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Abstract – 

Automated construction involves complex 

interactions between machines and humans. Unless 

all possible scenarios involving construction and 

equipment are carefully evaluated, it may lead to 

failure of the structure or may cause severe accidents. 

Hence monitoring of automated construction is very 

important and sensors should be deployed for 

obtaining information about the actual state of the 

structure and the equipment. However, interpreting 

data from sensors is a great challenge. In this 

research, a methodology has been developed for 

monitoring in automated construction. The overall 

methodology involves a combination of traditional 

model-based system identification and machine 

learning techniques. The scope of this paper is 

limited to the machine learning module of the 

methodology. The efficacy of this approach is tested 

and evaluated using experiments involving the 

construction of a steel structural frame with one 

storey and one bay. The construction is carried out 

by a top-to-bottom method. During the construction 

of the frame, 99 base cases of normal operations are 

involved. 158 base cases of possible failures have 

been enumerated. Failure cases involve, for example, 

certain lifting platforms moving faster than others, 

improper connections of joints, etc. Strain gauges 

and accelerometers are installed on the structure 

and the data from these sensors are used to 

determine possible failure scenarios. Preliminary 

results indicate that machine learning has good 

potential for identifying activities and states in 

automated construction. 
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1 Introduction and Background 

The construction industry is one of the oldest and 

biggest industries in the world. Diffusion of the latest 

technology is difficult in construction compared to other 

industries due to diverse parties and uncertainties 

involved in construction projects. Development of 

construction technologies is highly influenced by the 

innovative technologies in other fields. Introduction of 

robotics and automation in construction is inevitable 

due to advantages such as improvement of productivity, 

reliability and quality, enhancement of working 

conditions, safety, component standardization, 

workforce simplification and savings in lifecycle cost as 

well as labour cost [1].  

Automating the construction processes involves a lot 

of complexities in micro-level details. Machines cannot 

anticipate certain conditions which may look obvious to 

a human being. This may lead to either failure of the 

structure being constructed or severe accidents or both. 

Hence monitoring of automated construction is of 

paramount importance.  

2 Automated Monitoring of Construction 

Sensors are widely used for automated monitoring of 

constructed structures as well as structures under 

construction. In structural health monitoring, 

constructed structures are measured to check for the 

presence of defects or reserve capacity [2]–[4]. 

Construction activities are being monitored for ensuring 

various requirements such as safety practices [5], the 

productivity of the workers [6] and the progress of the 

work [7]–[9]. Sensor-based monitoring to ensure the 

stability of the structure is rarely studied. Cho et al. used 

strain measurements to predict the conditions of 

collapse for scaffolding structures using machine 

learning [10]. This method requires an accurate model 

of the scaffolding as input, which might not be available 

in most of the construction sites. Other than temporary 

structures, there are cases of monitoring of construction 

of high-rise buildings. Choi et al. studied column 

shortening effects of high-rise buildings with wireless 

strain sensing system in real-time [11]. The sensors are 

embedded in the column while it is being constructed. 

Measurements with the sensors and transferring the 

measured data through a wireless sensor network are 

automated through this system. However, from the 

monitored column shortening data the managers have to 
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take appropriate corrective actions manually.  

It is evident from various examples discussed above, 

that conventional method of construction can be 

improved with an automated monitoring system. For 

ensuring safety and reliable operations, an automated 

monitoring system is a necessity for automated 

construction. The degree of automation which can be 

attained in construction depends on to the extent to 

which micro-activities can be automated. This also 

depends on how well the control information is 

collected and coordinated to achieve overall monitoring 

of the entire structure. However, Sensor-based 

monitoring of safety and stability of an entire structure 

being constructed is not well explored yet.  

3 System Identification in Construction 

 

Automated construction requires rigorous 

monitoring to ensure the safety and stability of the 

structure. Appropriate sensors at optimum locations on 

the system will give necessary data about the system. 

The main research question is: How do you make sense 

of data from the monitoring system to take decisions 

about the construction process? For this, the actual state 

of the structure being constructed has to be identified. 

This can be achieved by System Identification.  

System Identification appears to be a promising 

methodology which can be adopted for monitoring of 

automated construction. This methodology is widely 

adopted in various fields of engineering, especially for 

structural health monitoring in civil engineering [12]–

[15]. The measurements from already existing structures 

are used for assessing their condition by system 

identification. Various methods for identifying the state 

of the constructed facilities are discussed in detail in a 

report published by ASCE in 2011[16]. However, the 

possibility of applying system identification in 

monitoring automated construction and stability of the 

structure being constructed has been not explored so far. 

Successful interpretation of measured data is highly 

dependent on the measurement system as well. In order 

to gain maximum useful information with minimal cost, 

the measurement system has to be systematically 

designed.  

Most of the well-established system identification 

methods in construction require models or prior 

information about the structure. But in ongoing 

construction, the structure changes continuously. In this 

context, a rigorous approach free of models would be 

much more appropriate for monitoring. Machine 

learning techniques which are entirely data-driven opens 

up a possibility here.  

A machine learning technique, Support Vector 

Machine (SVM) is proven to be successful in solving 

various complex construction management problems 

and acts as an efficient support system for decision 

making[17]–[22]. With careful selection of parameters, 

SVM gave better identification of construction activities 

compared to conventional system identification methods 

from strain sensing data [8].  

4 Objective 

The overall objective of this research is to develop a 

framework based on system identification which can be 

used to monitor automated construction of a structural 

frame. Conventional model-based system identification 

methods, as well as model-free approaches based on 

machine learning, were explored for this task. However, 

this paper focuses only on a machine learning based 

framework for monitoring. In particular, the feasibility 

of using support vector classification is explored. More 

complex deep learning models such as convolutional 

neural networks will be studied in the future. The 

machine learning module will eventually be integrated 

with conventional system identification techniques in 

order to develop a hybrid strategy that is most effective 

for the task of automated construction monitoring. 

5 Methodology  

The methodology adopted in this research involves 

experiments and data analytics. A prototype of an 

automated construction system was developed and 

experiments were conducted in controlled settings. 

 

Figure 1. The partially constructed structural 

frame on the automation system 

The automated construction methodology adopted in 

this study follows a top to bottom method of 
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construction [23]. In this method, the structural frame 

for the roof is constructed first and the lower part is 

constructed sequentially by adding one module of a 

column at a time, followed by the coordinated lifting of 

the finished structure. The advantage of this type of 

construction is that all the activities are performed at the 

ground level and heavy equipment such as tower cranes 

are not needed. Currently, the coordinated lifting 

operation is automated, whereas the connection of 

modules of the members is done manually. Higher 

levels of automation are planned for the future. 

The structural frame used in this study consists of 

circular pipe sections with couplers as connectors 

(Figure 1). The scaled model of a one bay one storey 

structural frame has six columns (Figure 2 and 3). The 

automation system consists of 6 lifting machines at each 

column position (Figure 1). Each individual machine in 

the system has 2 ton lifting capacity. 
 

Figure 2. Front view of the structural frame with 

the location of sensors (All dimensions are in 

mm) 

 

 

Figure 3. Plan of structural frame with the location of sensors (all dimensions are in mm) 

 

6 SVM based framework for Monitoring 

Automated Construction 

To monitor the state of the structure being 

constructed and the construction operations, a machine 

learning based monitoring framework is adopted in this 

study (Figure 4). This involves two major steps, training 

and predictions. During the training phase, the 

automated construction of the structural frame is carried 

out in controlled conditions within the limits of 

technical feasibility. Measurements from various 

sensors deployed in the structure are collected 
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continuously during the automated construction process. 

The measured signals are analysed and features for 

recognising the patterns are extracted. The patterns of 

measurements (PTij) recorded during the tests for each 

combination of measurement location (i) and operating 

condition (j) are used to train the algorithm. This 

involves patterns of measurement during normal 

operating conditions as well as failure conditions. SVM 

identifies each operation state by binary classification. 

The data corresponds to the operation to be identified is 

labelled as positive class and all other operations are 

labelled as negative class. In linear classification, the 

function or discriminant which separates the classes will 

be a hyperplane. The equation of the discriminant is 

obtained by maximizing margin, which is the distance 

between the nearest data points from either class to the 

surface. 

 

Figure 4. Machine learning based system 

identification methodology 

Then controlled tests are performed and 

measurements are recorded (PPij). Based on the training 

data set, the algorithm will predict the operating 

condition.  

7 Experimental Validation 

Accelerometers (AM) and strain gauges (SG) are 

placed on the structure for measuring the vibration and 

strain during automated construction. The locations of 

sensors are shown in Figure 2 and 3. Totally 9 strain 

gauges and 8 accelerometers are deployed on the 

structure. 6 strain gauges are placed on the top of beam 

members at midspan and 3 strain gauges are placed on 

the top-level column modules at mid-height. 120-ohm 

linear strain gauges with 5 mm gauge length are used 

for the study. Monoaxial piezoelectric accelerometers 

are used for vibration monitoring. It has a measurement 

range of -5 g to +5 g with 1000 mv/g sensitivity. 4 out 

of 8 piezoelectric accelerometers are placed under the 

universal joints at each corner, 2 are placed under the 

long beams at midspan and rest of the 2 are placed on 

first level columns at mid-height. 

First, the structure is constructed in perfect lifting 

conditions without errors in the assembly. Later, various 

failure criteria such as differential settlement and 

overturning are systematically introduced. Table 1 

shows all the normal operating conditions and potential 

failure conditions involved in the construction of a one 

bay one storey structural frame with 5 levels of column 

modules. There are totally 257 cases of operation 

involved in constructing the structural frame in the 

current configuration with the automation systems 

developed. However, only a limited number of cases 

can be tested experimentally. 

Considering the symmetry of the structure and 

practical operating conditions, the cases which have to 

be experimentally tested is limited to 70 without losing 

major details. The wired sensors are placed at the first 

level of the beam and column assembly in the current 

set of experiments. Hence connection of the beam 

assembly is not tested in this stage. Future experiments 

in which wireless communication strategy is used, the 

beam assembly will also be tested. While testing the 

failure cases, faulty conditions which will lead to 

potential failure of the structure during construction will 

be incorporated. Then the automated construction is 

continued and measurements will be taken. If we 

introduce a faulty condition, for example, an improper 

connection between modules of a column member, the 

pattern of strain and vibration will be different 

compared to the patterns of measurements 

corresponding to normal operation cycle. 

The measurements taken during normal as well as 

failure cases will be analysed to arrive at features to 

train the algorithm. Each case of operation is repeated 6 

times. 5 sets of data are used for training and 1 set of 

data is used for prediction. Starting time, ending time 

and duration of each operation is recorded manually in a 

time tracking excel sheet. Results of prediction are 

compared with this recorded data. The accuracy of 

prediction is calculated as a percentage of the total 

number of data points classified. Linear SVM classifier 

with an error penalty value 10 is used for this study.  
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Table 1. Total normal operating conditions and failure conditions in the automated construction 

Sl. No. Cases Conditions of Operation 
Number 

of Cases 

 
NC Normal Operating Conditions 

 
1 NC1 Connection of Beam Assemblies 2 

2 NC2 Coordinated Lifting of Finished Structure 7 

3 NC3 Lowering of Supports 30 

4 NC4 Addition of Column modules 30 

5 NC5 Lifting the support until it takes the load 30 

Total Number of Normal Cases 99 

 
FC Failure Conditions 

 
1 FC1 Non-contact of Supports after adding Column modules 30 

2 FC2 Support moving faster during Co-ordinated Lifting  42 

3 FC3 Improper Connection of Column modules 36 

4 FC4 Improper Connection of Beam modules 40 

5 FC5 Accidental Loading on the structure  10 

Total Number of Failure Cases 158 

Total Number of Cases 257 

 

More than 50 operations are involved in the 

construction of a structural frame in 3 different levels of 

assembly by top to bottom automated construction 

method. This paper shows the classification of 3 

different operation states. The idle state is the condition 

when the machine is switched on and the constructed 

structure is supported by all lifting supports, but no 

other construction activity is going on. This state gives 

the ambient vibration readings of the constructed 

structure. The normal coordinated lifting of finished 

structure (NC2) is the lifting of the constructed structure 

equally by all lifting supports for the assembly of next 

level of column modules beneath it. The failure 

condition considered is one of the supports moving 

faster during coordinated lifting (FC2). If this condition 

continues beyond a certain time, it leads to the 

overturning of the structure. The failure conditions are 

tested carefully in such a way that it will never be 

extended until the actual failure of the structure. 

The data is acquired at a sampling frequency of 200 

Hz. Millions of data points are generated from each 

experiment. Observing the pattern of strain and 

vibration measurements, average (AV) and standard 

deviation (SD) over moving time windows are found to 

be suitable features for recognizing the pattern of 

measured signals. In order to capture the change in 

pattern during sub activities, measurement data 

corresponds to each operation at each location is divided 

into 3 time windows and AV and SD are calculated for 

each part. These features are used to train the algorithm. 

Results of the study are discussed in the next section.  

8 Results and Discussion 

Six different parameters (3 AV values and 3 SD 

values) at each measurement location are used for 

training the algorithm. The algorithm is trained to 

identify three different scenarios; i) idle condition and a 

normal operating condition, ii) a normal operating 

condition and a failure condition and iii) a failure 

condition and idle condition. The prediction results are 

summarized in Table 2. 

It is interesting to see that, just by using the SD of 

accelerometers, the algorithm can predict all operations 

with 100% accuracy. This will help us reduce the 

number of sensors used for monitoring. SD is a strong 

parameter for pattern recognition from vibration data. 

However, SD could not give good results with strain 

data while identifying Idle and FC2. This might be due 

to the small number of data points in support moving 

faster condition as it is a severe failure case which 

cannot be extended for a long-time during experiments. 

AV is not a reliable parameter as it might not give good 

results in all conditions. All the cases selected here for 

classification has average acceleration reading close to 

zero. In fact, including AV in certain cases might not 

even influence the prediction results. 

Among the measurement type, vibration is more 

useful in accurate prediction. Strain data sometimes get 

affected by a minor level difference in the structural 
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frame, temperature or defect in the deployment of the 

sensor. In terms of prediction accuracy, the best results 

are obtained for separation between normal and failure 

cases (NC2 and FC2) among all the three cases. The 

clearly differentiating pattern over time ensures best 

predictions irrespective of parameters used.  

 

Table 2. Prediction results for normal and failure conditions. Each column reporting the percentage of accuracy 

corresponds to a specific combination of features and the type of measurement 

Operations 

Classified 

Percentage of accuracy  

AV and SD of 

AM and SG 

AV of 

AM and SG 

SD of 

AM and SG 

AV of 

AM  

SD of 

AM 

AV of 

SG  

SD of 

SG 

Idle and 

NC2 
100 83.33 100 50 100 66.67 83.33 

NC2 and 

FC2 
100 100 100 50 100 100 100 

Idle and 

FC2 
100 83.33 100 50 100 66.67 66.67 

 

9 Conclusions 

Automated construction of a structure has to be 

monitored continuously and accurately. Sensor data 

have to be appropriately interpreted to take control 

actions during automated construction. The challenge of 

making sense of a large amount of sensing data can be 

achieved by system identification methods. These 

methods have been used in structural health monitoring 

applications. Automated monitoring of a structure using 

this methodology has not been explored. Most of the 

conventional system identification methods in 

construction are limited by the prior information 

required to apply it. Data-driven techniques in machine 

learning are one of the best possibilities for addressing 

these limitations. Machine learning techniques such as 

SVMs have been proven to be capable of solving 

complex problems in construction. However, the quality 

of sensor data collected drives the performance of these 

methods.  

Results from the present study show that an SVM 

based framework for monitoring automated construction 

is feasible. In the current set of experiments, the 

framework has a prediction accuracy of 100% with 

appropriate parameters for training. Depending on the 

type of measurement and operation, training parameters 

(features) have to be selected appropriately. Standard 

deviations of measurement data over moving time 

windows have been found to be very effective in 

accurate prediction. Among the measurement types, 

vibration is found to be more useful than strains. 

Research is currently in progress on the use of more 

sophisticated machine learning models such as 

convolutional neural networks. Formulation of a robust 

framework for automated construction monitoring 

which combines a conventional system identification 

methodology with machine learning techniques is also 

in progress.  
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