
36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

82

Designing a Development Board for Research on IoT
Applications in Building Automation Systems

M.H. Schravena, C. Guarnierib, M.A. Baranskia, D. Müllera and A. Montib

aInstitute for Energy Efficient Buildings and Indoor Climate, Germany
bInstitute for Automation of Complex Power Systems, Germany

E-mail: mschraven@eonerc.rwth-aachen.de, cguarnieri@eonerc.rwth-aachen.de

Abstract

Recent advances in the development of Internet-
of-Things (IoT) devices have enabled researchers to
apply such on building automation systems (BAS).
Especially in existing BAS, one big challenge is the
diversity of communication methods. In such systems,
gateways are required to connect various devices.
However, while there are very few IoT-gateways able
to interface a wide variety of common sensors and
actuators, those often implicate high costs, entailing
inacceptable investments for larger field tests.

To overcome this issue, we prototyped a low-cost
plug-and-play and freely programmable IoT-gateway,
which supports common analog signal interfaces like
0-10 V or 0-20 mA current loop, and digital ones via
RS-485 serial communication. The gateway is based
on the ESP32-PICO-KIT development board, a fully
functional board with a microcontroller and
embedded WiFi. Accordingly, we enhanced this
board by adding custom-designed peripherals and
developing the required firmware for acquiring
sensor data and driving actuators.

In order to validate the functionality of the
interfaces, we conducted an experimental test series.
The experiments comprise measurements of inputs
and outputs for either the IoT-gateway or the
connected sensors and actuators. The results show an
average relative error for analog interfaces of 7 %,
hence being sufficient for building automation
applications. The RS-485 was successfully tested with
a Modbus RTU slave device.

Therefore, the prototyped IoT-gateway is directly
applicable to both analog and Modbus-based sensors
and actuators, shows acceptable errors in analog
readings and can be manufactured at a relatively low
price, facilitating test benches containing several
plug-and-play gateways.

Keywords –

IoT, Gateway, Building Automation, Wireless
Communication, ESP32

1 Introduction
In Germany, potential energy savings due to building

automation system (BAS) improvements estimate
roughly 20 % [1]. Additionally, in existing non-
residential buildings, wireless IoT devices constitute a
promising resource to enable BAS without causing high
expenses due to elaborate cable installations. However,
the beneficial installation of radio-based devices only
applies if the configuration effort is not as high as in
conventional systems on the other hand. Furthermore,
local wired automation systems are well-known and
widely adopted due to their reliability. However, there is
no comprehensive study on a real BAS yet, which is
completely operated via IoT devices. Hence, our research
is focussed on the stability and properties of such systems
utilizing several IoT devices.

When investigating IoT applications in BAS, the
most cost-efficient approach is to use an existing
infrastructure. Instead of exchanging sensors and
actuators, gateways can be used. With BAS often
comprising sensors and actuators with various
communication interfaces, there are only few IoT-
gateways directly applicable to all these devices. Some
of the most popular communication interfaces used are 0-
10 V and 0-20 mA analog signal transmission and bus-
based communication e.g. via Ethernet, BACnet, LON,
KNX and Modbus [2]. Some examples for multi-
communication gateways are the BASremote at a price
of 350 € [3], the EWIO-9180-M at 425 € [4], the UCM-
316 at 325 € [5] and the WISE-4470-S250 at 400 € [6].
All these examples are rather edge controllers than
decentral plug-and-play IoT-gateways. These edge
controllers imply high costs when used for each sensor
and actuator individually or limit one to research
activities on decentralized summarized data processing.
By contrast, already available open-source platforms like
Controllino, PiXtend and UniPi Neuron, just to name a
few, prove to be still expensive or not versatile enough
for single transducer interfacing.

We thus identified the need to design an IoT-gateway

mailto:mschraven@eonerc.rwth-aachen.de
mailto:mschraven@eonerc.rwth-aachen.de
mailto:cguarnieri@eonerc.rwth-aachen.de
mailto:cguarnieri@eonerc.rwth-aachen.de

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

83

that features only the necessary characteristics to enable
IoT on single devices without causing inacceptable costs.

The rest of this paper is structured as follows: Chapter
2 starts with the deduction of requirements for the IoT-
gateway, followed by a detailed description of the
electronic design as well as the software implementation.
In chapter 3, the conducted test series is described;
chapter 4 summarizes the validation results and discusses
the purchase cost. Finally, chapter 5 concludes with a
summary and future possible improvements.

2 System requirements and design
From our experience with designing and operating

BAS, we define the following properties for the IoT-
gateway as mandatory requirements to allow for an
accurate operation of BAS. These properties were mainly
derived by the current technical building equipment,
which was planned and used by the Institute for Energy
Efficient Buildings and Indoor Climate for their new test
hall.

• Timescale – Due to fluid and thermal inertia, but
also delay of moving actuators, we suggest a
physical and interpretation delay of maximum 1 s.

• Storage – Since the gateway will be connected to a
wireless or local area network with constant access
to online database storage systems, a limited
internal storage capacity is requested for buffering
purposes.

• Interfaces – For a start, we focus on analog signals
and serial communication and thus omit the
Ethernet-based communication. The gateway shall
at least support 0-10 V signals, 0-20 mA signals and
communication over RS-485.

• Resolution – Actuators such as valve actuators,
volumetric flow controllers or pumps commonly
receive their values in percent. Therefore, the
analog output should at least resolve integer values
ranging from 0-100, which represents a resolution
of at least 7 bit (27 = 128 discrete values). Analog
inputs are often used to receive signals from
temperature sensors like resistance temperature
detectors (RTDs) and negative temperature
coefficient (NTC) thermistors. Assuming a range of
140 K, the gateway should at least read for one
decimal, resulting in a minimum resolution of 11 bit
(211 = 2048 discrete values).

• Network connection – The gateway requires a way
to connect to a local area network or the internet,
e.g. via WiFi.

• Time tagging – For some control applications, it is
necessary to tag each data measurement with a
synchronized time. Hence, the IoT-gateway should
offer a chronometric and time-reading possibility.

• Software development – In order to test different
configuration setups, local or agent-based control
strategies, remote service and maintenance
concepts as well as different security and
encryption functionalities, the gateway needs to be
freely programmable. As Python is the most
frequently used programming language at our
institute, we require Python language support for
our gateway.

• Power supply – The gateway should connect to
existing sensors and actuators that are often
supplied with industrial voltage level of 24 Vdc.

We use the ESP32-PICO-KIT [7] as a base for our
IoT-gateway. The ESP32-PICO-KIT is a relatively cheap
system on a chip by Espressif, yet providing solutions to
several of the defined requirements. A detailed overview
is presented in Table 1. ESP32-PICO-KIT properties

Table 1. ESP32-PICO-KIT properties [7]

Feature/requirement ESP32-PICO-KIT
Timescale (physical,
interpretation delay)

 0.1 ~ 1 s

Storage 520 KB SRAM
Interfaces/resolution 12 bit ADC (0-1.1 V),

8 bit DAC (0-3.3 V),
UART TTL (serial)

Network WLAN/Bluetooth
Time tagging RTC (internal real

time clock) + NTP
(network time

protocol)
Software Micropython support

Power 5 Vdc, 3.3 Vdc

2.1 Electronic Design
From Table 1, we can derive the required adjustments:

• Power supply voltage level,
• 0-10 V reading and writing voltage level,
• 0-20 mA current to voltage and voltage to current

conversion and
• UART to RS-485 conversion.

2.1.1 Power Conversions

The IoT-gateway will be connected to 24 Vdc. As the
ESP32 runs on a nominal power of 5 Vdc, we use a low
dropout voltage regulator (LDO) to provide the requested
conversion while being able to supply a current up to
1.5 A. Due to the 5 V operation, the ESP32 cannot
provide a voltage output up to 10 V. Therefore, we also
use a 10 V voltage reference (VREF), which serves as the
upper reference for the 0-10 V output loop. The
sensors/actuators and the IoT-gateway share the same
ground.

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

84

2.1.2 0-10 V Input

As shown in Table 1, the ESP32 has a 12 bit ADC
with an input voltage range of 0-1.1 V. This range has to
be mapped to a sensor output ranging from 0-10 V.

 The easiest and most cost-efficient solution to reduce
voltage to a specific range is a voltage divider circuit (see
Figure 1). This circuit converts the input signal according
to Equation (1). Since the ESP32 ADC input impedance
is not provided by the manufacturer, an operational
amplifier (OPA) in buffer configuration is used as
precaution to decouple the voltage divider from the ADC,
thus avoiding measurement errors due to load effects.

𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑉𝑉𝑖𝑖𝑖𝑖 ⋅
𝑅𝑅13

𝑅𝑅14 + 𝑅𝑅13
 (1)

As the ESP32 is a low-cost device, its ADC is not of
the best quality. It is only assumed to be linear in a range
of 100 mV to around 950 mV [8]. Therefore, we selected
the resistors so that input voltages of 0-10 V match ADC
input voltages of 0-0.91 V. Note, that this reduces the
effective resolution of originally 12 bit to about 3400
discrete values, which is still considerably higher than the
required 11 bit resolution.

2.1.3 0-20 mA Input

The 0-20 mA input current loop requires a conversion
from current to voltage so that the ADC can read its value.
The easiest solution is to use a single resistor providing a
voltage following Ohm’s law (see Equation (2)). Again,
we add a buffer to decouple the load resistor 𝑅𝑅3 from the
ADC and select the resistor so that the ADC input
voltages match 0-0.91 V for input currents of 0-20 mA.

𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐼𝐼𝑖𝑖𝑖𝑖 ⋅ 𝑅𝑅3 (2)

2.1.4 0-10 V Output

The DAC of the ESP32 has a maximum output
voltage of 3.3 V. In order to achieve higher output
voltages, this voltage has to be amplified. For this
purpose, we use a rail-to-rail OPA in non-inverting
amplifier configuration, as shown in Figure 2. By
adapting the resistor values, the gain, and hence the
output voltage is adjustable, as long as it is below the
power supply. The OPA drains a current of just 160 μA,
allowing to be powered with a high precision voltage
reference (see Section 2.1.1). Whilst the internal voltage
supply of the ESP32 is 3.3 V, the DAC may output
maximum voltages of 3.2 V. Adopting a conservative
approach, we select the resistors to map the DAC output
voltage of 0-3.15 V to an output voltage of 0-10.1 V.
Because this output is used to control actuators, the
output voltage must exceed 10 V, for instance to ensure
that the actuator is actually capable of fully closing a
valve. The resistor values can be derived by Equation (3).
Regarding the effects on the final resolution, the safety

margin causes a negligible loss of 12 discrete values.

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 ⋅ �1 +
𝑅𝑅11
𝑅𝑅10

� (3)

Figure 1. Voltage divider circuit of our IoT-
gateway, transfers 0-10 V to 0-0.91 V

Figure 2. Voltage amplifier circuit of our IoT-
gateway, amplifies 0-3.15 V to 0-10.1 V

Figure 3. Current loop driver of our IoT-gateway,
converts 0-3.15 V to 0-21 mA

2.1.5 0-20 mA Output

We realize voltage to current conversion by resorting
to the XTR117 by Texas Instruments, a commercial
precision current driver that can be configured both in
true and live zero configurations at a very low cost. Since
both the DAC and the XTR117 share the same ground,
the driving block is isolated from the control block by
means of an optocoupler. However, since the relation
between the current flowing in the diode and photo-
generated current in the bipolar junction transistor is non-
linear, the linear control on the former does not result in
an equally linear control of the latter. The circuit
illustrated in Figure 3 follows the characteristic described
in Equation (4), which we derived by measuring the
driver current for different values of control voltage.

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

85

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜 = a ⋅ 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏 (4)

2.1.6 UART TTL to RS-485 Conversion

The Universal Asynchronous Receiver Transmitter
(UART) interface is an interface used to transfer serial
data asynchronously. The asynchronous communication
does not require a clock signal but rather expects a start
and an end of a transferred message [9]. On the ESP32,
the UART runs on 5 V. A further difference is the line
driver, which converts single ended UART signal to a bi-
directional differential signal resulting in two data lines,
Data A and Data B. The signals for RS-485 usually range
between +/- 1.5 V [9]. For the signal conversion, we use
a commercially available UART to RS-485 converter,
which also features automatic flow control. Without
automatic flow control, a digital control signal is required,
in order to assign one line the for communication, as it is
not possible to transfer data over both reading and
transmitting line at the same time. This, in particular,
complicates timing the communication, hence we
decided to use a module with automatic flow control.

2.1.7 Reference Voltage Calibration

The ADC and DAC lack quality in terms of linearity
that are mainly due to noise and varying reference
voltages between different microcontrollers. Hence, we
perform an automatic ADC and DAC calibration by
calculating two points used for linear interpolation.

A reference voltage for the ESP32 is set, emitted and
redirected to two ADC pins, after the voltage is reduced
to 1/3 and 2/3 of the reference voltage, respectively. With
this construction, the ADC is calibrated. Afterwards, the
DAC redirects its output to an ADC pin, reading the
provided voltage from the DAC.

2.1.8 Low-Pass Filter

Input and output stages are low pass filtered using
first order RC filters to reduce the noise. The adopted
bandwidth of 15 Hz is selected to allow all signals in
timescales down to 1 s without significant delays and
attenuations.

2.1.9 Summary

The ESP32-PICO-KIT is expanded by adding a
24 Vdc power conversion, 5 circuits for each of the
individual communication interfaces and a calibration
circuit. Figure 4 depicts a view of our finished prototype.
The schematic and Printed Circuit Board (PCB) layout
can be examined on the publicly available GitHub
repository [10].

Figure 4. Assembled IoT-gateway PCB prototype
from our defined requirements

2.2 Software Design
We programmed the firmware in Python code.

However, the microcontroller could also be programmed
with other languages like Arduino or C++. The storage
space on the ESP32 is limited, therefore we use
Micropython, which is a lean Python implementation and
was especially developed for microcontrollers [11].
Because the basic Micropython firmware does not allow
for setting a reference voltage, we used the LoBo
Micropython implementation, that is freely available on
GitHub [12]. The GitHub page also contains some
instructions on how to flash the firmware onto the ESP32
(we use the esptool for flashing the firmware and ampy
to transfer files over serial connection). Following the
instructions, the ESP32 accommodates a file system, so
the software can be written with any Python
programming environment or plain text editor and be
transferred onto the ESP32.

When booting the ESP32 with Micropython firmware,
two files, boot.py and main.py, are always executed one
after the other. The following sections explain the
individual parts of the software in more detail.

2.2.1 Main.py

In this file, an instance of the board class is created.
All functions, which are used for addressing the analog
signal transmissions and Modbus communication, are
implemented within the board class. The functions may
be called from the instance within a Python shell that is
available on the ESP32 when e.g. connecting via serial
connection.

2.2.2 Board.py

The board.py is the main file for interfacing the
different communication interfaces and provides the
corresponding functions. In this file, a class “board” is
defined. All parameters are stored within the class object.
The following methods are available:

• __init__(self): This function is called when creating
an instance of the board class. Parameters are

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

86

fetched from the parameters.py and assigned to the
attributes. In addition, the ADC and DAC pins for
0-10 V input and output as well as 0-20 mA input
and output are assigned. After this, a Modbus
instance is created. Finally, the methods for setting
a reference voltage and executing the calibration are
called.

• set_ESP_referenceVoltage(self): This function sets
the reference voltage to the predefined pin (in our
case IO27, see schematic [10]).

• calibrate(self): This function calls the ADC and
DAC calibration.

• calibrate_adc(self): In this function, the ADC
regression parameters are calculated and slope and
intercept are returned.

• calibrate_dac(self): In this function, the ADC
regression parameters are calculated and slope and
intercept are returned.

• Four methods for either ADC or DAC conversions
between digital and voltage values: This allows an
incremental and consistent calculation for the
reading and writing functionalities, but also
requires to define the ADC and DAC characteristic
at least once.

• Four methods for either reading or writing analog
voltages and currents: The reading and writing
methods contain the relations described in chapter
2.1.

• Modbus-related functions are callable by the
Modbus instance.

2.2.3 Parameters.py

This file contains all predefined parameters. E.g.:

• Pin numbers
• Predefined digital and voltage values for calibration
• Parameters of the relations described in chapter 2.1.
• Modbus-related parameters: Definition of the

physical serial port and other specific parameters
like the baudrate of the connected device, the
Modbus slave address and register lengths.

2.2.4 Modbus

For Modbus, the modules uModbusSerial.py,
uModbusFunctions.py and uModbusConst.py are
available. These files are slightly adjusted versions of the
uModbus package for Micropython [13]. The
uModbusSerial.py being the main file provides a class
with standard reading and writing functionalities for
registers and coils. Our changes mostly concern reading
the UART interface.

2.2.5 Summary

The software implementation features a board class
that provides the interfacing methods for reading and

writing analog voltages and currents as well as receiving
and sending Modbus signals. At current state, no
automatic sensing or control and logging routines are
implemented. When booting the ESP32, a “board”
instance is created. This board instance is used via
console from serial connection. Modbus-specific
functions were taken from the Micropython uModbus
module. Parameters may be accessed and changed in the
parameters.py module. The complete software
implementation is available in the GitHub repository [10].

3 Test series
In order to validate the functionality of the interfaces,

a test series is conducted. For the validation of analog
reading and writing, we use a test setup consisting of a
Programmable Logic Controller (PLC) and terminals for
0-10 V input and output as well as 0-20 mA input and
output. With these terminals, it is possible to provide
constant voltages and currents or read those generated by
the IoT-gateway. We validate the RS-485 interface with
a Modbus RTU slave device – an electric valve actuator
[14]. The Modbus protocol works with digital values
stored in registers and coils; a description of the Modbus
registers is provided by the manufacturer [15]. Table 2
provides an overview of the used testing hardware
components.

Table 2. Test series hardware

Tested gateway
interface

Testing device

- CX5130 (PLC)
0-10 V input EL4008

0-10 V output EL3008
0-20 mA input EL4018

0-20 mA output EL3048
RS-485 LM24A-MOD

3.1 Setup
We investigate the analog reading and writing

functionality by providing predefined voltages and
currents with either the PLC terminal or the IoT-gateway
and measuring the corresponding value on the other side.
For 0-10 V, we therefore varied the voltage with a step
width of 0.5 V, for 0-20 mA we used 1.0 mA steps.
Accordingly, we compared the IoT-gateway’s signal to
the terminal’s signal. Because of noise, the signal may
vary at equal conditions. Therefore, we read 1000
samples and calculate the average value.

The Modbus communication is validated by simply
writing a set point to a register, waiting for the actuator
to move and reading its corresponding actual value
afterwards. We wrote on register 1 a value of 2500 and
7500 and read the related value on register 5. Register 1

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

87

is related to the positional set point, which ranges from
0-10000, where 10000 corresponds to 100 %. Register 5
reads the actual position, again ranging from 0-10000.

3.2 Calibration issues
With the proposed calibration method, the ADC and

DAC results show severe deviations from expected.
However, the problems with noise and accuracy due to
different reference voltages are known issues to the
manufacturer of the ESP32, Espressif, that provide in
their own software development kit and programming
guide some useful calibration functions that depend on
the internal reference voltage.

For chips produced after the beginning of 2018, the
internal reference voltage is measured and directly fused
to each chip and hence the calibration can be automated
easily. Since the chips of our ESP32-PICO-KITs were
produced in 2017, their reference voltage cannot be read
directly from the chip. Therefore, in order to use the
calibration functions provided by Espressif, we measured
the reference voltage and calculated slope and intercept
for the linear regression. The calibration functions by
Espressif lead to results that are more accurate;
consequently, we use their calibration method over our
two-point regression. The next section gives an overview
of the validation results with this calibration applied.

4 Results and Discussion
The validation results for 0-10 V input and output are

summarized in Figure 5, Figure 6 illustrates the
corresponding results for 0-20 mA input and output.
Table 3 summarizes the maximum and average
deviations for the analog communication.

Even with the calibration functions given by Espressif,
the results show significant errors for both small voltage
and current values. On the one hand, the internal ADC
characteristic typically exhibits a negative offset of
almost 75 mV that results in the impossibility of reading
any value below that threshold, i.e. approximately
750 mV and 1.5 mA for the voltage input interface and
the current one respectively. On the other hand, the DAC
characteristic shows an offset of almost 300 mV, thus
resulting also in this case in a reduced effective range.

With regard to control purposes, the DAC should
always be able to apply a zero voltage; besides that, the
DAC deviations are probably negligible, since, in many
applications, control algorithms rather rely on differences
between set and actual values to produce a specific output
for an actuator, for instance in case of simple
proportional–integral–derivative (PID) control. On the
contrary, the ADC readings should be accurate and hence
improved on the whole range. This, for instance, applies
in case of cascaded PID control where different single
sensor errors could add up to significant gain errors.

However, the minimum range limitation rather affects
actuator position feedback, as e.g. temperature or
humidity sensors normally operate far from the minimum
of the range. Besides that, following the example of
simple PID control, the sensor data acquisition
inaccuracy would lead to a different gain, but would not
change the general behavior. In order to fully evaluate the
limitations for BAS operation, a detailed study is
required addressing specific criteria like cyclic
communication times, packet size, delays et cetera to
guarantee the system’s controllability.

At this stage, excluding the error below the 20 % of
the input/output range, maximum absolute errors are
0.08 V and 0.16 mA, respectively, which shows that the
device is usable for operating with standard voltages 2-
10 V and standard currents 4-20 mA for control purposes.

Figure 5. Validation of 0-10 V input and output

Figure 6. Validation of 0-20 mA input and output

Table 3. Analog relative (er) and absolute (ea)
maximum, minimum and average errors

Interface 0-10|2-10
V in

0-10|2-10
V out

0-20|4-20
mA in

0-20|4-20
mA out

 [%] [%] [%] [%]
er,max 49.5|4.19 48.6|10.1 50.0|3.88 7.64|4.32
er,min 0.42|0.42 0.36|0.36 0.53|0.53 0.77|0.77
er,avg 4.35|1.45 6.39|2.43 4.29|1.44 2.76|2.32

 [V] [V] [mA] [mA]

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

88

ea,max 0.75|0.08 0.29|0.20 1.5|0.16 0.46|0.46
ea,min 0.04|0.04 0.03|0.03 0.11|0.11 0.08|0.12
ea,avg 0.11|0.07 0.12|0.09 0.22|0.14 0.21|0.24

For the Modbus device set point of 2500, we read a
value of 2501, for 7500 we read 7502 on register 5.
Modbus is a digital communication, hence not causing
any deviations. The very small deviations may occur due
to the accuracy of the actuator position.

From the validation results, we conclude following
assertions:

• Due to varying internal voltages between different
ESP32 modules, the proposed calibration method
did not show the desired improvement on the ADC
and DAC accuracy. A different method should be
proposed in the future to calibrate the conversions
between analog and digital values automatically.

• Within the range of 2-10 V and 4-20 mA, the IoT-
gateway was able to read analog voltages and
currents at an average error of 1.45 % and 1.44 %,
respectively. The maximum deviation amounted to
4.19 %. In the same range, writing of analog
voltages and currents accounted for average errors
of 2.43 % and 2.32 %, respectively. The maximum
deviations for writing amounted to 10.1 %. For
smaller voltages and currents, the ADC is not able
to dissolve them. This issue should be addressed in
the future, since reading the actual value accurately
is important when calculating a specific output. The
writing functionality yielded an acceptable
accuracy.

• The PLC terminal EL3048 has an input impedance
of about 85 Ω. The current output loop was tested
with different loads and showed that a maximum
load of 250 Ω can be handled. Further research on
input impedances of BAS devices is necessary to
assure a general suitability for BAS applications.

• Communication via RS-485 was tested with a
Modbus device. The set point register was written
and the actual value register read with success. Very
small deviations occurred, probably due to the
electric motor accuracy.

• The IoT-gateway transmitted signals within 1 s for
all tested interfaces.

The technical requirements are met. However, one
question remains: How much does this multi-gateway
cost compared to the commercially available devices?

4.1 Prices
With the assumption, that a larger field test would

require around 50-100 IoT-gateways, we examine the
prices for all used components. Figure 7 shows the cost
distribution: except for the RS-485 converter, all
component prices are fetched from www.mouser.de [16].

This diagram shows that the ESP32-PICO-KIT costing
8.73 € accounts for almost half of the total costs. The
circuits for 0-10 V in- and output as well as 0-20 mA
input are equally distributed with costs of about 1 € each,
the RS-485 module falling little behind with 1.18 €.
Because of the high precision reference voltage for the
OPA705, the power supply costs 4.34 € and thus causes
the second highest costs in total. Since the OPA705 is the
only part in need of 10 V, this design should be revised
in order to further reduce the costs. However, this
component could also help utilizing and improving an
automated ADC calibration. The current output loop
yields the fourth highest costs and should be revised as
well, in order to allow for devices with higher input
impedances. The total component price is 23.57 €.

In addition to the components, the PCBs have to be
produced and all parts have to be assembled. The costs
for 100 PCBs including assembly and shipping account
for roughly 400 € corresponding to 4 € per piece. In total,
the purchasing costs for one IoT-gateway at quantities of
100 amount to about 28 €. From a vendor’s perspective,
this price could obviously be reduced by purchasing the
components in larger amounts or entering special
contracts with manufacturers. However, aside from
researching aspects, a single-gateway would probably be
more suitable for industrial BAS applications.

Figure 7. Cost distribution of the IoT-gateway;
costs per gateway in € for 100 pieces ordered

5 Summary and Conclusion
In this paper, we designed an IoT-gateway for

research on applications in BAS. From our experience,
we derived technical requirements for an IoT-gateway in
BAS applications. More specifically, we defined:

• Timescales for physical and interpretation delay
• Storage and resolution requirements
• Commonly used signal transmission interfaces
• Software requirements
• Network and time-tagging requirements

http://www.mouser.de/
http://www.mouser.de/

36th International Symposium on Automation and Robotics in Construction (ISARC 2019)

89

• Common industrial power supply in BAS

Utilizing the ESP32-PICO-KIT as a base module
satisfies several of the defined requirements such as
network connection and time-tagging abilities, ADC and
DAC functionalities with appropriate resolution or
enough storage capacity for buffering purposes. In order
to provide the required interfaces, we designed the
additionally necessary peripheral circuits accordingly to
allow for analog as well as bus-based communication via
RS-485. The ESP32 is a freely programmable WiFi
controller; the software addressing all interfaces was
written in Micropython, however, it could be
programmed with different languages either.

To validate the designed circuits for the different
communication interfaces, a test series was conducted
comparing target values to measured values. In the
validation, analog readings showed severe issues when
reading very small values. The average relative errors
were around 4.3 %. The analog writing functionality
resulted in deviations that were higher than the deviations
in reading. In BAS, control algorithms often use
differences between set and actual values to calculate an
output, hence we conclude that the reading functionality
requires improvement. However, further investigations
should aim for specifying the exact limitations for BAS
operation. Besides that, the analog writing functionalities
require small changes in order to at least ensure reaching
both upper and lower limit. Additionally, the current
output loop is only able to produce a current for devices
with resistances up to 250 Ω. For RS-485, we
successfully tested a Modbus device. This interface could
also be utilized to realize BACnet communication.
Further development should focus on extending the
firmware and testing BACnet support. In general, the
technical requirements could be met showing some
restrictions.

Additional improvements include logging routines
and streaming of measurement results over WiFi as well
as the implementation of control loops.

As regards purchase costs, the total costs amount to
roughly 28 €, hence being far below comparable IoT-
gateways like a shielded Raspberry Pi with a retail price
of 100 €, a Controllino at 200 € or edge controllers at
300-400 €.

6 Acknowledgement

We thank the ERDF for their financial support.

References
[1] Lonmark Deutschland e.V. Energieeffizienz

automatisieren, Aachen, 2011.
[2] MeGA, Marktstudie, Marktstudie

Gebäudeautomation, Schweiz, 2012.
[3] Control Consultants Inc. BASR-8M. On-line:

https://controlconsultantsinc.com/basr8m-
contemporary-controls-bas-remote-master-6-
universal-io-2-relay.html, Accessed: 04/01/2019

[4] Arigo Software EWIO-9180-M. On-line:
https://www.arigo-
software.de/de/shop/110910.html, Accessed:
04/01/2019.

[5] Monotaro UCM-316. On-line:
https://www.monotaro.com/p/0040/5912/,
Accessed: 04/01/2019.

[6] EK3OT WISE-4470-S250. On-line:
https://ekzot.com.ua/product/wise-4470-s250/,
Accessed: 04/01/2019.

[7] Espressif ESP32-PICO-KIT Getting Started Guide.
On-line: https://docs.espressif.com/projects/esp-
idf/en/latest/get-started/get-started-pico-kit.html#,
Accessed: 07/01/2019.

[8] Espressif ESP32 Datasheet. On-line:
https://www.espressif.com/sites/default/files/docu
mentation/esp32_datasheet_en.pdf, Accessed:
07/01/2019.

[9] FTDI Ltd. What is UART? On-line:
https://www.ftdichip.com/Support/Documents/Tec
hnicalNotes/TN_111%20What%20is%20UART.p
df, Accessed: 07.01.2019.

[10] RWTH-EBC AixOCAT. On-line:
https://github.com/RWTH-EBC/IoT-Gateway/,
Accessed: 31/01/2019.

[11] Damien George Micropython. On-line:
https://micropython.org/, Accessed: 07/01/2019.

[12] Loboris Micropython for ESP32. On-line:
https://github.com/loboris/MicroPython_ESP32_ps
RAM_LoBo, Accessed: 04/01/2019.

[13] uModbus. On-line:
https://github.com/pycom/pycom-
modbus/tree/master/uModbus, Accessed:
04/01/2019.

[14] Belimo LM24A-MOD. On-line:
https://www.belimo.eu/pdf/e/LM24A-
MOD_datasheet_en-gb.pdf, Accessed: 04/01/2019.

[15] Belimo Modbus-Register Description. On-line:
https://www.belimo.ch/pdf/e/AirWater_Modbus-
Register_en.pdf, Accessed: 04/01/2019.

[16] Mouser Electronics Inc. https://www.mouser.de,
Accessed: 30/01/2019.

https://controlconsultantsinc.com/basr8m-contemporary-controls-bas-remote-master-6-universal-io-2-relay.html
https://controlconsultantsinc.com/basr8m-contemporary-controls-bas-remote-master-6-universal-io-2-relay.html
https://controlconsultantsinc.com/basr8m-contemporary-controls-bas-remote-master-6-universal-io-2-relay.html
https://controlconsultantsinc.com/basr8m-contemporary-controls-bas-remote-master-6-universal-io-2-relay.html
https://www.arigo-software.de/de/shop/110910.html
https://www.arigo-software.de/de/shop/110910.html
https://www.arigo-software.de/de/shop/110910.html
https://www.monotaro.com/p/0040/5912/
https://www.monotaro.com/p/0040/5912/
https://ekzot.com.ua/product/wise-4470-s250/
https://ekzot.com.ua/product/wise-4470-s250/
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-pico-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-pico-kit.html
https://docs.espressif.com/projects/esp-idf/en/latest/get-started/get-started-pico-kit.html
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_111%20What%20is%20UART.pdf
https://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_111%20What%20is%20UART.pdf
https://www.ftdichip.com/Support/Documents/TechnicalNotes/TN_111%20What%20is%20UART.pdf
https://github.com/RWTH-EBC/IoT-Gateway/
https://micropython.org/
https://github.com/loboris/MicroPython_ESP32_psRAM_LoBo
https://github.com/loboris/MicroPython_ESP32_psRAM_LoBo
https://github.com/pycom/pycom-modbus/tree/master/uModbus
https://github.com/pycom/pycom-modbus/tree/master/uModbus
https://www.belimo.eu/pdf/e/LM24A-MOD_datasheet_en-gb.pdf
https://www.belimo.eu/pdf/e/LM24A-MOD_datasheet_en-gb.pdf
https://www.belimo.ch/pdf/e/AirWater_Modbus-Register_en.pdf
https://www.belimo.ch/pdf/e/AirWater_Modbus-Register_en.pdf
https://www.mouser.de/

	1 Introduction
	2 System requirements and design
	2.1 Electronic Design
	2.1.1 Power Conversions
	2.1.2 0-10 V Input
	2.1.3 0-20 mA Input
	2.1.4 0-10 V Output
	2.1.5 0-20 mA Output
	2.1.6 UART TTL to RS-485 Conversion
	2.1.7 Reference Voltage Calibration
	2.1.8 Low-Pass Filter
	2.1.9 Summary

	2.2 Software Design
	2.2.1 Main.py
	2.2.2 Board.py
	2.2.3 Parameters.py
	2.2.4 Modbus
	2.2.5 Summary

	3 Test series
	3.1 Setup
	3.2 Calibration issues

	4 Results and Discussion
	4.1 Prices

	5 Summary and Conclusion
	6 Acknowledgement
	References

