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Abstract – 

Recently, the use of solar panels has increased 

because of the growing demand for solar energy. To 

determine appropriate installation sites of 

photovoltaic (PV) panels, estimating the available 

solar energy at a certain area is important to predict 

the amount of power generation and planning PV 

plant operations. However, traditional data-driven 

approaches (e.g., machine learning) do not fully 

reflect the topographical characteristics of 

surrounding regions in the solar energy estimation, 

and the impact of data resolution (e.g., map scales) on 

the prediction accuracy has rarely been investigated. 

Thus, this paper presents a solar irradiation 

prediction model using a convolutional neural 

network (CNN) designed to process digital elevation 

map (DEM) images. Furthermore, an analysis of the 

impact of two different resolutions (i.e., 30 m and 60 

m resolutions) on the model performance is also 

presented. A total of 25,000 DEM images are 

extracted from the national map of South Korea for 

both resolutions and then used as an input to train the 

CNN models. The results show that the CNN-based 

prediction models can be used to estimate the solar 

irradiation with high accuracy (e.g., mean square 

errors of 0.0018 and 0.0032 for 30 m and 60 m 

resolutions). It was also found that data resolution 

affects the performance of the CNN-based models. 

With an accurate estimation of the available solar 

energy at a certain site, the sites generating more 

power can potentially be evaluated and selected by 

searching a DEM on a large scale.  
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1 Introduction  

Global carbon dioxide emissions from fossil fuels, 

which are considered to be the major cause of global 

warming, have been constantly increasing in the last 

decade: for example, by an average of 3.1±0.2 GtC yr-1 

during 2008-2017 [1]. As global warming affects human 

health and causes the climate change, efforts such as 

environment regulation, emissions trading, clean energy 

technology development, and deforestation reduction 

have been made to control and reduce the pollution. An 

effective approach is replacing fossil fuel with renewable 

energy, such as solar energy, wind energy, biofuel energy, 

and so on. Particularly, the use of photovoltaics (PV) has 

rapidly grown, nearly quadrupling over the past five 

years [2]. Unlike other renewable energy sources, solar 

energy is considered to be economical: solar cells operate 

for a long period, generally more than 20 years, and 

require low maintenance expenses [3].  

To meet the increasing demand for solar energy, the 

prediction of solar radiation that estimates the amount of 

available solar energy at a certain place is a key to 

planning the power supply [4]. Furthermore, the accurate 

estimation of available solar energy allows for the 

optimal selection of PV installation sites, as well as the 

decision on PV system [5, 6]. Although various 

approaches to the solar energy estimation (e.g., statistical 

model, fuzzy logic approaches, machine learning) have 

been proposed and used in practice, it is still challenging 

to collect solar radiation data on a large scale and 

consider the geographical characteristic of adjacent areas 

in the estimation. For example, solar radiation-related 

data that is used to estimate available solar energy is often 

collected from specific observation regions. Although 

this approach can be suitable for general terrain, it would 

be hard to assume that simple linear interpolation or any 

estimating method for topography measurements may 

work well for other regions far away from the 

observation stations or complex terrain (e.g., mountains) 

[7]. Furthermore, in general, statistical methods or 

conventional machine learning algorithms (e.g., 

Bayesian networks, support vector machines) do not 

directly process image or map type-data with the three-

854

mailto:heojae1234@hanyang.ac.kr
mailto:jhjung1216@gmail.com
mailto:bkim@anu.ac.kr
mailto:sanguk@hanyang.ac.kr


36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

 

dimensional (3D) shape of an image (i.e., topography) [8]; 

while recent machine learning algorithms such as 

convolutional neural networks (CNN) are designed to 

keep spatial relationships among data points (e.g., pixels) 

in the modeling process (e.g., optimization of model 

parameters).  

This research thus investigates the use of CNN for 

modeling and predicting the solar irradiation, taking into 

account the effect of geospatial features, including 

elevation, slope, aspect, shadow effect, and so on. 

Specifically, this paper mainly focuses on the impact of 

data resolutions on the prediction accuracy in order to 

understand the effect of map scale and geographical 

features on solar energy computation. The CNN model is 

trained with a digital elevation map (DEM) containing 

such topographical features and solar radiation datasets 

estimated in pixel levels. With the trained CNN model, 

performances for DEMs of 30 m and 60m resolutions are 

compared to evaluate the effect of data resolution. 

2 Research Background 

This section reviews recent studies that consider 

topographical features for predicting solar irradiation 

using machine learning techniques and statistical 

methods. In addition, the impact of data resolution on 

forecasting performance of solar irradiation is also 

reviewed and discussed.  

2.1 Challenges in Solar Irradiation Prediction 

Considering the Topographical Features 

Recent studies showed that the topographical features 

(e.g., altitude, latitude, longitude) considerably 

influenced the solar radiation prediction performance [7, 

9, 10, 11]. For example, [7] estimated daily global solar 

irradiation by using solar radiation data collected on the 

complex mountainous terrain; it was found that the most 

important geographic factor to estimate global solar 

irradiation on complex mountainous terrain is the altitude. 

[9] developed the prediction model using solar radiation 

data observed in different regions in the model training 

and testing processes, showing that the solar radiation 

could successfully be estimated for new testing regions 

not used in the modeling process. Additionally, [10] 

evaluated geographical factors such as latitude, longitude, 

altitude in order to find the optimal combination of input 

parameters and to understand the impact of topographic 

features. 

Overall, these previous studies provide insight into 

the use of data and the impact of topographical features 

on predicting solar irradiation by building statistical or 

machine learning models. Nonetheless, the models and 

methods proposed in the studies are mostly tested with 

the data collected at specific observation stations. This 

issue can become critical when applied to the regions far 

away from the study areas, where topographical 

characteristics can significantly be different. In this 

regard, further studies are still required for in-depth 

understanding of the topographical features in solar 

irradiation estimation, when the data-driven approaches 

are applied to large-scale areas or other areas, as pointed 

out in [11].  

2.2 The Effect of Data Resolution on Solar 

Irradiation Prediction Model 

Performance 

For machine learning or statistical methods, data 

resolution is another factor affecting the predicted 

amount of solar irradiation [12, 13]. The effect of data 

resolution was thus studied with a focus on the input data 

such as a DEM used to develop the geometry-based 

prediction model of solar radiation. In [12], geometry-

based methods were developed using solar radiation 

models such as SRAD, Solei-32, and r.sun, which 

analyzed the components of solar radiation (e.g., direct, 

diffuse, and reflected) and geographic elements such as 

site latitude, topography, shadow cast, and so on. [12] 

found that the resolution change of a DEM affected the 

input variables of the prediction model, such as shadow 

effect, elevation, slope, etc., which resulted in a 

difference between the predicted solar radiation values 

and actual values. [13] also showed that a higher DEM 

resolution improved the performance of solar radiation 

models. These studies implied that the resolution of a 

DEM can affect the accuracy of surface angle 

calculations at the study area, which are the key inputs to 

theoretical computing of the solar radiation. 

Unlike geometry-based methods, the impact of data 

resolution has rarely been studied for data-driven 

approaches that attempt to recognize patterns in the 

relevant data for the solar radiation prediction. It may be 

because machine learning methods in the previous 

studies [e.g., 14, 15] generally used solar radiation data 

(e.g., altitude, latitude, longitude, land surface 

temperature) produced at observation stations. In this 

case, the resolution of data may not be of importance for 

the prediction, as DEM data was not directly used for the 

modeling process. Consequently, the effect of data 

resolution still remains unknown when DEM data itself 

is used as an input for machine learning approaches to 

solar radiation estimation. 

3 Method 

To evaluate the effect of data resolution on machine 

learning-based solar energy prediction, this study builds 

and compares two CNN models trained with a DEM with 

30m resolution and another DEM with 60 m resolution 
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along with the average amount of solar radiation for each 

DEM map of 30 by 30 pixel. Specifically, the DEMs are 

created with GIS datasets publicly provided by the 

National Spatial Data Infrastructure (NSDI) in South 

Korea, and the DEM that covers the entire national 

territory with the grid cell size of 30 m by 30 m is selected 

to create the DEM datasets with different resolutions, i.e., 

the inputs for the CNN models. Meanwhile, the output 

datasets, which are the estimated solar irradiation in pixel 

levels (e.g., a raster with 30 m by 30 m), are obtained by 

applying the computational estimation model presented 

in the authors’ prior work [16]. Then, with the datasets 

used as an input and an output, CNN models are built and 

trained through the processes that minimize errors 

between the actual and predicted outputs. Eventually, the 

errors between two models with different data resolutions 

are compared to evaluate the effect of topographical 

features on the prediction performance. 

3.1 Data Collection 

For supervised learning, adopted in this paper, input 

datasets and labeled output datasets are needed to 

develop the CNN-based prediction model by iteratively 

learning the model parameters (e.g., weights) from the 

datasets. In building a solar irradiation prediction model, 

the CNN architecture consists of an input layer of a DEM 

image and an output layer of a solar radiation value with 

hidden layers between the two. The solar radiation 

amount for the region on each DEM image is extracted 

from a solar radiation image—produced by [16]—

corresponding to the DEM image. In addition, two types 

of DEM images with 30 m and 60 m resolutions are 

created to assess the effect of data resolution on solar 

irradiation prediction. Specifically, for the inputs, DEM 

images (Figure 1c) are created by converting the contour 

map (Figure 1a) composed of group of lines joining 

points of the same elevation, to a triangular irregular 

network (TIN) (Figure 1b), which are continuous 

triangular facets with an empty space between contour 

lines representing the elevation. The generated TIN is 

then converted to a DEM image in a raster format (Figure 

1c), which stores the elevation value at each pixel. This 

DEM image is eventually used as the input dataset in the 

CNN model for solar irradiation prediction. 

On the other hand, the outputs, solar radiation data is 

produced by applying the computational method [16] that 

can estimate solar radiation values at every pixel given a 

DEN image. In [16], to consider topographical 

characteristics, a theoretical solar radiation energy model 

is transformed into a solar radiation model with inclined 

surface (Equation 1), which consists of reflected 

radiation (Equation 2), diffuse radiation (Equation 3), 

and direct radiation (Equation 4). Here, β is the surface 

tilt angle, ρ is the surface reflectance, and ⅈ is the incident 

angle. Ib,N, Id,h and Ih derived from [17], which are used 

to estimate solar radiation for a sunny day, are the 

radiation per unit area, the scattering radiation in the 

horizontal plane, and the horizontal solar radiation, 

respectively. Notably, to calculate the surface tilt angle 

(β), a tilt angle map is generated from the DEM. 

Consequently, when the DEM resolution changes, the tilt 

angle (β), reflected radiation, diffuse radiation, and even 

solar radiation can also change together. By applying 

[16], annual solar radiation is obtained as a result, and 

used as output datasets for the CNN modeling of solar 

irradiation prediction. 

Ic = Ir,c + Id,c + Ib,c (1) 

Ir,c = ρIh sin2(β/2) (2) 

Figure 1. Overview of data collection and processing: (a) contour map, (b) TIN image, (c) DEM image, and 

(d) solar radiation map. 
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Id,c = Id,h cos2(β/2) (3) 

Ib,c = Ib,N cosⅈ (4) 

In addition, when generating the two datasets (i.e., for 

30 m and 60 m resolutions), the geographic map 

resolution is determined by the horizontal and vertical 

length of one pixel (i.e., a raster), which represents the 

size of the region covered by the information (e.g., an 

elevation value) in one pixel. For example, the DEM with 

30 m resolutions means that one pixel covers 900 m2 area, 

and in this study, total 105,000 images are extracted and 

generated from the national map, while the DEM with 60 

m resolution means that one pixel covers 3,600 m2 area, 

and total 26,145 images are obtained from the national 

map. For the experiment comparing two data resolutions, 

25,000 images are randomly selected from both datasets 

for the fairness of model comparison.  

3.2 Data Modeling Approach 

Deep learning, such as deep neural networks (DNN), 

is inspired by the human brain, imitating the vast human 

brain network with interconnected neurons. DNN is 

composed of an input layer that accepts external stimuli, 

hidden layers that act as mediators that allow each neuron 

to receive and to send signals, and an output layer that 

responds to signals from hidden layers [18]. These 

processes help to identify patterns and recognize features 

in an unordered dataset. However, traditional neural 

networks have a limitation in finding patterns or features 

in an image because of flattening three-dimensional 

image data to a single dimension in the learning process 

[8]. For example, three-dimensional DEM image 

containing elevation information in each pixel is 

transformed onto one-dimensional data, for example, a 

list shape in Figure 2a. In this case, spatial relationships 

among pixels are ignored in the learning process, and 

hence topographical patterns in DEM datasets are hardly 

learned in predicting the solar energy. However, CNN 

can utilize the DEM image as a three-dimensional input 

as it is, and the topographical features can still be learned 

in the modeling process. As DEM images pass through 

the convolutional layers, filters in the convolutional 

layers extract the features in DEM images, as shown in 

Figure 2b. Eventually, the model parameters (i.e., 

weights) in hidden layers are updated in iterations, in 

each of which a solar irradiation value is predicted using 

a regression function and compared to the actual value. 

Therefore, the CNN-based regression is adopted to solar 

irradiation given a DEM, taking into account the 

relationship between the topographical features and solar 

radiation. 

3.3 CNN Architecture for Solar Irradiation 

Prediction 

The architecture of the CNN-based regression is 

illustrated in Figure 3. The input layer is designed to 

receive an input image of 30 x 30 pixels, which represents 

a region of 900 m x 900 m for 30 m resolution data and 

1,800 m x 1,800 m for 60 m resolution data. These input 

images (Figure 4) are extracted from the national map 

without any overlap, as described in Section 3.1. 

The input image representing a DEM when entered to 

an input layer is then sent to the following convolution 

layer. The first convolution layer used to extract the 

feature maps of the DEM image is composed in 30 x 30 

x 32 dimensions, which means a DEM window size of 30 

x 30 pixels with 32 filters. The size of the filter used in 

this study is 3 x 3. The first convolution layer is 

connected to an activation function, a rectified linear unit 

(ReLU) function that controls and determines the output 

of the layer, which will be sent to the following layer, as 

well as to a max-pooling layer that helps reduce 

computation and overfitting by decreasing the size of 

input window. For instance, the input image (i.e., 30 x 30 

pixels) is reduced to an image of 15 x 15 pixels through 

the max-pooling layer in the first convolution layer. The 

second and third layers (Figure 3) have similar structure 

to the first one, working similarly. The second 

convolution layer extracts the feature maps from the data 

of the previous layer by using the same number of filters 

as the one in the first layer. However, the third 

convolution layer uses the 64 filters to extract the feature 

maps, although the second and third convolution layers 

are also connected to the activation function layer and 

Figure 2. Overview of data modeling: (a) deep learning, and (b) convolutional neural network 
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max-pooling layer. The size of an input window thus 

decreased from 15 x 15 pixels to 7 x 7 pixels by passing 

the second max-pooling layer, and the size further 

decreased from 7 x 7 pixels to 3 x 3 pixels by passing the 

third max-pooling layer. The fourth layer is also a 

convolution layer with the same number of filters as the 

one in the third convolution layer, and the activation 

function layer; however, no max-pooling layer is 

included. The input data passed through the fourth layer 

is then sent to a dropout layer that is used to prevent the 

overfitting problem, and is in turn sent to a linear function 

layer for regression analysis (instead of a softmax 

function generally used for classification).  

The CNN model described above is trained by using 

mean square error (MSE) as the loss function in the 

process that updates the model parameters (e.g., 

convolution filters) on the way that minimizes the error 

difference between the predicted value by the trained 

network and the actual solar radiation data. The MSE is 

defined in Equation 5, where ⅈ denotes ⅈ-th data in the 

dataset, and n is the number of training or testing samples 

in the dataset. The learning process of CNN continues in 

iterations until the minimum MSE, or the number of 

iterations a user defines, is reached. The resulting 

predicted value with a minimum error is compared with 

the actual one, and the coefficient of determination (R2) 

is computed to evaluate the model performance. The 

value of the coefficient of determination is between 0 and 

1; and for the higher correlation between the dependent 

variable and the independent variable, the value of 

coefficient of determination is closer to 1.  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑ⅈ𝑐𝑡𝑒𝑑)2
𝑛

𝑖=1

 
(5) 

 

In this study, the MSEs and coefficient of 

determination are computed for the two CNN models 

built for the datasets with different data resolutions, to 

Figure 3. Overview of DEM and solar radiation datasets processing: (a) 30m resolution datasets and (b) 60m 

resolution datasets 

Figure 3. Architecture of convolutional neural network  
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assess the effect of data resolution on the solar irradiation 

prediction.  

4 Experiment Results  

Figure 4 illustrates a pair of two datasets: the DEM 

image and the corresponding solar radiation maps for two 

data resolutions. From the solar radiation map, annual 

mean of available solar irradiation is calculated for each 

map (i.e., 30 x 30 pixels), the mean value is used as an 

output the model attempts to predict. Particularly, the 

DEM image and solar radiation value are normalized as 

a pre-process. This normalization is adopted to prevent 

the poor learning caused by the wide spread of data 

values, and the min-max normalization method is applied 

for scaling the range of raw data to be [0, 1]. As a result, 

the raw DEM datasets for 30 m and 60 m resolutions (e.g., 

Figure 4a and 4b), the range of which are initially [0, 

1900] and [0, 1550], respectively, are scaled to [0, 1]. The 

difference in the max values may happen for different 

DEM resolutions used to estimate the solar radiation. For 

example, higher-resolution data represents the elevation 

information more precisely than lower-resolution data 

[12]. This difference in data resolution affects the solar 

radiation data, the deviation of which between two 

resolutions is observed as approximately 11%.  

Figures 5 and 6 present the relationship between the 

predicted and actual results for 30 m and 60 m resolutions, 

respectively. Overall, both results visually show that the 

predicted one is strongly correlated to the observed one 

with R2 of 0.89 and 0.87.  

 

Figure 4. The plot of the relationship between the 

predicted and actual results for 30 m resolution 

 

Figure 5. The plot of the relationship between the 

predicted and actual results for 60 m resolution 

Table 1 summarizes the MSE, R2, and MSE 

converted in actual units. The R2 for 30 m resolution 

dataset is slightly higher than the one for 60 m resolution 

dataset. It is also observed that the plot of 30 m resolution 

(Figure 5) is slightly more uniformly distributed than the 

one of 60 m resolution (Figure 6). Yet, the difference 

caused by data resolution may not be significant in this 

experiment. Additionally, it is observed that the MSE 

value of 30 m resolution is 0.0018, while the MSE value 

of 60 m resolution is 0.00315. When converted in the 

actual units, the prediction errors of solar irradiation for 

30 m and 60 m resolutions are 3,981 kWh/m2 and 8,007 

kWh/m2, respectively. In other words, the errors from 30 

m resolution data are 1.8 times and 2.0 times lower than 

the ones from 60 m resolution data in the MSE and MSE 

in actual unit, respectively. Thus, these results show that 

in this experiment, the solar irradiation is more accurately 

predicted when the data with higher resolution is used.  

Table 1. Summary of the experiment results 

Data 

resolution 

MSE R2 MSE-in actual unit 

30 m 0.0018 0.89 3,981 kWh/m2 

60 m 0.0032 0.87 8,007 kWh/m2 

5 Discussion 

In this paper, CNN-based prediction is adapted to 

reflect the topographical features in the solar energy 

estimation. The results indicate that the proposed CNN-

based approach produces promising results for the 

prediction of the solar irradiation on complex terrains or 

on a large scale. The CNN model learns spatial 

correlations among individual pixel values stored in each 

image (e.g., an array) during the training, and thus it can 

be implied that the solar irradiation is fairly affected by 
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the topography of a surrounding terrain. For example, the 

amount of solar irradiation on a surface can be 

significantly influenced by the shadow created by 

adjacent hills at high elevation. The proposed approach 

that can use a DEM image itself as an input thus enables 

us to utilize a map-type data for machine learning. 

The results also reveal that, in this experiment, DEMs 

with higher resolution outperform ones with lower 

resolution when a machine learning method is applied. 

This result is also supported by [13], reporting that a 

higher DEM resolution produces more accurate results 

with geometry-based methods instead of machine 

learning applied in that study. This result may imply that 

when the topographical features are represented or 

preserved well in datasets, the solar irradiation can be 

better estimated, as the neural network is generally 

affected by the quality of image [19]. Thus, the resolution 

and quality of DEM inputs should be carefully selected 

and tested, depending on the level of accuracy required 

for the solar energy study. 

Previous machine learning approaches have mainly 

focused on evaluating the geographical factors (e.g., 

altitude, latitude, longitude) as input variables or 

gathering the data related to solar energy from the 

meteorological observation sites. However, this study 

shows through the CNN modeling that geographical 

features can be reflected in the solar energy estimation 

model, and the effect of data resolution is also assessed 

for an CNN application. Nevertheless, there are other 

factors affecting the CNN performance, which should 

further be explored. For instance, the size of an image can 

have an impact on the CNN performance [20]. An input 

image of 30 x 30 pixel size is used in this study, but other 

image sizes (e.g., 60 x 60, 90 x 90) need to be studied for 

an in-depth understanding of the size of an area affecting 

the amount of solar radiation. On the other hand, the 

method of calculating the solar radiation used as output 

data can also affect the predictive performance. In this 

study, the mean of solar irradiations stored in a pixel level 

on a DEM image is used as an output the model estimates. 

As the solar radiation on the surface of the earth depends 

not only on the surface angle or the shape of the terrain 

but also on the position of the sun [21], specific regions 

with higher solar energy may exist. Thus, various regions 

representing the entire DEM image well (e.g., average, a 

top region, a middle region, top triangle shape on a DEM) 

should be tested to understand which part of a DEM can 

be better estimated with the DEM image. 

6 Conclusion 

This study investigates the effect of geographical 

features on a solar irradiation estimation model by using 

CNN models built based on the datasets with different 

data resolutions. The CNN uses DEM images in a 3D 

shape (e.g., an elevation value stored in x-y coordinates) 

as an input; thus, spatial information is still held and 

modelled during a learning process. Furthermore, it is 

found that the use of higher-resolution data can result in 

more accurate prediction in the experiment. Regardless 

of the data resolution; however, models for both 

resolutions produce robust estimation results (e.g., MSEs 

of 0.0018 and 0.0032). Thus, the CNN approach may 

allow for the appropriate selection of PV panel 

installation on a large scale. In our future study, the CNN 

model will be further developed to estimate the power 

generated at a PV panel site by investigating the CNN 

architecture for the use of multilayer inputs, including 

maps of weather conditions, which are other critical 

factors affecting the power generation. 
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