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Abstract – 

Construction workers’ behaviour is important for 

safety, health and productivity management. 

Workers’ 3D postures are the data foundation of 

their behaviours. This paper established a 

preliminary 3D posture dataset of construction tasks 

and provided a 3D posture estimation method based 

on 2D joint locations. The results showed that the 

method could estimate 3D postures accurately and 

timely. The mean joint error and estimation time of 

each frame were 1.10 cm and 0.12 ms respectively. 

This method makes it possible to estimate 

construction workers’ 3D postures from 

construction site images and contributes to a data-

based construction workers’ behaviour management. 
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1 Introduction 

Construction workers’ behavior is an important 

factor in construction management. Construction 

workers’ behavior is closely related to safety, health and 

productivities. More than 80% of construction accidents 

are related to workers’ unsafety behaviors [1]. In 

addition, working behaviors, especially working 

postures, durations and work-rest schedules, are closely 

related to musculoskeletal disorders, which are very 

common in construction workers and have caused 

extremely negative effects on construction workers’ 

health [2,3]. Finally, construction workers’ motions, 

such as the number of production cycles, can also effect 

the labor productivity [4]. Therefore, it is important to 

understand construction workers’ behaviors for better 

performance. 

 

Construction workers’ posture data provides a 

foundation for working behavior analysis. For safety 

management, working postures could help to identify 

unsafe behaviors and prevent safety accidents [5,6]. For 

health and sustainability of construction workers, 

posture data could help to assess the workloads of 

different working tasks and mitigate the risk of fatigue 

and injuries [7,8].  For labor productivity, posture data 

has been used for working/rest status identification for 

evaluating work efficiency [9].  The studies have 

demonstrated the importance of workers’ posture data in 

construction management. However, considering the 

complexity of construction site environments and the 

dynamics of construction motions, the posture data 

collection methods used in previous methodologies 

cannot support effective behavior-based management 

due to the inaccurate data, uncomfortableness or 

limitations on indoor working environments. 

 

This study aims to provide a 3D posture data 

collection method for construction workers, which (1) 

could provide 3D joint locations, (2) has no limitation 

on working environments and (3) doesn’t require any 

wearable sensors and thus will not lead to 

uncomfortableness of workers. The method could 

provide the data foundation of posture-based behavior 

analysis and management for individualized unsafe 

behavior identification, ergonomic assessments and 

productivity evaluation. 

2 Related work 

2.1 Previous posture data collection method 

in construction industry 

There are mainly four categories of objects on 

construction sites, namely human, materials, machines 

and environment. For materials and machines, tracking 

technologies such as radio frequency identification and 

global positioning system have been widely used 

[10,11]. For environments, laser scanning techniques 

were used to collect 3D point data for building 

construction site model [11]. This section mainly 

focuses on the approaches for collecting the motion data 

of construction workers. 
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Manual observation was commonly-used to collect 

construction workers’ joint angle data for ergonomic 

assessments [12,13]. Manual observation method 

usually classifies joint angles in to different categories, 

such as 0-30 degree, 30-60 degree and 60-90 degree. 

The results of manual observation depend heavily on the 

observers’ experiences and subjective judgement, thus 

is not accurate enough. In addition, the manual 

observation cannot collect data continuously from the 

whole construction site, thus cannot support timely 

management [14]. 

 

Inertial measurement units (IMUs) have been widely 

used to collect construction workers’ posture data. If 

attached to the key joints, IMU sensors could provide 

the three-axis rotation angle of each body segments, 

which could be used to calculate the 3D joint location if 

given the length of each body segment [15].  Based on 

the 3D posture data collected with IMU, previous 

studies have tried to detect construction workers’ unsafe 

behaviour [16], identify awkward postures [15] and 

estimate productivity [17]. The main disadvantage of 

IMU, however, is the requirement of attaching IMU 

sensors to the human body, which may interfere 

workers’ performance. In addition, such sensors may 

not be suitable for prolonged usage because they may 

lead to discomfort [14,18].  

 

Motion capture systems (e.g., the VICON system, 

OptiTrack and Optotrak) are commonly used in 

laboratories for 3D motion capture and analysis. To 

capture motion data, an examiner needs to set up 

multiple cameras in a laboratory and then put reflective 

markers on the designated locations of an individual’s 

body. The system estimates the 3D position and 

movement trajectory of each marker based on the 

signals of the reflective markers captured by the 

cameras. The reported accuracy of the VICON system is 

as high as 2 mm [19]. In construction industry, motion 

capture systems have been applied to collect 3D joint 

locations for the detailed biomechanical analysis of 

working postures. However, since these motion capture 

systems require the installation of at least 4 cameras 

within 10 m from the attached reflective markers on the 

body of target workers in order to capture the whole-

body posture, it is impractical to use on construction 

sites [20]. 

 

Depth cameras provides a non-invasive method for 

3D posture data collection. Depth camera can provide 

more information than ordinary 2D cameras [21]. There 

are mainly two kinds of depth cameras, stereo camera 

and infrared camera. A stereo camera infers the 3D 

structure of a scene from tow images from different 

viewpoints. If applied on construction workers, the 

method could be used to construction the 3D skeletons 

with 2D images [22]. Infrared cameras could infer the 

depth of each RGB pixels and provide 3D skeleton 

based on machine learning networks [5].  However, as 

for the application on real construction sites, a search of 

the relevant products (e.g. ZED, Realsense D435 and 

Kinect) yielded that depth cameras cannot provide 

accurate 3D joint locations over a long distance. In 

addition, the infrared cameras cannot provide accurate 

depth information in outdoor environments due to the 

interference of sunlight on infrared signals.  

RGB cameras are the most common-seen cameras in 

daily life. Considering the widely use and low cost of 

RGB cameras, pervious research has tried to identify 

construction workers posture motions or cameras based 

on RGB camera [6,23,24]. The methods successfully 

recognized construction workers from site pictures and 

classified postures into squatting, standing or walking. 

However, these methods could only get 2D joint 

information from the images, which cannot support 3D 

posture analysis for accurate behaviour recognition or 

ergonomic analysis.  

 

In summary, above posture data collection methods 

have the following limitations if applied on construction 

sites: (1) intrusiveness: sensor-based methods may make 

the workers feel uncomfortable and even interfere 

working performance; (2) possible poor performance on 

construction sites: depth cameras may not provide 

accurate 3D pose estimation results over long distances 

in outdoor environments; (3) the lack of 3D results: 3D 

poses could provide better support for behaviour-based 

management. Recent progresses in computer vision 

provide possible solutions for the above limitations. The 

following is a review on related computer vision 

algorithms. 

2.2 Pose estimation in computer vision 

 Pose estimation is a classical problem in computer 

vision. With the development of deep learning, the 

performance of pose estimation algorithms has been 

enhanced a lot [25]. The pose estimation algorithms 

focus on mainly two tasks: 1) 2D pose estimation, 

which aims to evaluate 2D joint locations from RGB 

images, 2) 3D pose estimation, which aims at inferring 

the depth of each joint based on 2D joint locations. The 

2D pose estimation algorithms, open pose [26],  has 

been successfully applied on construction sites to 

estimate 2D construction postures, which worked well 

even over long distances or when some parts of the 

body were obstructed [27]. 3D pose estimation 

algorithms, however, performed not very well when 

applied in estimating the postures of construction 

workers. The gaps are 1) previous 3D pose dataset for 

training the 3D pose estimation algorithms are mainly 
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daily life postures, such as sitting, taking and calling, 

which differ a lot with the postures of the construction 

workers, and 2) the structures and parameters of the 

algorithms are not suitable for estimating the 3D 

postures of construction workers.  

3 Research aim and contribution 

Considering above research gaps and limitations, 

this study tries to develop 3D pose estimation algorithm 

that is suitable for the postures of construction workers. 

The method could estimate the 3D joint locations based 

on RGB images in near real time. This method makes it 

possible to continuously collect 3D pose data from 

construction site videos and contributes to 3d-pose-data-

based behavior management, such as identifying unsafe 

behavior postures, estimating joint workloads and 

assessing labor productivity. 

4 Methodology 

This study aims to train a 3D pose estimation 

according to 2D pose with transfer learning [25]. To 

reach the aim, a 3D database of the postures in 

construction tasks was firstly built, then a deep learning 

network was trained based on the dataset.  

4.1 Establish the training database 

The training dataset includes the 3D joint location 

data of construction tasks and the corresponding 2D 

joint locations. A laboratory experiment was performed 

to establish the dataset with an IMU system (3-Space™ 

Wireless 2.4GHz DSSS, OH, USA).  

4.1.1 Collecting 3D posture data 

Participants: A healthy male graduate student, aged 

27 years, was recruited to perform a simulated 

plastering task in a laboratory.  

 

Equipment: The participant was required to wear the 

IMU system to collect 3D posture data. The IMU sensor 

has an accuracy of 1° and an frequency of 50 Hz [28]. 

The IMU system includes 13 IMU sensors. They were 

tightly tied to the head, chest, back, waist, upper arms, 

forearms, thighs and shanks. 

 

Simulated plastering task: After putting on the IMU 

sensors, the participant was instructed to perform a 

simulated plastering task. The participant mimiced the 

motion of plastering an area of 5 meters width and 2 

meters height. To calibrate the IMU system before the 

task, the paricipant was requried to stand with both feet 

closed together and both arms stretched out to the sides 

and held parallel to the ground to form a T shape. 

4.1.2 Data processing 

The results of the IMU system were 1397 frames of 

postures. The data was stored in a BVH file, which 

includesdthe three-axis rotations of each body segments 

in each frame. The 3D joint locations were calculated 

based on the three-axis rotations angles and the length 

of each body segment with Denavit-Hartenberg matrix 

[29].  

 

 

Then the 2D joint locations were calculated based on 

the 3D joint locations with projection matrix. The 

generated 2D joint locations are related to the location 

of the camera. In this study, given the hip joint as the 

origin, the spherical coordinate of the camera is (0°, 

75°, 20 m). 

4.1.3 Dataset structure 

The dataset includes input dataset and target dataset. 

The input dataset is a matrix with 1397 rows and 48 

columns. Each row stores the 3D Cartesian coordinates 

of 16 joints (head, neck, chest, waist, trunk, central hip, 

bilateral shoulders/elbows/wrists/hips/knees/ankles). 

The target dataset is matrix with 1397 rows and 32 

columns. Each row stores the 2D Cartesian coordinates 

of the 16 joints. 

 

For training and testing the algorithms, the dataset 

was divided into two parts. 1000 rows were randomly 

selected from the input dataset and target dataset 

respectively to form the training dataset. The rest rows 

of the input dataset and target dataset were used for 

testing the performance of the algorithm. 

4.2 Network architecture 

The network is composed of several basic network 

unit. Each unit includes a linear layer and an RELU 

layers. The linear layer aims to increase the dimensions 

of the input data to ensure the depth of the networks. 

The RELU layer next to the linear layer could add non-

linearities to the deep neural networks [30]. The residual 

connections could improve generalization performance 

and reduce training time [25]. Figure 1 shows the 

network architecture. 

 

The complexity of the network is decided on the 

width of linear layers and the numbers of the basic 

network units. Complex network could increase the 

accuracy but is prone to overfitting and computationally 

expensive. In the experiments, various combinations of 

the width of linear layers and the numbers of the basic 

network units were tested to decide the proper 

complexity. 
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In addition, batch normalization, dropout and max-

norm constraints were applied to prevent overfitting and 

speed up training. Batch normalization allows us to use 

larger learning rates to accelerate the learning process 

[31]. Dropout randomly drops components from a layer 

of neural network, and thus could prevent overfitting 

and improve the generalization performance [32]. Max-

norm constraints enforce an absolute upper bound on 

the norm of the weight of every neuron, which helps to 

prevent overfitting. 

 

Figure 1. The convergence of training loss 

(learning rate = 10
-3

, batch size = 32) 

5 Experiment and results 

The aim of the experiment is to decide the proper 

network complexity and the weights of every nodes in 

the network. In the following training process, the loss 

function is defined as mean-squared loss and optimized 

with Adam algorithm [33]. The dropout rate is 0.5. The 

max-norm constraint is 1. 

5.1 Network complexity 

As aforementioned, the complexity of the network 

has a great influence on the network performance. This 

experiment aims to find the proper network complexity. 

We change the depth and width of the network through 

edit the number of basic units (2, 3, 4) and the number 

of nodes in each linear layer (512, 1024, 2048). As a 

result, nine different networks were generated. They 

were trained based on the training dataset, and the 

accuracy was tested on the testing dataset. In this 

experiment, the initial learning rate was set as 1e-4, and 

the batch size was set as 32. Each network was trained 

for 400 epochs. Table 1 provides the comparison of the 

performance of the nine networks. 

Table 1. The comparison of the performance of different 

network structures 

No. of 

basic 

units 

No. of 

layer 

nodes 

Training 

loss  
Test 
error 
[cm] 

Testing 
time 

[ms/frame] 
2 512 376.99 24.77  0.09 

3 512 78.29 7.76 0.09 

4 512 37.67 7.64 0.10 

2 1024 29.18 7.16 0.09 

3 1024 21.11 5.42 0.09 

4 1024 16.09 5.39 0.10 

2 2048 13.89 3.46 0.10 

3 2048 9.52 3.23 0.11 

4 2048 8.65 3.42 0.12 

 

Table 1 compares the nine networks according to 

training loss, testing error and testing time. Training loss 

represents the final value of loss function. A smaller 

training loss is preferable. The trained network was then 

used to estimate the 3D joint locations according to the 

inputs data in the test database. The estimation results 

were then compared with the target data. The testing 

error is defined as the mean of the distances between the 

estimated 3D location and the target 3D locations of the 

16 joints. The last column of Table 1 is the time spent 

on estimating the 3D joint locations in one frame. 

 

Based on the comparison of the nine networks in 

Table, it could be found that the increasing the width 

and depth of the network could significantly decreases 

the training loss and the testing error. The network with 

three basic units and 2048 nodes of each layer was 

selected for the lowest testing error.  

5.2 Training the network 

Learning rate and batch size decide the step and 

direction of the training loss decrease, thus are 

important for the convergence of the loss function. This 

experiment tried different combinations of learning rate 

and batch size for training loss convergence and low 

testing error. Based on the comparison of different 

network structures in section 5.1, the network with three 

basic units and 2048-node-layers were used in this 
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experiment. The combination of different learning rates 

(1e-3, 1e-4, 1e-5) and different batch sizes (2, 4, 8, 16, 

32, 64, 128, 256, 512) were tested. Table 2, Table 3 and 

Table 4 show the comparison of training loss, testing 

error and testing time for each  

 

 

Table 2. The comparison of the training loss with 

different learning rates and batch sizes 

LR* 

BS** 

10
-3 

10
-4

 10
-5

 

2 155.02 2348.89 9583.45 

4 50.81 85.68 7113.02 

8 19.60 42.38 6772.76 

16 7.92 23.43 6494.98 

32 5.44 13.76 6175.47 

64 10.11 9.52 5783.18 

128 12.71 8.87 6016.59 

256 21.66 9.44 6953.94 

512 36.92 116.06 8243.36 

*LR represents learning rate. 

** BS represents batch size. 

Table 3. The comparison of the test error with different 

learning rates and batch sizes 

LR 

BS 

10
-3 

10
-4

 10
-5

 

2 62.53* 118.41 169.39 

4 4.88 11.25 153.75 

8 2.51 5.55 148.94 

16 1.44 3.99 142.30 

32 1.10 3.61 134.36 

64 2.76 3.23 125.55 

128 3.60 2.87 126.82 

256 7.60 2.80 136.83 

512 24.46 16.61 150.19 

*The unit is cm. 

Table 4. The comparison of the testing time with 

different learning rates and batch sizes 

LR 

BS 

10
-3 

10
-4

 10
-5

 

2 0.53* 0.53 0.53 

4 0.31 0.31 0.31 

8 0.20 0.20 0.20 

16 0.14 0.14 0.14 

32 0.12 0.11 0.11 

64 0.11 0.11 0.11 

128 0.10 0.10 0.10 

256 0.09 0.09 0.09 

512 0.09 0.09 0.09 

*The time spent in estimating 3D posture of one frame 

of 2D posture. The unit is ms. 

 

According to Table 2 and Table 3, both the training 

loss and testing error reached the minimum when the 

learning rate was 10
-3 

and the batch size was 32. Table 4 

shows that the above combination is also time-saving. 

In addition, Figure 2 shows the process of training loss 

convergence under above learn rate and batch size. 

 

Figure 2. The convergence of training loss 

(learning rate = 10
-3

, batch size = 32) 

5.3 Testing the results 

To this end, the network with 3 basic units, 2048-

node-layers, and trained learning rate = 10
-3

, batch size 

= 32 was selected. Table 5 shows the mean error of each 

joints. The mean error of all the joints is 1.10 cm, and 

the standard deviation is 0.45 cm.  

Table 5. The comparison of the performance of different 

network structures 

Joint Mean error 

[cm] 

Standard deviation 

[cm]  

Waist 0.27 0.28 

Right hip 0.46 0.30 

Right knee 1.25 1.07 

Right ankle 1.51 1.27 

Left hip 0.46 0.25 

Left knee 1.05 0.99 

Left ankle 1.55 1.61 

Chest 0.52 0.32 

Neck 0.91 0.52 

Head 0.94 0.50 

Left shoulder 1.08 0.66 

Left elbow 1.38 0.78 

Left wrist 1.54 0.81 

Right shoulder 0.99 0.63 

Right elbow 1.60 0.78 
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Right wrist 2.16 1.08 

Mean 1.10 0.45 

 

Figure 3 is the histogram of the mean error of the 

joints in each frame. The maximum error is about 3.0 

cm. Most of the errors are between 0.5 cm and 1.5 cm. 

The mean error is 1.10 cm, and the standard deviation is 

0.45 cm. 

 

Figure 3. The histogram of the mean error of the 

joints in each frame  

 

Figure 4 is an intuitive presentation of the estimation 

results. It could be found that the estimation postures 

are nearly the same with the ground truth. 

 

Figure 4. The estimated 3D postures and the 

ground truth data 

6 Discussion 

3D postures of construction workers are very 

important to safety, health and productivity 

management. This method provides a 3D posture 

estimator based on workers’ 2D postures. The results 

show that the method could provide accurate 3D posture 

estimations in nearly real time. The latency time for 

testing one frame on a GTC 1080Ti GPU was 0.12 ms. 

The mean error of each joint was 1.10 cm. The accuracy 

was significantly improved compared with previous 

computer vision 3D pose estimation methods in 

construction industry, the mean joint error of which was 

3.5 cm [34]. 

Compared with previous motion capture methods in 

construction industry, the proposed method was non-

intrusive and could work well in outdoor environments. 

In addition, if combined with 2D posture estimation 

programs, such as Open Pose [35], the method could 

make it possible to collect construction workers’ 3D 

postures continuously and timely, providing the data 

foundation for behavior-based safety, health and 

production management.  

The method has the following limitations and could 

be improved in the future. First of all, the training 

dataset is not large enough. The dataset used in this 

study only includes the postures of one participant 

during plastering, which may limit the generalization 
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performance of the method. In future, a more diversified 

training database should be established, which includes 

the posture data of different construction tasks collected 

from participants of different heights, weights and BMIs. 

Secondly, the 2D postures were generated from 3D 

posture based on projection matrix. In the current study, 

only one projection view was used. In the following 

studies, the 2D postures generated in different views 

could be used to train the 3D posture estimation method, 

so that it could be more applicable on construction sites. 

Finally, the current study aims to estimate 3D 

postures from 2D postures. Future studies could try to 

combine it with 2D posture estimation method from 

RGB images, so that the 3D postures could be directly 

inferred from construction site videos or images. 

7 Conclusion 

Construction workers’ posture data provides the 

foundation for working behavior analysis, such as 

unsafe behavior identification, ergonomic assessment 

and labor production evaluation. This paper established 

a preliminary 3D posture dataset of construction tasks 

and provided a 3D posture estimation method based on 

2D joint locations. The results showed that the method 

could estimate 3D postures accurately and timely. The 

mean joint error and estimation time of each frame were 

1.10 cm and 0.12 ms respectively. This method makes it 

possible to estimate construction workers’ 3D postures 

from the images of construction sites and contributes to 

a data-based construction workers’ behavior 

management. 
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