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Abstract – 

Designing a building, so that it adheres to all the 

relevant applicable constraints imposed by 

construction codes to cultural preferences to the 

owners’ styles and aesthetics, can be a daunting task, 

requiring many laborious hours of review and 

modification. Given the increasing adoption of 

Building Information Modeling (BIM) in the design 

process, automated model checking is a pragmatic 

approach to expeditiously identifying errors that 

may otherwise cause issues later in the building 

phase. A variety of methods have been proposed, but 

they are opaque regarding the rules they consider, 

and they do not allow users to edit these rules. In this 

paper, we describe a simple, yet extendible, language 

for specifying building rules and a method for 

evaluating these rules in the context of a BIM 

instance, in order to assess the compliance of the 

building with these rules.  
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1 Introduction 

Building Information Modeling (BIM) has become a 

key part of the design and management process for 

Architecture, Engineering, and Construction (AEC). It 

supports the 3D visualization and design of buildings, 

while also making explicit the non-geometric properties 

of, and relationships between, objects. While this is 

extremely useful and valuable information for the 

domain experts, it can be an overwhelming amount of 

data for bigger buildings with complex models. Each 

additional object in the model implies multiple new 

relationships between this new object and existing 

objects, which increase exponentially as the final model 

takes form. The process of designing buildings can be a 

complex and error-prone task, given the attention that 

needs to be paid to each design consideration. Mistakes 

can be made if a designer is not aware of the 

ramifications of their design choices and, unless 

identified early, they can lead to inefficiencies and 

potentially excessive additional costs in the future [1]. 

Checking a BIM model against a set of design rules 

has been a major topic in BIM research for over a 

decade, and yet no broadly available solutions exist to 

support rules from a variety of sources, such as 

governing agencies, handbooks, and builders. While 

some model-checking software systems exist, they 

either require that their users possess a strong software-

programming knowledge to configure them with rules 

of interest, or they are black boxes, not configurable at 

all. Since it is unlikely that all stakeholders will ever be 

able to agree on a single immutable set of rules, 

applicable to all buildings, these products are 

fundamentally limiting the wider adoption of automated 

model-checking of buildings. Other attempts at 

automated model checking have taken the Natural 

Language Processing (NLP) approach, aiming at 

automatically transforming rules from human-readable 

specifications into programmatic executable code. 

While these methods have many benefits in terms of 

ease of use, there is usually far too much leniency in the 

written language, which makes it impossible to process 

automatically and accurately; as a result, these methods 

are fundamentally limited in their capacity to capture 

the requirements around compliance checking.  

Our methodology is grounded in the intuition that 

there can be no effective “one-size-fits-all” approach to 

the problem [2]. In fact, we suggest that model checking 

be organized around different levels, appropriate for the 

level of programming expertise of the stakeholder 

checking the model. Moreover, all levels of experience 

should be able to work on a single open platform and 

use the Application Programmable Interface (API) that 

they feel most comfortable with. This is because there is 

a trade-off between the complexity of the rules, the 

expressiveness of the language used to specify them, 

and the ease of use. While some rules may require 

intricate functions that can be difficult to formulate, a 

substantial portion of rules can be described using 

simple logic and standard geometric relations. 

In this paper, we describe a simple, easy to use, 

logic-based language for describing rules. Our language 
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is expressive enough to cover a wide array of rules, and 

we argue that, in principle, it can be extended to 

broaden its coverage.  

The rest of this paper is organized as follows. We 

first outline some of the previous approaches in the 

related work in Section 2. Our methodology is described 

in Section 3. Section 4 contains discussion points on our 

methodological assumptions and how the language and 

rules fit in the larger picture. Concluding remarks are in 

Section 5. 

2 Related Work 

Solibri. When researching compliance-checking tools, 

Solibri Model Checker (SMC) [3] is frequently as one 

of the few tools specifically built for the purpose of 

checking BIM models. SMC takes as input a building 

model in form of the BIM industry standard of Industry 

Foundation Classes (IFC) [4]. While the available 

rulesets, initially from the Norwegian Statsbygg 

handbook [5], can be modified by the end user (by 

combining rule sets and deleting rules), there is limited 

support for editing rules in the form of changing the 

parameters (but not the form) of the provided rules. 

Additionally, there are a few rule templates that can be 

manipulated, however, full customization of rules can 

only be done through the SMC API, which is not open. 

There are a number of research papers that report 

how different checks might be implemented using the 

available rule templates [6], [7], and [8]; however, these 

are black-box approaches and it is impossible to 

comment on their accuracy, efficiency, generality and 

expressiveness. 

 

Country-Specific Implementations. Model-checking 

tools have been implemented for the purpose of 

evaluating requirements of governing bodies, with 

differing levels of success. Singapore’s CORENET 

ePlanCheck has been noted as the most successful 

implementation, since, at one point, it was mandatory as 

part of the government’s building requirement 

legislation [9]. In Australia, DesignCheck [10] was built 

on the Express Data Manager (EDM) Model Server but, 

to the best of the authors’ knowledge, it has since lost 

support. The General Services Administration (GSA) in 

the United States mandates that their project models be 

checked with rules implemented within SMC [9]. 

 

BIM API. While not specifically model-checking tools, 

BIM editors, such as Autodesk Revit [11] and 

Graphisoft ArchiCAD [12], provide APIs (the former 

public while ArchiCAD’s requires permission) that 

allow access to the model’s internal structure and object 

database and therefore, can, in principle, be used for 

model checking. This requires a high level of 

programming knowledge even for the simplest checks. 

To address this challenge, some tools have been 

developed to perform the same functionality in a visual 

environment. These include tools such as Autodesk 

Dynamo [13], which works on the Revit platform, and 

Rhino Grasshopper [14]. These two tools are both 

graph-based visual editors that have some scripting 

available - Dynamo’s scripting being in Python rather 

than C# as the Revit API. 

BIMServer [15], an opensource IFC model 

repository platform, has a model-checking plugin, 

however, it requires direct coding in JavaScript. The 

scripts are then linked to the model for execution. This 

also requires programmatic coding knowledge and a 

strong understanding of the IFC vocabulary and syntax. 

 

Semantic Web Ontologies. More recently, there has 

been a conceptual shift in model-checking approaches, 

given the emergence of semantic-web technologies. 

Specifically, newer methods have worked with 

extendable IFC based ontologies of the BIM model to 

query for design flaws. While this technology can be 

useful in extending the data schema, the query 

languages require a steeper learning curve. The basics 

of this approach are outlined in [16]. 

 

Natural Language Processing (NLP). As we 

mentioned in the introduction, attempts have been made 

to parse natural-language rules from design handbooks 

and regulation texts. While such approaches could 

potentially simplify the rule-creation process, many of 

the natural-language rules lack the clarity and 

unambiguity required to be directly parsed without any 

human intervention or interpretation. 

One of the more commonly cited approaches in this 

vein is that of Hjelseth who used a four-sentence 

component classification to parse natural language rules, 

namely Requirement, Applicability, Selection, 

Exception (RASE) [17] [18]. Another use of NLP has 

been to identify information from rules that is missing 

or may need to be added to models [19]. 

 

Rule-Checking Languages. The Building Environment 

Rule and Analysis Language (BERA) [20] was 

developed as a domain-specific programming language 

for model checking. The concept is built on providing 

model-checking capabilities without the need for precise 

knowledge of general-purpose programming languages 

[21]. However, the language derives heavily from Java 

which may be difficult for non-programmers and it is 

built on the Solibri IFC engine, and therefore is still 

quite opaque. 

 

Visual Programming Languages (VPL). Some 

approaches have taken the Rule Languages one step 
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farther by adding a visual component to them, in the 

same sense that Dynamo is a visual language for Revit’s 

API. This is intended to allow for more complex rules to 

be created without adding the need to code 

programming. Check-mate [22] first introduced this as a 

very simple puzzle-based interface that allowed 

connecting pieces that together would form a structured 

rule, however, the expressiveness of this language is 

limited. The Visual Code Checking Language (VCCL) 

took a node-based approach, calling it a “white-box” 

approach with the available nodes to be extendable as 

the project matures [23], although, to the best of our 

knowledge, geometric properties and relations cannot be 

expressed, unless precalculated as properties. 

3 Methods 

Our methodology for rule checking follows the four-

stage process outlined by [9]: (i) Rule interpretation, (ii) 

Model preparation, (iii) Rule execution, and (iv) 

Reporting. The following subsections outline our 

approach to each stage. 

3.1 Rule Interpretation 

In our work, we have opted to work with a custom, 

structured rule language approach. As many rules are 

inherently logic-based and BIM can be viewed as a 

database for building properties and relationships, our 

language derives much of its structure from 

mathematical logical reasoning and database languages, 

such as Structured Query Language (SQL). As 

Niemeijer et al. [22] suggested, it is easy to see the 

similarity between a statement “For every x in Real 

Numbers…” in mathematics with “For every Window…” 

in building regulations. As BIM is a collection of 3D 

objects, their properties and the relationships among 

them, we define a model as a set of objects and a set of 

relationships. Therefore, similar to SQL, our rule 

language expresses queries on two sets or tables (the 

FROM element) and determining the result (the 

SELECT element) of a logical expression (the WHERE 

element). The exact implementation does not use a 

specific database query language; we simply use SQL to 

illustrate our rule language. Figure 1 describes one 

example of a how a rule can be interpreted from natural 

language to our proposed rule language. 

3.2 Model Preparation 

Data in IFC is structured in a highly complex 

manner as an objects’ mesh representation can take the 

form of extruded solid, Boundary Representation 

(BREP), or their combinations. This implies that, before 

the rules can be evaluated, the BIM data must first be 

transformed into structural objects that support efficient 

geometric calculations. Similar to [24], our method 

parses the model into an internal object structure that 

includes a global triangulated mesh, a local triangulated 

mesh, and a global bounding box that contains the 

direction and dimensions of the object in 3D space; a 

mesh being a series of vertices grouped into sets of three 

forming triangular boundary faces. Every object with 

type nested under IfcElement is extracted and placed in 

the set of objects that can be checked. 

Once all the IFC objects have been read, our method 

constructs and adds to the model several different types 

of Virtual Objects (VOs) which, we define as objects 

that represent complex, multi-object relationships. By 

this definition, some VO types are already included in 

the IFC vocabulary, such as IfcSpace and IfcSite for 

example, nested under IfcSpatialElement. We extend 

this list of possible VOs to include IfcCorner, as shown 

in Figure 1, which is the connection between IfcWall 

objects. VOs have geometric bounds and therefore are 

represented internally much like IfcElements. The major 

difference between the two is that VOs are created 

based on IfcElements and thus depend on them, whereas 

IfcElements have no strict dependence relations. 

Properties of objects and object relations are the 

Figure 1. An example of a design rule in natural language converted to our rule language. Note that in 

IFC, there is not type IfcDishwasher or IfcCorner and the Distance function is not explicitly defined as a 

relation property. These three elements exemplify the three proposed extensions of our language namely 

Virtual Objects (IfcCorner), implicit geometric object relations (Distance), and expansion of the BIM 

object type hierarchy (IfcDishwasher). 
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underlying items being checked by the rules. However, 

these must be implicitly calculated from the model’s 

geometric data. The geometric properties of objects, 

such as “Width” and “Height” for example, can be 

calculated directly on the object’s mesh, while 

geometric-relation properties, such as “Distance” and 

“Overlap”, must be derived from calculations between 

the two object meshes. 

3.3 Rule Execution 

All geometric properties and VOs are calculated on 

a need-to-know basis, thereby intertwining it with the 

model preparation. As an example, the distance between 

two objects of a certain type is not calculated unless it is 

necessary for a rule. Once calculated, it is cached, and 

can be reused as necessary, until the complete set of 

rules has been evaluated and the building model-

checking is complete.  

An interesting challenge is how to archive the 

computations performed, i.e., the VOs and the relations 

among objects, in support of the complete model-

checking process. In principle, there are two choices: (a) 

they may be saved with the building model itself, or (b) 

they may be saved in a separate data structure but with 

references to the building model. 

Should the VOs and properties be saved to the 

model, it would be necessary to develop a management 

process to remove the results of individual rule 

evaluations as the objects to which the rules apply are 

modified. For instance, if the “Distance” relation 

property was calculated but the dishwasher has been 

moved in the new model version, then the original 

“Distance” property should be removed and recalculated 

if required. 

If the building model editor is capable of flagging 

the objects that have been modified since the last model 

check, the model check could recalculate the VOs and 

properties that depend on those modified objects. This 

would theoretically expediate the subsequent model 

checks. 

The safer, more conservative, choice is to assume 

the building model has not been checked previously and 

that all VOs and properties must be newly calculated 

and, if existing, then overwritten by the new values. 

This is the current practice in our prototype, however, 

we are currently investigating the most efficient way to 

save and flag changes in our editor. 

3.4 Reporting 

Finally, all results need to be relayed back to the end 

user or application. This is returned in the form of an 

object set, along with the rules that have been evaluated 

relevant to those objects, and the result of the rule 

evaluation. While returning all results is important, the 

reports may also be narrowed down to only the failed 

rule instances. This allows the client application to parse 

the result information, graphically display the objects 

that failed the rule, and display the rule information 

including the error level of the rule.  

4 Discussion 

As validation for the proposed research, we have 

created a prototype model-checking .NET library, as 

seen in Figure 2. 

The library is used by an in-house Unity-based IFC 

editor of building interiors that is currently capable of 

Figure 2. Current implementation of the IFC editor and model checking package. 
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reading an IFC file, displaying the model in 3D, and 

enabling a user to review an object catalogue and add 

IfcSystemFurnitureElements to the IFC model.  

The underlying IFC model can be passed to the 

model-checking method, which is currently configured 

with an initial rule set, provided by our industrial 

partner. The rules in this initial set were specified in our 

language, and subsequently implemented into source 

code used by the model-checking module. The 

implementation process is currently manual, but we 

have developed a library of basic functionalities for 

computation of VOs and numerous geometric functions 

(i.e., for calculating object height and width, and 

distance between objects) and we are currently working 

on a model-driven method for automatically 

transforming rules into source code relying on this 

library.  

After execution, the model-checking method returns 

the results for each of the rules. A rule result includes a 

pass/fail boolean as well as each instance of the set of 

objects that were checked against for the particular rule 

and the result of that instance. 

For example, for the rule in Figure 1, an object set 

instance would be dishwasher1 and corner1, which 

would have an instance result of pass/fail. The rule 

result is the collective result of the ANY/ALL/NONE of 

each object instance and their corresponding instance 

results. The IFC editor is therefore able to highlight the 

instances where an object fails a particular rule. The VO 

meshes are also accessible and can optionally be 

displayed in the IFC editor. 

Since the majority of these rules deal with 

furnishings and appliances, there is an additional stage 

in the model preparation that is required but not yet 

implemented. In addition to restructuring the object 

representations into our mesh objects, we also believe 

the object type hierarchy within the IFC schema needs 

to be extended. Furniture and appliance items typically 

fall somewhere within either IfcFurnishingElement, 

IfcFlowTerminal, or IfcBuildingElementProxy, with 

each of these being the leaf or the second lowest level of 

the hierarchical tree. While it is possible to add a 

property to each object that states explicitly the object 

type (as in the current implementation), we believe 

more specific IFC types, such as IfcCouch, IfcFridge, 

etc. are required. Additionally, this hierarchy should be 

extendable such that new types defined later should be 

included. Figure 3 demonstrates a subset of the IFC4 

[25] schema with examples of additional object types. 

For the purpose of this study, we used the object 

name to determine automatically whether an object can 

be categorized, however, the onus is on a more 

intelligent BIM editor to infer the most specific type of 

the object, beyond IfcElement. It is also imperative that 

objects do not fall under multiple categories or are 

compositions of multiple other objects. For instance, 

difficulties can arise when a collection of objects, such 

as multiple chairs surrounding a table, are modeled as a 

single object. Therefore, good modeling practices 

should be adhered to the largest extent possible. 

Other issues encountered included the direction of 

the objects not always being standardized in IFC, or at 

least by the BIM editors that export the models. 

Therefore, relationship properties such as behind and in 

Figure 3. A) IFC object types above the dashed line represent a subset of the current IFC4 schema. B) 

IFC object types under the dashed line indicate sample extensions to the IFC hierarchy; those under 

IfcSpatialElement representing VOs that would be created implicitly from the existing model IfcElements. 
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front of, which appear frequently in our rules, would 

occasionally return erroneous values. We see this as an 

error in the object design, since from an end user 

viewing the model, this error would not be visually 

apparent. 

Finally, while we acknowledge there are many 

possible design rules and that they often come in the 

form of large, text-based documents, we believe that 

future iterations of these rule documents should be made 

in tandem with the rule language rules. This would both 

ensure that text-based rules can in fact be quantified and 

calculated and that automated rule check results are as 

the rule creator intended. The use of NLP may help 

expediate this process but our belief is the onus should 

be on the rule creator to interpret and test rules as they 

produce them. 

5 Conclusion 

In this paper, we have provided a brief introduction 

to our rule-specification language and a model-checking 

method able to evaluate rules in this language on IFC 

building models. Our work aims to connect many 

concepts put forward in previous model-checking 

approaches. Several building model-checking 

approaches exist, each with its own advantages and 

shortcomings. We therefore believe that providing an 

extensible framework to enable different rule sets to be 

expressed and evaluated against different BIM objects 

should each be supported. Each rule, regardless of 

method used for its specification (logical, mathematical 

expressions, or SQL operations on data), should be 

executable in the same process such that future 

applications can take advantage of model checking. For 

instance, we believe model checking can be a useful 

integration into generative design, which for runtime 

optimization would require rules sequences to be 

reprioritized. This will be created in latter iterations of 

the project and will be implemented as part of the 

grander scheme of a BIM service framework. 
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