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Abstract – 

Machine Learning Algorithms (ML) offer a high 

potential with low manual effort to discover 

appropriate energy efficiency measures for buildings. 

Although many building automation systems (BAS) 

record a high amount of data, technical systems such 

as boilers provide only a few data points per building. 

However, machine-learning algorithms require 

training based on a sufficient number of instances of 

a technical system in order to enable cross-building 

use. 

In contrast to electrical systems, few data sets of 

actual operation of thermal systems are publicly 

available. Since 2012, the monitoring system in our 

test object has continuously provided threshold-based 

data with a maximum resolution of 1 minute. We 

monitor the plants, energy consumption and comfort 

parameters with 9239 data points in total. In this 

paper, we show how our published data set from this 

building is structured. In order to facilitate the use of 

ML, each data point receives a uniform label 

according to a previously developed approach. 

Since the documentation of ML data sets varies in 

the building sector, we show an approach to 

standardize data sets with special datasheets for 

thermal systems to provide sufficient information for 

application of ML. 

We use the Brick Schema, a unified ontology 

standard for the description of topology in buildings, 

which is part of the future ASHRAE Standard 223P. 

We couple this with an approach we developed for the 

structured labeling of data points in buildings. 

We show how to semi-automatically generate 

physical models based on an open-source Modelica 

library from this ontology-based model. We show that 

the models, enriched with real time series data and 

data sheets, are in good agreement with the measured 

data.  

Finally, we show with an ML example that our 

approach based on Brick Schema and Modelica is 

able to deliver ML compliant data sets. 
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1 Introduction 

Machine Learning Algorithms (ML) are increasingly 

finding their way into building energy systems (BES) in 

order to increase the systems’ energy efficiency. One 
application of ML algorithms in BES is the optimization 

of the control system. Further applications are the 

modelling and prediction of behavior of energy systems 

or energy consumption [1]. They can support the 

normalization of metadata of data points [2] or fault 

detection [3]. Since different disciplines use the term 

"data point" differently, we use the following definition, 

which we derived from the use in building automation 

(BA): a data point is an information carrier that 

continuously provides information about a state. The use 

cases and methods for the application of ML in energy 
technology are manifold. [4] and [5] give an overview for 

the application of supervised learning in energy systems. 

Each data point receives a label in the building, the 

so-called data point identifier. Therefore, there is no 

common standard or exchange format for data point 

identifiers for all buildings. This leads to the fact that 

applications in the building are not or only with difficulty 

transferable to other buildings. Thus for ML, most time 

series from BES are unstructured. 

However, a large amount of structured data is 

required for the development and application of most ML 

use cases in BES. These data should be retrieved from as 
many different systems as possible, so that a comparison 

with different building types is possible [6]. Some 

technical system types exist only in small numbers within 

a building, e.g. often there is only one heat pump in a 
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building. In order to develop special classification 

applications for these technical systems, a clearly 

sufficient number of structured time series is necessary. 

[7] shows an approach to structure or classify data 

points of BA in 22 classes. In practice, the data points in 

BA have a higher differentiation. 

Published data sets on buildings or building operation 

originate mainly from the electrical monitoring [8][9] or 

the comfort [10]. If the operation in thermal systems is 

covered, then mainly in 15-minute samples [11][12] or 

for special applications, such as air handling units [6] or 
subways [13]. The 15-minute rate is not sufficient to 

reflect the technical monitoring in control as described in 

VDI 6041 [14]. 

In existing simulative approaches for virtual data sets, 

models of buildings were used to generate a virtual data 

set for the comparison of building consumption [15] or 

synthetic data for Non-intrusive Load Monitoring (NILM) 

were produced [16]. 

For the testing and benchmarking of ML algorithms, 

it has become standard practice to use test data sets. 

According to [17], developers and users of ML 

approaches need a precise description of the data sets in 
order to interpret them correctly. The existing approaches 

for the description of building datasets provide 

information for a limited number of use cases. In 

particular, the data sets do not describe the difficulties of 

data collection or data application. [17] developed a 

comprehensive questionnaire for describing ML data sets. 

However, the use of BES data in ML algorithms requires 

more information that is special. Therefore, in our 

questionnaire, we added suitable questions and removed 

unsuitable questions for BES in [17]. 

Physical simulation models can supplement existing 
data or multiply existing time series with variants of 

technical systems for the application of ML. For example, 

simulations support different operating conditions of a 

wide range of technical systems. However, the creation 

of such simulation models is a very time-consuming 

process, and the reuse of existing data point identifiers 

can significantly reduce this effort. 

Here, the use of a unique machine-readable data point 

identifier is necessary. There are currently countless 

standards and norms that promise universal 

descriptiveness of building data. However, no standard 

can support all requirements for the simple creation of 
simulation models of BES. Building Information 

Modeling (BIM) with IFC4 could help here. However, 

IFC4 describes only few tags in the description of 

metadata for data points [18] and, in a survey conducted 

by the German Architects' Association [19], only 12% of 

the respondents used BIM in projects at all. The approach 

for naming and which we described in [20], together with 

the Brick Schema [21] which will be included in the 

future ASHRAE Standard 223P [22], fulfils the 

requirements for simulation and ML. 

However, to the best of our knowledge, there is no 

combined approach for real-life and simulated time series 

data for the training of supervised learning algorithms for 

classification of rare time series in BES. 

In this paper, we show how to standardize real time 

series data sets in building energy system (BES) with a 

unique machine-readable data point identifier for usage 

in Machine Learning (ML). We propose a questionnaire 

for BES that a data set provider should fill out to support 

the use for ML practitioners. We show that our developed 
toolchain can extract information from data point 

identifiers and use it for the semi-automated creation of a 

simulation model. We also present how our toolchain can 

create a simulated data set of rare time series in the BES. 

In a use case, we demonstrate how ML applications can 

use our simulated data set for the classification of rare 

time series in BES. We point out whether the developed 

approach is suitable for application in ML. 

2 Standardized data sets for timeseries 

data 

2.1 Questionnaire for Time Series Data Sets in 

Building Energy Systems 

In order to standardize the description of data sets, we 

defined a set of questions that an owner of data sets, who 

intends to publish the sets, should answer. We used an 

existing approach [17] and added questions suitable for 

BES. We want to make a user aware of the obstacles in 

the use of the data set. 

The main aspects of these questions are as follows: 

• Motivation for data set creation. 

• Data set composition 

• Data collection process 

• Data preprocessing 

• Data set distribution 

• Data set maintenance 

• Legal & ethical considerations 

The static or dynamic boundary conditions under 

which the data was recorded helps the user of ML in BES. 

This is one question of the questionnaire: “What 

information (static and dynamic) can be given about the 

system(s) in which the data was recorded?” 
The structure and design of the BES has a high 

influence on the energy efficiency of the individual 

components. It is not only decisive which components in 

what dimension the BES contains, but also their actual 

connection plays an important role. A graph-based 

system offers the possibility to map the topology of data 

points and facilities. The topology offers the possibility 

that e.g. all data points of a special plant are searchable. 
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An insight into the influences of connected systems is 

thus conceivable. Related questions are therefore as 

follows: “Are relationships between instances made 

explicit in the data? Are schemas of the technical 

equipment included? Is there a representation of the 

schemas as a graph model?” 

Time series data often have gaps or are not complete. 

Therefore, we have added questions to this questionnaire 

in the section “Data Collection Process”: “How many 

gaps are in the data set? How can a user of the dataset 

recognize them?” 
As the full questionnaire is very extensive, readers 

may refer to the corresponding Github repository for the 

complete questionnaire (https://github.com/RWTH-

EBC/JUDO). 

2.2 Just Unified Data set for building 

Operation (JUDO) 

The building selected for this paper is the E.ON ERC 
main building in Aachen, Germany. It has a variety of 

different energy systems, providing a representative 

example of the building landscape. The energy systems 

include, among others, a combined-heat and power unit, 

a boiler, a geothermal field with 41 boreholes and 

comprehensive monitoring, a chiller, a sorption system, 

facade ventilation units, concrete core activation, 

underfloor heating, radiators. The zones of the building 

include offices, seminar rooms, computer rooms, 

workshops and laboratories. This data set contains 

different usage behavior of different systems at different 

times. More information about the building and the 
operation strategy of the building can be found in [23]. 

We added information about the dimensions of the 

BES and the connection of the systems with the Brick 

Schema to this dataset. We also provided instructions on 

how to interpret the data in the data set. The dataset 

includes all existing data points of the selected plants. 

This includes, for example, all status messages, valve 

positions and set points. Therefore, the data set shows the 

overall picture of the operation of the plants. 

For the first standardized data set, we selected the 

time series of 765 data points of 31 technical devices in 
four representative months. Each of these months 

represents one of the four seasons. The name of this data 

set is JUDO (Just Unified Data set for building Operation) 

and is available at https://github.com/RWTH-

EBC/JUDO. 

This set includes the data points sorted by technical 

system (Table 1) and types (Table 2). 

Table 1. Data points in JUDO sorted by technical 

system (main examples) 

Technical System Number of Data Points 

Geothermal field 221 

Heat Pump 181 

Glycol cooler 68 

Heat Exchanger 57 

Concrete Core Activation 56 

Boiler 29 

Combined Heat and Power 26 

Chiller 8 

Table 2. Data points in JUDO sorted by data point type 

(main examples) 

Data point type Number of Data Points 

Command 240 

Temperature sensors 189 

Status 81 

Alarm 65 

Volume Flow 58 

Position 26 

3 Process overview of generating generic 

simulated data sets 

The whole process of generating Modelica simulation 

models from an ontology-based model (BrickModel) is a 
tool-chain of various special-purpose tools. Figure 1 

shows the various steps of the process. First, a user fills 

out an Input Data File. Based on this file, a tool called 

BuToOn creates a brick model and a data property file, 

in which the user has the possibility to enter further 

information. At the same time, the tool BouGen 

determines the time series data for the boundaries of the 

model. OnWithData creates a common Brick model for 

all inputs. OnToMo converts the Brick model into a 

Modelica model. 

The whole toolchain is written in Python. The 
subsystems of the simulation models are taken from the 

open source Modelica library Aixlib [24].  

In the following, we describe the underlying data 

schema approaches of the toolchain and describe the 

toolchain itself. 
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Figure 1. Process of generating Modelica 

simulation models from an ontology-based model 

3.1 Used approaches 

3.1.1 BUDO Schema 

In this work, data points named by “buildings unified 

data point naming schema for operation management” 

(BUDO) [20] are used for the modelling. A BUDO key 

consists of several parts as shown in Figure 2. Each part 

provides a hierarchy level for the topology model and the 
corresponding simulation model. Information in system, 

subsystem, subsubsystem, medium/position and type of 

the BUDO key can be extracted to determine entity types 

in BrickModel. 

 

 

 

Figure 2. Structure of BUDO Key 

3.1.2 BrickModel 

The BrickModel is based on the Brick Schema 

developed by Balaji et al (2018) [21]. Figure 4 displays a 

sample of Brick’s class hierarchy. Two classes of Brick 

are important for BrickModel: Equipment and Point. 

However, Brick can only describe which components are 

connected, but falls short in describing more detailed 

positions of the individual components, for example 

whether the primary or secondary side of a heat pump is 

connected to another equipment. In addition, the 
Modelica language uses connectors between two 

components. In order to describe the physical connection 

between equipments more precisely and meet the 

requirements of Modelica, we developed another class 

named Port to complement this ontology. One definition 

of these three important classes is as follows. 

• Equipment: "Physical devices designed for specific 

tasks controlled by points belonging to it. E.g., light, 

fan, AHU" [21]. 

• Point: "Points are physical or virtual entities that 

generate time series data. Physical points include 

actual sensors and setpoints in a building, whereas 

virtual points encompass synthetic data streams that 
are the result of some process which may operate on 

other time series data, e.g. average floor 

temperature sensor" [21]. 

• Port: Ports represent the boundary and the physical 

connector of physical devices and store related 

static design data such as nominal mass flow. 

 

Figure 3. Information Concepts in BrickModel 

 

Figure 4. A subset of the Brick hierarchy [21] 

As shown on the left side of Figure 5, we defined 

ports for heat flows, flows, electric currents, weather, 

equipment, comfort, transfer to rooms, control and fuels. 

Ports for heat flow are the most used in this work. 
Primary and secondary ports define the physical position 

of ports. In addition, we defined several data properties, 

which represent the design data of equipments and 

devices. On the right side of Figure 5, there is a subset of 

the data property hierarchy. 

Data properties such as nominal mass flow, nominal 

temperature and nominal pressure difference are defined, 
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which can be used to set corresponding parameters 

required in Modelica simulation model. Furthermore, 

relationships in Brick connect the different entities in the 

building and describe the physical topology. Table 3 

summarizes the definitions of relationships used in 

BrickModel. Figure 3 demonstrates how relationships 

connect entities of different classes with each other in 

BrickModel. 

 

Figure 5. A subset of the port class and data 

property hierarchy 

Table 3 List of the used Brick relationships and their 

definition 

Relationship 

(Inverse) 

Definition Endpoints 

hasPart 

(isPartOf) 

A has some component 

or part B 

(typically mechanical) 

Equip./Port 

Equip./Equip. 

hasPoint 

(isPointOf) 

A is measured by or is 

otherwise 

represented by point B 

Equip./Point 

Port/Point 

feeds 

(isFedBy) 

A "flows" or is 

connected to B 

Port/Port 

3.2 Generating the BrickModel  

The starting point for the workflow is manually 

gathering information and storing them in an Excel file. 

In addition, users can choose to specify the period of the 

time series and the data points they want to integrate into 

the Modelica simulation model. 

If the user has filled out the Input Data File, BuToOn 

generates a BrickModel. The first generated BrickModel 

still lacks some information required by the Modelica 

simulation model. Therefore, BuToOn generates a data 

property file at the same time. The user has to input 
corresponding parameter values for the Modelica Model 

in this file. A tool named BouGen extracts the 

corresponding data from the time series data set and 

writes them into a file readable by Modelica. For the 

requested period, the time series database provides the 

corresponding time series for each data point and 

BouGen stores them in a Modelica-compatible format. 

The tool OnWithData combines the Brick Model 

from BuToOn with the additional information from the 

data property file and the generated files of the time series 

data from BouGen and creates a BrickModel from all 

previous information. 

3.3 Transformation To Modelica model 

In the final step, the tool OnToMo extracts the 

information of the BrickModel and generates the 

corresponding Modelica model. We developed this tool 

using a code templating tool (CoTeTo) [25] and the 
SPARQL Protocol And RDF Query Language (SPARQL) 

[26]. 

The approach to generate Modelica code is template- 

based. CoTeTo supports the template engine Mako [27] 

that allows users to predefine templates for the 

corresponding Modelica code and conveniently store 

templates for each Modelica module in a separate 

template document. 

SPARQL queries specify constraints and patterns of 

triples, and traverse the BrickModel to return those that 

match. Table 4 shows two examples of extracting 
information from BrickModel. 

The first example demonstrates a SPARQL query for 

searching an instance of class Pump. The query searches 

in BrickModel for instances that match the triple pattern 

and return them. 

The second example shows the extraction of the 

physical topology of the model, which is used to connect 

the modules. The existence of the Port class provides 

sufficient connection information for Modelica. This 

query returns the port, which is fed by the specified pump 

port as result. 

After extracting information from BrickModel, the 

toolchain generates the Modelica simulation model. 

Table 4. SPARQL Query Examples 

SELECT ?instance 

WHERE {?instance rdf:type brick:Pump.} 

SELECT ?port 

WHERE { 

ex:BL-4120_._HX-H03_PU-M02_WS.H.SEC_PH 

bf:feeds ?port.} 

4 Modelling Use Case 

To prove the functionality of the tool-chain, several 

use cases are developed based on the main building of 

E.ON Energy Research Center. In total, 13 simulation 
models, 244 modules and 211 connections between 

modules were established and 2153 lines of Modelica 

code were automatically generated. In this section, only 

one selected use case is illustrated: a heat pump system 

with real time series data. As shown in Figure 6, the heat 

pump system consists of one heat pump and four 
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temperature sensors. Figure 7 shows the corresponding 

Modelica model. During the modelling process, our 

developed approach transforms and connects all the 

modules automatically and correctly. In addition, this 

model successfully integrates time series data of 

temperature and mass flow from a database as boundary 

conditions. Moreover, for the control of the heat pump, 

the time series data of the electrical power of the 

compressor are integrated into the model of the heat 

pump. The heat pump does not provide a control signal. 

This creates uncertainty if the signal integrated into the 
model will affect the real behaviour. 

Figure 8 compares the simulated and actual measured 

return water temperatures of the condenser side of the 

heat pump. The blue curves are the simulation results and 

the green curves represent the measured data. It is 

obvious that the simulated data of the heat pump model 

are in good agreement with the measured data, although 

there are still occasional deviations. The Root Mean 

Square Error (RMSE) of the return temperature on the 

condenser side is 1.414 K and the Normalized Root Mean 

Square Error (NRMSE) amounts to 0.086. For the 

evaporator side, the return temperature reaches a RMSE 
of 2.040 K and a NRMSE of 0.156. 

We use this model to generate more rare time series 

for a classification approach. For this purpose, we scale 

the power and mass flows of the heat pump shown here. 

 

Figure 6. BrickModel structure of a heat pump 

system 

 

Figure 7. Modelica simulation model of a heat 
pump system 

 
Figure 8. Comparison of simulation result with 

measured data of heat pump return water 

temperature on condenser side. Corresponding 

to Temperature_Sensor4 in Figure 7 

5 Classification Use Case 

In this section, we demonstrate how generated data 

sets can be used to train algorithms for classification of 

real time series classification. We train ML classifiers 

with both real and generated data points. For this purpose, 

two heat pump temperature time series (T_HP.Cond, 

T_HP.Evap) are generated with the model illustrated in 
Figure 7. We used the following further classes from real 

measurements: 

• room air temperatures (T_AIR) 

• temperature of concrete core activation in room 

automation (T_RA_CCA) 

• temperature of concrete core activation in 

distribution (T_DIST_CCA) 

• façade ventilation units in room automation 

(T_RA_FVU) 

Due to the small temperature difference, the flow and 

return of the CCA and FVU data points are combined in 
one class in each case. The final data set contains the 

following data points: 

• 180 samples from each T_HP.Cond and 

T_HP.Evap 

• 340 samples from T_AIR 

• 76 samples from T_RA_CCA 

• 120 samples from T_ DIST_CCA 

• 100 samples from T_RA_FVU 

Each sample consists of the data point’s label and 

time series data of one month. The used time series have 

a resolution of one minute. We detect and eliminate 
outliers with hampel filter [31]. 

For the training of the classifiers except of heat pump, 

we split the data set into 70% training data and 30% 

testing data. We extract six statistical features, following 

the recommendations published in [28]. We have also 

sorted out time series that did not have any usable 

statistical characteristics. We apply nine of the most 

suitable classifiers for real world classification problems 

231



36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

according to, using the implementations provided by 

scikit-learn [29]. In Figure 9, we present the classification 

scores of the algorithms when applied to the test data set. 

Four out of the nine algorithms reach more than 70 % 

classification accuracy [30]. The best performing 

classifier is “Gradient Boosting” with 80.7% top score. 

For the second test case, we use 10 real temperature 

measurements from both T_HP.Cond and T_HP.Evap to 

our test data set. Figure 10 shows the classification done 

by classifiers. “AdaBoost” classifier correctly assigned 9 

of 10 of T_HP.Cond and 8 of 10 T_HP.Evap. 
We conclude that the training of classification 

algorithms with simulated data also has a high potential 

for data point mapping in modern building automation 

systems. However, for a robust application in building 

automation further investigations are necessary. 

 

Figure 9. Scores of nine selected classifiers 

trained with 70 % of the real data set and tested 

with 30 % of it 

 

Figure 10. Scores of nine selected classifiers 

trained with simulated data sets and tested with 

real data sets of Temperatures of Heat Pump 

6 Conclusion 

In this paper, we presented a data set extracted from 

the real operation of a multifunctional building with 

various energy plants, the Just Unified Data set for 

building Operation (JUDO). We extended a special 

questionnaire for Machine Learning (ML) users with 

specific questions for Building Energy Systems (BES) 

and filled it in for JUDO. This questionnaire can be used 

for further data sets from BES. Consequently, we named 

the data set with a labelling schema for building data 

(BUDO). In future, we provide a Brick model of this. 

We were able to show that our developed toolchain 

can semi-automatically generate simulation models using 
the standardized data point identifiers of time series data 

sets from the operation of BES. Finally, the toolchain 

creates an ML-compatible simulation data set. An 

extension to arbitrary periods and facilities of this and 

other buildings is possible. 

We were able to apply this approach to the ML 

application of data classification. The current approach 

showed first good results but there is still a great need for 

research. We expect that a combination with calibration 

methods could increase the automation and accuracy of 

the approach. We will expand the considered technical 

facilities so that we can simulate a wider field of BES. 
We will extend the existing data set of currently 765 data 

points by further data points. We also consider an 

automatic generation of the currently required static 

information of the technical equipment from data sheets. 
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