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Abstract –  

Closed circuit television (CCTV) is probably one of 

the most important technologies that is used by 

municipalities in order to monitor the structural and 

operational condition of sewer pipes. To be useful, 

CCTV video footage needs to be collected according 

to standards, which make such an operation, time 

consuming especially when pipes have operational 

issues like debris or tree roots. In this respect, 

developing benchmarks for data collection can be an 

important source of information that can improve 

the efficiency of future surveying campaigns. 

Computer simulation is an effective method for 

improving the efficiency of maintenance work 

schedules. However, CCTV collection data consists 

of abundant noise (waiting time or defect inspection 

time) due to the characteristics of pipes in different 

structural or operational conditions. For example, 

crawlers equipped with CCTV cameras could be 

blocked by deposits or serious structural issues in the 

pipe, which would cost some waiting time for the 

crawler to proceed with the inspection. In order to 

extract the standard CCTV collection time, 

excluding waiting time and defect inspection time a 

machine learning based approach is proposed in this 

work in the form of an algorithm commonly known 

as the Random Sample Consensus (RANSAC). This 

algorithm is developed to clean the data 

automatically, arriving at a function of CCTV 

collection time with two variables (i.e., length of pipe 

segment and number of taps in the pipe). The results 

can be fed into a simulation model to imitate the 

CCTV collection work in future research.  
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1 Introduction 

The sewer system plays an important role as a type 

of municipal infrastructure that has a significant 

influence on the efficiency and quality of our lives. 

However, the pipes that make up a sewer system 

undergo deterioration due to aging, external force, 

excessive demand, and other factors. [1]. This 

deterioration poses a great challenge for municipal 

maintenance departments since the maintenance is time-

consuming and heavily dependent on capital investment 

and operating costs. To perform an efficient and quality 

sewer maintenance job, closed-circuit television (CCTV) 

is commonly adopted as the pipe condition inspection 

technique [2–4]. The wide usage of CCTV for pipe 

inspection has been driven by many practical reasons 

the most important of which being safety since this 

monitoring procedure does not require man entry [2]. 

Furthermore, since the videos are stored on appropriate 

media, they not only can be visualized for the purpose 

of inspection or comparison with other techniques (e.g., 

laser-based system, ultrasonic-based sensors and ground 

penetrating radar [5]) but more importantly they can 

serve as accurate historical data.  

The CCTV collection process will be discussed in 

the next section. For this research, it should be noted, 

we only consider the time period that starting at the 

beginning of the video to the end. The objective of this 

research is to extract the standard CCTV collection time, 

excluding all waiting time, idle time, and other time 

delays in the collection process. The results can be fed 

into a simulation model to perform schedule 

optimization, which is the next stage of our research. In 

addition, the extracted standard CCTV collection time 

can be viewed as a benchmark for the CCTV collection 

process. Management decision can be derived for each 
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of the CCTV collection job in the perspective of time 

efficiency. For example, CCTV collection time within 

in new developed neighborhood should be align to the 

standard CCTV collection time; while it could be slower 

in older neighborhood theoretically considering the 

deterioration of the pipe, since more defects may cause 

more waiting time. 

2 CCTV Collection Process 

CCTV operators travel to inspect sewer pipes at the 

assigned locations as per the schedule set up by the 

municipal maintenance department. In general, before 

beginning the video collection phase, the pipes to be 

inspected are cleaned in advance by means of flushing 

equipment, in order to eliminate deposits and obstacles 

in the pipes which in turn ensures that the conditions for 

data collection are acceptable [6,7]. Following flushing 

activities, operators begin set-up work for CCTV data 

collection on the ground. The setup includes adjustment 

of a remotely controlled robot equipped with a 

specialized television camera. Next the camera begins to 

record a video for the observed pipe from the start point. 

In the process, the operators need to adhere to standards 

such as those described in National Association of 

Sewer Service Company (NASSCO) in order to obtain 

quality information that can be accurately analyzed later 

in the process. For instance, four primary categories of 

pipe defects are listed based on the pipeline assessment 

and certification program (PACP) [8]: that is, (i) 

structural defects, (ii) operation and maintenance 

defects, (iii) construction defects, and (iv) miscellaneous 

defects. While collecting the video, the technologist 

controlling data acquisition can decide to spend more 

time on serious defect such as those referred to as pipe 

broken or substantial deposits. The total CCTV 

collection time can be derived by means of Equation (1), 

n n n n nTime a L b T W C         (1) 

where Timen represents the total CCTV collection time 

for pipe segment, n; Ln is the length of the pipe segment; 

Tn is the number of taps of this pipe segment; Wn is the 

total waiting time, which may include the time for 

inspection of severe defects, adjustment of camera, etc.; 

C is the fixed time for the CCTV collection process, 

which may include time for equipment setup and other 

routine processes; and n is an error representing the 

uncertainties regarding this process. 

From a theoretical viewpoint, if there are no 

serious defects or other accidents that hinder the CCTV 

collection process observed in one pipe, a CCTV 

collection time can be generally described in Equation 

(2),  

n n n nTime a L b T C        (2) 

The waiting time is eliminated in this equation. Timen is 

denoted as standard CCTV collection time. The data 

points that contain waiting time are the noisy points that 

we want to exclude. The standard CCTV collection time 

extraction is conducted by the RANSAC algorithm, 

which will be described in the next section. 

3 RANSAC Model 

In order to extract the standard CCTV collection 

time, this research applies the Random Sample 

Consensus (RANSAC) algorithm to clean the raw data 

automatically. RANSAC, proposed by Fischler & 

Robert in 1981, is a non-deterministic approach to use 

the smallest initial dataset to determine the parameters 

of a model, then repeat the process until it reaches the 

predefined criterion [9]. Unlike linear regression using 

least-squares estimation, which seeks to minimize the 

distance from all the data points to the fitted function, 

RANSAC model searches for the best fitted function 

without considering the outliers (see Figure 1). From 

Figure 1. we can see that the solid line constructed by 

the RANSAC algorithm is better at describing the trend 

for all five points than the dotted line developed by 

least-square estimation. The outlier is called a noise 

point in this scenario, and it is these noise points that are 

supposed to be eliminated in constructing this 

regression model.  

 

Figure 1. Comparison of least-square estimation 

and RANSAC. 

 

The mechanism of the RANSAC algorithm is 

presented in Figure 2. The algorithm starts with 

selecting X points (where X = number of independent 

variables + 1). For instance, two points are needed to fit 

a line (2-dimensional problem) while three points are 

needed to fit a panel (3-dimensional problem). From 

Equation (2), we know that the extraction of the 

standard CCTV collection time is a problem with two 

independent variables, namely, the length of the pipe 

segment associated with video (L), and the number of 

taps within the pipe segment (T). Therefore, three points 
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need to be selected for each iteration. An objective 

function (Yi) can be formed based on the selected points. 

Then, the Euclidean distance of each point to the 

objective function is calculated. A threshold (t) should 

be selected in order to decide whether the point is an 

inlier or an outlier. If the distance is within the threshold, 

it is an inlier; otherwise, it is an outlier. The number of 

inliers (Ni) should be counted and compared with the Ni-

1 (i.e., the greatest number of inliers among all the 

historical iterations). If the Ni-1 is bigger, we save the Ni-

1 as Ni, and Yi-1 as Yi. Otherwise, we update the Ni and 

Yi accordingly. The process is repeated until the 

predetermined number of iterations (N) is reached. As 

for the number of iterations (N), it can be calculated by 

means of Equation (3) [10].  

Select X points within the data set 

randomly. Where X = number of 

independent variables + 1

Start

i=0;Ni=0;Yi=0

Calculate the distance of each 

point to the objective function.

Calculate how many (Ni) points 

are within the threshold (t)

Form the function (Yi) with the X 

points

Ni > Ni-1

i=i+1

YES

Yi=Yi-1No

i<IterationYES

End

NO

 

Figure 2. Flow chart of RANSAC algorithm. 
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where X is the number of points needed to construct the 

objective function; N is the number of iterations; P is 

the probability that at least one of the objective 

functions built in all N iterations is constructed by X 

inliers; and   is the inlier ratio, which can be calculated 

using Equation (4). Although a priori it is an unknown 

ratio, it can be updated during the algorithm progress 

[11]. 

Inliers

Inliers Outliers
 


 (4) 

 

Considering the probabilistic nature of the RANSAC 

algorithm, the parameters (e.g., a and b) of the objective 

function will vary from one time to another if the 

algorithm runs multiple times. Therefore, the 

mathematical expectation of each parameter can be 

calculated from a large number of run-times of the 

algorithm. The mathematical expectation of the 

parameters will be used to form the objective function 

for the convenience of constructing the simulation 

model in the future research. 

4 Case study 

4.1 Data description 

The data used in this research was collected by 

EPCOR Drainage Services, which is responsible for the 

operation and maintenance of the sewer infrastructure in 

Edmonton, Canada. For each pipe segment, the data is 

provided in two formats (two types of files), namely, 

Microsoft Access (.mdb), and video file (.mp4). The 

video duration (in seconds) and length of pipe segment 

surveyed (in meters) can be retrieved from the Access 

database directly. The number of taps is counted by a 

count query (combining all kinds of code associate with 

taps, such as Breaking-In/Hammer, Factory-made, 

Saddle, etc.) in the database in order to derive the total 

number of taps in a given pipe segment. Other attributes 

associated with the pipe segment can be derived from 

the Access database as well, such as the number of 

defects, location, and material type. The CCTV video 

serves as the validation function; that is to say, it is used 

to check the validity of the data recorded in the Access 

database either through manual viewing and analysis of 

the CCTV footage or by means of algorithms. In this 

research, we consider three attributes— video duration 

(s), length of pipe segment (m), and number of taps. 540 

data records are fed into the RANSAC model to capture 

the relationship described in Equation (2) by excluding 
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any data records that contain forms of waiting time as 

described above. 

4.2 Results and findings 

As discussed in section 3, three parameters need to 

be determined for the RANSAC model: the number of 

points needed to form the candidate objective function 

(X), the number of iterations (N), and the threshold (t). 

In this case, X = 3 since there are two independent 

variables in this model, as per Equation (2). The lower 

boundary of the number of iterations, meanwhile, can be 

calculated from Equation (3). Considering the positive 

correlation between the number of iterations and the 

probability of obtaining the optimal results, along with 

the size of the dataset and CPU processing time, an 

iteration number of 100,000 was selected. As for the 

threshold, several experiments were conducted with 

different values of t (see Fig 3). 

From Figure 3, we can see that the objective 

function can be plotted as a plane in a 3D space. The 

video duration (time) increases with an increase in the 

length of pipe segment (L), and number of taps (T), a 

finding which aligns with reality, since an increase in 

either the length of pipe segment or the number of taps 

will increase the CCTV collection time. The red dots 

represent the pipe segments classified as inliers; that is 

to say, these pipes are in good condition since there are 

no severe defects or other accidents that would lead to 

significant waiting time during the inspection process. 

Similarly, the blue dots represent the pipe segments that 

are classified as outliers, which means that these 

inspections must have been delayed by some 

extenuating circumstances (either sever defects within 

the pipe or other accidents such as equipment failure). 

The inliers and outliers are tabulated in Table 1. 

 

 
 

t = 30 s t = 60 s 

  
t = 90 s t = 120 s 

*Note that the red dots are the inliers (within the threshold) and the blue dots are outliers (outside of the threshold). 

Figure 3. Results of RANSAC model with different values of threshold (t) 
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Table 1. Number of inliers and outliers at different 

thresholds. 

Threshold 30 s 60 s 90 s 120 s 

Inliers 130 217 285 335 

Outliers 410 323 255 205 

Comparing the results in Figure 3 and Table 1, 

we can see that, as the value of the threshold grows, 

the number of inliers shows an increasing trend. The 

information in Figure 3 and Table 1 can be 

interpreted as follows: with the relaxation of the 

conditions, the number of pipe segments classified as 

being in good condition increases. A box-plot can be 

plotted based on the inliers at the four threshold 

values, along with the original video duration in the 

original 540 data (see Fig 4). Obviously, the original 

dataset has the highest median video duration, while 

the dataset has the lowest video duration when the 

threshold is set at the lowest value (30 s). The 

medians of the last three scenarios (t = 60 s, t = 90 s, 

and t = 120 s) do not vary significantly compared 

with the variation between the first two scenarios (t = 

30 s and t = 60 s). Similar relationships for the 75
th

 

quantile of the video duration in the box-plot can be 

observed. The threshold selection is subjective due to 

the nature of this algorithm. Although a smaller 

threshold ensures that all the inliers are classified 

correctly, it may lead to the loss of points that should 

have been classified as inliers in reality. On the 

contrary, if the threshold is greater, it may include 

points that should have been classified as outliers in 

reality. Identifying the optimal tradeoff between 

accuracy and completeness in this threshold selection 

process requires several experiments and statistical 

analysis at the same time. Ultimately the threshold of 

60 s was selected, as it contains the inliers that take 

part in around 40% of the total data points, which is 

aligned with the empirical judgment from the dataset. 

 

Figure 4. Box-plot of video durations of 

inliers in four scenarios, along with original 

dataset. 

As discussed in Section 3, due to the probabilistic 

nature of the RANSAC algorithm, multiple runs are 

needed to capture the distribution of the three 

parameters (a, b and C) in Equation (2). Figure 5. 

shows the results of 500 runs of the RANSAC 

algorithm with the threshold of 60 s. Parameters a 

and b are both fitted with triangular distribution, with 

the mathematical expectation of 3.84 and 8.34 

separately. Parameter C conforms to the uniform 

distribution with an expectation of 54.56. Therefore, 

the objective function can be summarized as 

3.84 8.43 54.56n n nTime L T     . The statistical 

analysis can be interpreted as follows: for one meter 

of pipe segment in good condition, it takes 3.84 s to 

finish the CCTV collection process; if there is one tap 

present within the pipe segment, it takes 8.43 s to 

finish the inspection; the fixed duration for the CCTV 

collection process is 54.56, which may include 

equipment setup time, camera adjustment time, and 

other routine processes. With the function derived 

from the RANSAC model, theoretical video 

collection time can be calculated with the two inputs 

(L and T). A histogram (see Figure 6.) can be 

constructed to show the performance of the 

RANSAC model by comparing the distribution of 

video collection time of the original data (inliers) and 

the theoretical results calculated from the RANSAC 

model. We can see from Figure 6 that the two 

histograms are largely co-terminous, which means 

that the results from the model are quite close to 

reality. 

 

 
Parameter a: Triangular distribution; Expectation (a) 

= 3.84 

 
Parameter b: Triangular distribution; Expectation (a) 

= 8.34 

111



36
th

 International Symposium on Automation and Robotics in Construction (ISARC 2019) 

 

 
Parameter c: Uniform distribution; Expectation (a) = 

54.56. 

Figure 5. Results of the parameters in 

RANSAC model. 

This function can be fed into a simulation model 

to model the CCTV collection process. In addition, it 

can be used as a classifier to distinguish whether or 

not a given pipe segment being inspected by CTTV is 

in good condition. 

 

Figure 6. Histogram of RANSAC model and 

original time study. 

5 Conclusion 

Exclusion of noisy data is the objective of this 

research, so the RANSAC algorithm is utilized to 

exclude all data points that contain noise of any form. 

The CCTV collection process is summarized as a 

background of this study. Followed by the 

interpretation of the RANSAC model, focusing on 

the mechanism of the algorithm and the 

implementation process. Three key parameters need 

to be determined based on the nature of the problem 

and the authors’ subjective judgment, namely, the 

number of points needed in order to form the 

candidate objective function (X), the number of 

iterations (N), and the threshold (t). A case study was 

performed to show the application of the RANSAC 

algorithm. Five hundred-forty data records collected 

by EPCOR Drainage Services were utilized to build 

the model, leading to a linear function that describes 

the relationship among CCTV collection time (Time), 

length of pipe segment (L), and number of taps (T). 

The results can be used in a simulation model to 

simulate the CCTV collection process in future 

research. 
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