250 at 400 € [6]. 
All these examples are rather edge controllers than 
decentral plug-and-play IoT-gateways. These edge 
controllers imply high costs when used for each sensor 
and actuator individually or limit one to research 
activities on decentralized summarized data processing. 
By contrast, already available open-source platforms like 
Controllino, PiXtend and UniPi Neuron, just to name a 
few, prove to be still expensive or not versatile enough 
for single transducer interfacing. 

We thus identified the need to design an IoT-gateway 
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that features only the necessary characteristics to enable 
IoT on single devices without causing inacceptable costs. 

The rest of this paper is structured as follows: Chapter 
2 starts with the deduction of requirements for the IoT-
gateway, followed by a detailed description of the 
electronic design as well as the software implementation. 
In chapter 3, the conducted test series is described; 
chapter 4 summarizes the validation results and discusses 
the purchase cost. Finally, chapter 5 concludes with a 
summary and future possible improvements. 

2 System requirements and design 
From our experience with designing and operating 

BAS, we define the following properties for the IoT-
gateway as mandatory requirements to allow for an 
accurate operation of BAS. These properties were mainly 
derived by the current technical building equipment, 
which was planned and used by the Institute for Energy 
Efficient Buildings and Indoor Climate for their new test 
hall. 

• Timescale – Due to fluid and thermal inertia, but 
also delay of moving actuators, we suggest a 
physical and interpretation delay of maximum 1 s. 

• Storage – Since the gateway will be connected to a 
wireless or local area network with constant access 
to online database storage systems, a limited 
internal storage capacity is requested for buffering 
purposes. 

• Interfaces – For a start, we focus on analog signals 
and serial communication and thus omit the 
Ethernet-based communication. The gateway shall 
at least support 0-10 V signals, 0-20 mA signals and 
communication over RS-485. 

• Resolution – Actuators such as valve actuators, 
volumetric flow controllers or pumps commonly 
receive their values in percent. Therefore, the 
analog output should at least resolve integer values 
ranging from 0-100, which represents a resolution 
of at least 7 bit (27 = 128 discrete values). Analog 
inputs are often used to receive signals from 
temperature sensors like resistance temperature 
detectors (RTDs) and negative temperature 
coefficient (NTC) thermistors. Assuming a range of 
140 K, the gateway should at least read for one 
decimal, resulting in a minimum resolution of 11 bit 
(211 = 2048 discrete values). 

• Network connection – The gateway requires a way 
to connect to a local area network or the internet, 
e.g. via WiFi. 

• Time tagging – For some control applications, it is 
necessary to tag each data measurement with a 
synchronized time. Hence, the IoT-gateway should 
offer a chronometric and time-reading possibility. 

• Software development – In order to test different 
configuration setups, local or agent-based control 
strategies, remote service and maintenance 
concepts as well as different security and 
encryption functionalities, the gateway needs to be 
freely programmable. As Python is the most 
frequently used programming language at our 
institute, we require Python language support for 
our gateway. 

• Power supply – The gateway should connect to 
existing sensors and actuators that are often 
supplied with industrial voltage level of 24 Vdc. 

We use the ESP32-PICO-KIT [7] as a base for our 
IoT-gateway. The ESP32-PICO-KIT is a relatively cheap 
system on a chip by Espressif, yet providing solutions to 
several of the defined requirements. A detailed overview 
is presented in Table 1. ESP32-PICO-KIT properties 

Table 1. ESP32-PICO-KIT properties [7] 

Feature/requirement ESP32-PICO-KIT 
Timescale (physical, 
interpretation delay) 

 0.1 ~ 1 s 

Storage 520 KB SRAM 
Interfaces/resolution 12 bit ADC (0-1.1 V), 

8 bit DAC (0-3.3 V), 
UART TTL (serial) 

Network WLAN/Bluetooth 
Time tagging RTC (internal real 

time clock) + NTP 
(network time 

protocol) 
Software Micropython support 

Power 5 Vdc, 3.3 Vdc 

2.1 Electronic Design 
From Table 1, we can derive the required adjustments:  

• Power supply voltage level,  
• 0-10 V reading and writing voltage level,  
• 0-20 mA current to voltage and voltage to current 

conversion and  
• UART to RS-485 conversion. 

2.1.1 Power Conversions 

The IoT-gateway will be connected to 24 Vdc. As the 
ESP32 runs on a nominal power of 5 Vdc, we use a low 
dropout voltage regulator (LDO) to provide the requested 
conversion while being able to supply a current up to 
1.5 A. Due to the 5 V operation, the ESP32 cannot 
provide a voltage output up to 10 V. Therefore, we also 
use a 10 V voltage reference (VREF), which serves as the 
upper reference for the 0-10 V output loop. The 
sensors/actuators and the IoT-gateway share the same 
ground. 
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2.1.2 0-10 V Input 

As shown in Table 1, the ESP32 has a 12 bit ADC 
with an input voltage range of 0-1.1 V. This range has to 
be mapped to a sensor output ranging from 0-10 V. 

 The easiest and most cost-efficient solution to reduce 
voltage to a specific range is a voltage divider circuit (see 
Figure 1). This circuit converts the input signal according 
to Equation (1). Since the ESP32 ADC input impedance 
is not provided by the manufacturer, an operational 
amplifier (OPA) in buffer configuration is used as 
precaution to decouple the voltage divider from the ADC, 
thus avoiding measurement errors due to load effects. 

𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑉𝑉𝑖𝑖𝑖𝑖 ⋅
𝑅𝑅13

𝑅𝑅14 + 𝑅𝑅13
 (1) 

As the ESP32 is a low-cost device, its ADC is not of 
the best quality. It is only assumed to be linear in a range 
of 100 mV to around 950 mV [8]. Therefore, we selected 
the resistors so that input voltages of 0-10 V match ADC 
input voltages of 0-0.91 V. Note, that this reduces the 
effective resolution of originally 12 bit to about 3400 
discrete values, which is still considerably higher than the 
required 11 bit resolution. 

2.1.3 0-20 mA Input 

The 0-20 mA input current loop requires a conversion 
from current to voltage so that the ADC can read its value. 
The easiest solution is to use a single resistor providing a 
voltage following Ohm’s law (see Equation (2)). Again, 
we add a buffer to decouple the load resistor 𝑅𝑅3 from the 
ADC and select the resistor so that the ADC input 
voltages match 0-0.91 V for input currents of 0-20 mA. 

𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐼𝐼𝑖𝑖𝑖𝑖 ⋅ 𝑅𝑅3 (2) 

2.1.4 0-10 V Output 

The DAC of the ESP32 has a maximum output 
voltage of 3.3 V. In order to achieve higher output 
voltages, this voltage has to be amplified. For this 
purpose, we use a rail-to-rail OPA in non-inverting 
amplifier configuration, as shown in Figure 2. By 
adapting the resistor values, the gain, and hence the 
output voltage is adjustable, as long as it is below the 
power supply. The OPA drains a current of just 160 μA, 
allowing to be powered with a high precision voltage 
reference (see Section 2.1.1). Whilst the internal voltage 
supply of the ESP32 is 3.3 V, the DAC may output 
maximum voltages of 3.2 V. Adopting a conservative 
approach, we select the resistors to map the DAC output 
voltage of 0-3.15 V to an output voltage of 0-10.1 V. 
Because this output is used to control actuators, the 
output voltage must exceed 10 V, for instance to ensure 
that the actuator is actually capable of fully closing a 
valve. The resistor values can be derived by Equation (3). 
Regarding the effects on the final resolution, the safety 

margin causes a negligible loss of 12 discrete values. 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 ⋅ �1 +
𝑅𝑅11
𝑅𝑅10

� (3) 

 
Figure 1. Voltage divider circuit of our IoT-
gateway, transfers 0-10 V to 0-0.91 V 

 
Figure 2. Voltage amplifier circuit of our IoT-
gateway, amplifies 0-3.15 V to 0-10.1 V 

 
Figure 3. Current loop driver of our IoT-gateway, 
converts 0-3.15 V to 0-21 mA 

2.1.5 0-20 mA Output 

We realize voltage to current conversion by resorting 
to the XTR117 by Texas Instruments, a commercial 
precision current driver that can be configured both in 
true and live zero configurations at a very low cost. Since 
both the DAC and the XTR117 share the same ground, 
the driving block is isolated from the control block by 
means of an optocoupler. However, since the relation 
between the current flowing in the diode and photo-
generated current in the bipolar junction transistor is non-
linear, the linear control on the former does not result in 
an equally linear control of the latter. The circuit 
illustrated in Figure 3 follows the characteristic described 
in Equation (4), which we derived by measuring the 
driver current for different values of control voltage. 
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𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 = a ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 (4) 

2.1.6 UART TTL to RS-485 Conversion 

The Universal Asynchronous Receiver Transmitter 
(UART) interface is an interface used to transfer serial 
data asynchronously. The asynchronous communication 
does not require a clock signal but rather expects a start 
and an end of a transferred message [9]. On the ESP32, 
the UART runs on 5 V. A further difference is the line 
driver, which converts single ended UART signal to a bi-
directional differential signal resulting in two data lines, 
Data A and Data B. The signals for RS-485 usually range 
between +/- 1.5 V [9]. For the signal conversion, we use 
a commercially available UART to RS-485 converter, 
which also features automatic flow control. Without 
automatic flow control, a digital control signal is required, 
in order to assign one line the for communication, as it is 
not possible to transfer data over both reading and 
transmitting line at the same time. This, in particular, 
complicates timing the communication, hence we 
decided to use a module with automatic flow control. 

2.1.7 Reference Voltage Calibration 

The ADC and DAC lack quality in terms of linearity 
that are mainly due to noise and varying reference 
voltages between different microcontrollers. Hence, we 
perform an automatic ADC and DAC calibration by 
calculating two points used for linear interpolation.  

A reference voltage for the ESP32 is set, emitted and 
redirected to two ADC pins, after the voltage is reduced 
to 1/3 and 2/3 of the reference voltage, respectively. With 
this construction, the ADC is calibrated. Afterwards, the 
DAC redirects its output to an ADC pin, reading the 
provided voltage from the DAC. 

2.1.8 Low-Pass Filter 

Input and output stages are low pass filtered using 
first order RC filters to reduce the noise. The adopted 
bandwidth of 15 Hz is selected to allow all signals in 
timescales down to 1 s without significant delays and 
attenuations. 

2.1.9 Summary 

The ESP32-PICO-KIT is expanded by adding a 
24 Vdc power conversion, 5 circuits for each of the 
individual communication interfaces and a calibration 
circuit. Figure 4 depicts a view of our finished prototype. 
The schematic and Printed Circuit Board (PCB) layout 
can be examined on the publicly available GitHub 
repository [10]. 

 
Figure 4. Assembled IoT-gateway PCB prototype 
from our defined requirements 

2.2 Software Design 
We programmed the firmware in Python code. 

However, the microcontroller could also be programmed 
with other languages like Arduino or C++. The storage 
space on the ESP32 is limited, therefore we use 
Micropython, which is a lean Python implementation and 
was especially developed for microcontrollers [11]. 
Because the basic Micropython firmware does not allow 
for setting a reference voltage, we used the LoBo 
Micropython implementation, that is freely available on 
GitHub [12]. The GitHub page also contains some 
instructions on how to flash the firmware onto the ESP32 
(we use the esptool for flashing the firmware and ampy 
to transfer files over serial connection). Following the 
instructions, the ESP32 accommodates a file system, so 
the software can be written with any Python 
programming environment or plain text editor and be 
transferred onto the ESP32. 

When booting the ESP32 with Micropython firmware, 
two files, boot.py and main.py, are always executed one 
after the other. The following sections explain the 
individual parts of the software in more detail. 

2.2.1 Main.py 

In this file, an instance of the board class is created. 
All functions, which are used for addressing the analog 
signal transmissions and Modbus communication, are 
implemented within the board class. The functions may 
be called from the instance within a Python shell that is 
available on the ESP32 when e.g. connecting via serial 
connection. 

2.2.2 Board.py 

The board.py is the main file for interfacing the 
different communication interfaces and provides the 
corresponding functions. In this file, a class “board” is 
defined. All parameters are stored within the class object. 
The following methods are available: 

• __init__(self): This function is called when creating 
an instance of the board class. Parameters are 
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fetched from the parameters.py and assigned to the 
attributes. In addition, the ADC and DAC pins for 
0-10 V input and output as well as 0-20 mA input 
and output are assigned. After this, a Modbus 
instance is created. Finally, the methods for setting 
a reference voltage and executing the calibration are 
called. 

• set_ESP_referenceVoltage(self): This function sets 
the reference voltage to the predefined pin (in our 
case IO27, see schematic [10]). 

• calibrate(self): This function calls the ADC and 
DAC calibration. 

• calibrate_adc(self): In this function, the ADC 
regression parameters are calculated and slope and 
intercept are returned. 

• calibrate_dac(self): In this function, the ADC 
regression parameters are calculated and slope and 
intercept are returned. 

• Four methods for either ADC or DAC conversions 
between digital and voltage values: This allows an 
incremental and consistent calculation for the 
reading and writing functionalities, but also 
requires to define the ADC and DAC characteristic 
at least once. 

• Four methods for either reading or writing analog 
voltages and currents: The reading and writing 
methods contain the relations described in chapter 
2.1.  

• Modbus-related functions are callable by the 
Modbus instance. 

2.2.3 Parameters.py 

This file contains all predefined parameters. E.g.: 

• Pin numbers 
• Predefined digital and voltage values for calibration 
• Parameters of the relations described in chapter 2.1. 
• Modbus-related parameters: Definition of the 

physical serial port and other specific parameters 
like the baudrate of the connected device, the 
Modbus slave address and register lengths. 

2.2.4 Modbus 

For Modbus, the modules uModbusSerial.py, 
uModbusFunctions.py and uModbusConst.py are 
available. These files are slightly adjusted versions of the 
uModbus package for Micropython [13]. The 
uModbusSerial.py being the main file provides a class 
with standard reading and writing functionalities for 
registers and coils. Our changes mostly concern reading 
the UART interface. 

2.2.5 Summary 

The software implementation features a board class 
that provides the interfacing methods for reading and 

writing analog voltages and currents as well as receiving 
and sending Modbus signals. At current state, no 
automatic sensing or control and logging routines are 
implemented. When booting the ESP32, a “board” 
instance is created. This board instance is used via 
console from serial connection. Modbus-specific 
functions were taken from the Micropython uModbus 
module. Parameters may be accessed and changed in the 
parameters.py module. The complete software 
implementation is available in the GitHub repository [10]. 

3 Test series 
In order to validate the functionality of the interfaces, 

a test series is conducted. For the validation of analog 
reading and writing, we use a test setup consisting of a 
Programmable Logic Controller (PLC) and terminals for 
0-10 V input and output as well as 0-20 mA input and 
output. With these terminals, it is possible to provide 
constant voltages and currents or read those generated by 
the IoT-gateway. We validate the RS-485 interface with 
a Modbus RTU slave device – an electric valve actuator 
[14]. The Modbus protocol works with digital values 
stored in registers and coils; a description of the Modbus 
registers is provided by the manufacturer [15]. Table 2 
provides an overview of the used testing hardware 
components. 

Table 2. Test series hardware 

Tested gateway 
interface 

Testing device 

- CX5130 (PLC) 
0-10 V input EL4008 

0-10 V output EL3008 
0-20 mA input EL4018 

0-20 mA output EL3048 
RS-485 LM24A-MOD 

3.1 Setup 
We investigate the analog reading and writing 

functionality by providing predefined voltages and 
currents with either the PLC terminal or the IoT-gateway 
and measuring the corresponding value on the other side. 
For 0-10 V, we therefore varied the voltage with a step 
width of 0.5 V, for 0-20 mA we used 1.0 mA steps. 
Accordingly, we compared the IoT-gateway’s signal to 
the terminal’s signal. Because of noise, the signal may 
vary at equal conditions. Therefore, we read 1000 
samples and calculate the average value.  

The Modbus communication is validated by simply 
writing a set point to a register, waiting for the actuator 
to move and reading its corresponding actual value 
afterwards. We wrote on register 1 a value of 2500 and 
7500 and read the related value on register 5. Register 1 
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is related to the positional set point, which ranges from 
0-10000, where 10000 corresponds to 100 %. Register 5 
reads the actual position, again ranging from 0-10000. 

3.2 Calibration issues 
With the proposed calibration method, the ADC and 

DAC results show severe deviations from expected. 
However, the problems with noise and accuracy due to 
different reference voltages are known issues to the 
manufacturer of the ESP32, Espressif, that provide in 
their own software development kit and programming 
guide some useful calibration functions that depend on 
the internal reference voltage. 

For chips produced after the beginning of 2018, the 
internal reference voltage is measured and directly fused 
to each chip and hence the calibration can be automated 
easily. Since the chips of our ESP32-PICO-KITs were 
produced in 2017, their reference voltage cannot be read 
directly from the chip. Therefore, in order to use the 
calibration functions provided by Espressif, we measured 
the reference voltage and calculated slope and intercept 
for the linear regression. The calibration functions by 
Espressif lead to results that are more accurate; 
consequently, we use their calibration method over our 
two-point regression. The next section gives an overview 
of the validation results with this calibration applied. 

4 Results and Discussion 
The validation results for 0-10 V input and output are 

summarized in Figure 5, Figure 6 illustrates the 
corresponding results for 0-20 mA input and output. 
Table 3 summarizes the maximum and average 
deviations for the analog communication. 

Even with the calibration functions given by Espressif, 
the results show significant errors for both small voltage 
and current values. On the one hand, the internal ADC 
characteristic typically exhibits a negative offset of 
almost 75 mV that results in the impossibility of reading 
any value below that threshold, i.e. approximately 
750 mV and 1.5 mA for the voltage input interface and 
the current one respectively. On the other hand, the DAC 
characteristic shows an offset of almost 300 mV, thus 
resulting also in this case in a reduced effective range. 

With regard to control purposes, the DAC should 
always be able to apply a zero voltage; besides that, the 
DAC deviations are probably negligible, since, in many 
applications, control algorithms rather rely on differences 
between set and actual values to produce a specific output 
for an actuator, for instance in case of simple 
proportional–integral–derivative (PID) control. On the 
contrary, the ADC readings should be accurate and hence 
improved on the whole range. This, for instance, applies 
in case of cascaded PID control where different single 
sensor errors could add up to significant gain errors. 

However, the minimum range limitation rather affects 
actuator position feedback, as e.g. temperature or 
humidity sensors normally operate far from the minimum 
of the range. Besides that, following the example of 
simple PID control, the sensor data acquisition 
inaccuracy would lead to a different gain, but would not 
change the general behavior. In order to fully evaluate the 
limitations for BAS operation, a detailed study is 
required addressing specific criteria like cyclic 
communication times, packet size, delays et cetera to 
guarantee the system’s controllability. 

At this stage, excluding the error below the 20 % of 
the input/output range, maximum absolute errors are 
0.08 V and 0.16 mA, respectively, which shows that the 
device is usable for operating with standard voltages 2-
10 V and standard currents 4-20 mA for control purposes. 

 
Figure 5. Validation of 0-10 V input and output 

 
Figure 6. Validation of 0-20 mA input and output 

Table 3. Analog relative (er) and absolute (ea) 
maximum, minimum and average errors 

Interface 0-10|2-10 
V in 

0-10|2-10 
V out 

0-20|4-20 
mA in 

0-20|4-20 
mA out 

 [%] [%] [%] [%] 
er,max 49.5|4.19  48.6|10.1 50.0|3.88 7.64|4.32 
er,min 0.42|0.42 0.36|0.36 0.53|0.53  0.77|0.77 
er,avg 4.35|1.45 6.39|2.43 4.29|1.44 2.76|2.32 

 [V] [V] [mA] [mA] 
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ea,max 0.75|0.08  0.29|0.20 1.5|0.16 0.46|0.46 
ea,min  0.04|0.04 0.03|0.03 0.11|0.11 0.08|0.12 
ea,avg 0.11|0.07 0.12|0.09 0.22|0.14 0.21|0.24 

For the Modbus device set point of 2500, we read a 
value of 2501, for 7500 we read 7502 on register 5. 
Modbus is a digital communication, hence not causing 
any deviations. The very small deviations may occur due 
to the accuracy of the actuator position. 

From the validation results, we conclude following 
assertions: 

• Due to varying internal voltages between different 
ESP32 modules, the proposed calibration method 
did not show the desired improvement on the ADC 
and DAC accuracy. A different method should be 
proposed in the future to calibrate the conversions 
between analog and digital values automatically. 

• Within the range of 2-10 V and 4-20 mA, the IoT-
gateway was able to read analog voltages and 
currents at an average error of 1.45 % and 1.44 %, 
respectively. The maximum deviation amounted to 
4.19 %. In the same range, writing of analog 
voltages and currents accounted for average errors 
of 2.43 % and 2.32 %, respectively. The maximum 
deviations for writing amounted to 10.1 %. For 
smaller voltages and currents, the ADC is not able 
to dissolve them. This issue should be addressed in 
the future, since reading the actual value accurately 
is important when calculating a specific output. The 
writing functionality yielded an acceptable 
accuracy. 

• The PLC terminal EL3048 has an input impedance 
of about 85 Ω. The current output loop was tested 
with different loads and showed that a maximum 
load of 250 Ω can be handled. Further research on 
input impedances of BAS devices is necessary to 
assure a general suitability for BAS applications. 

• Communication via RS-485 was tested with a 
Modbus device. The set point register was written 
and the actual value register read with success. Very 
small deviations occurred, probably due to the 
electric motor accuracy. 

• The IoT-gateway transmitted signals within 1 s for 
all tested interfaces. 

The technical requirements are met. However, one 
question remains: How much does this multi-gateway 
cost compared to the commercially available devices? 

4.1 Prices 
With the assumption, that a larger field test would 

require around 50-100 IoT-gateways, we examine the 
prices for all used components. Figure 7 shows the cost 
distribution: except for the RS-485 converter, all 
component prices are fetched from www.mouser.de [16]. 

This diagram shows that the ESP32-PICO-KIT costing 
8.73 € accounts for almost half of the total costs. The 
circuits for 0-10 V in- and output as well as 0-20 mA 
input are equally distributed with costs of about 1 € each, 
the RS-485 module falling little behind with 1.18 €. 
Because of the high precision reference voltage for the 
OPA705, the power supply costs 4.34 € and thus causes 
the second highest costs in total. Since the OPA705 is the 
only part in need of 10 V, this design should be revised 
in order to further reduce the costs. However, this 
component could also help utilizing and improving an 
automated ADC calibration. The current output loop 
yields the fourth highest costs and should be revised as 
well, in order to allow for devices with higher input 
impedances. The total component price is 23.57 €. 

In addition to the components, the PCBs have to be 
produced and all parts have to be assembled. The costs 
for 100 PCBs including assembly and shipping account 
for roughly 400 € corresponding to 4 € per piece. In total, 
the purchasing costs for one IoT-gateway at quantities of 
100 amount to about 28 €. From a vendor’s perspective, 
this price could obviously be reduced by purchasing the 
components in larger amounts or entering special 
contracts with manufacturers. However, aside from 
researching aspects, a single-gateway would probably be 
more suitable for industrial BAS applications. 

 
Figure 7. Cost distribution of the IoT-gateway; 
costs per gateway in € for 100 pieces ordered 

5 Summary and Conclusion 
In this paper, we designed an IoT-gateway for 

research on applications in BAS. From our experience, 
we derived technical requirements for an IoT-gateway in 
BAS applications. More specifically, we defined: 

• Timescales for physical and interpretation delay 
• Storage and resolution requirements 
• Commonly used signal transmission interfaces 
• Software requirements 
• Network and time-tagging requirements 

http://www.mouser.de/
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• Common industrial power supply in BAS 

Utilizing the ESP32-PICO-KIT as a base module 
satisfies several of the defined requirements such as 
network connection and time-tagging abilities, ADC and 
DAC functionalities with appropriate resolution or 
enough storage capacity for buffering purposes. In order 
to provide the required interfaces, we designed the 
additionally necessary peripheral circuits accordingly to 
allow for analog as well as bus-based communication via 
RS-485. The ESP32 is a freely programmable WiFi 
controller; the software addressing all interfaces was 
written in Micropython, however, it could be 
programmed with different languages either. 

To validate the designed circuits for the different 
communication interfaces, a test series was conducted 
comparing target values to measured values. In the 
validation, analog readings showed severe issues when 
reading very small values. The average relative errors 
were around 4.3 %. The analog writing functionality 
resulted in deviations that were higher than the deviations 
in reading. In BAS, control algorithms often use 
differences between set and actual values to calculate an 
output, hence we conclude that the reading functionality 
requires improvement. However, further investigations 
should aim for specifying the exact limitations for BAS 
operation. Besides that, the analog writing functionalities 
require small changes in order to at least ensure reaching 
both upper and lower limit. Additionally, the current 
output loop is only able to produce a current for devices 
with resistances up to 250 Ω. For RS-485, we 
successfully tested a Modbus device. This interface could 
also be utilized to realize BACnet communication. 
Further development should focus on extending the 
firmware and testing BACnet support. In general, the 
technical requirements could be met showing some 
restrictions. 

Additional improvements include logging routines 
and streaming of measurement results over WiFi as well 
as the implementation of control loops. 

As regards purchase costs, the total costs amount to 
roughly 28 €, hence being far below comparable IoT-
gateways like a shielded Raspberry Pi with a retail price 
of 100 €, a Controllino at 200 € or edge controllers at 
300-400 €. 
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