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Abstract – 

We present a roadmap for guiding public officials 

on establishing platforms for citizen empowerment in 

the smart city. The proposed roadmap is not a 

technical architecture. Rather, a set of paradigms, 

guidelines and references to advanced technology 

approaches that can support building a technical 

architecture. We start from the perspective that the 

smart city architecture is not a venue for services, but 

a domain of innovation. We advocate encouraging 

citizen science to co-create new solutions—in contrast 

to engaging them to inform them or to evaluate 

solutions developed by professionals. We advocate 

giving equal attention to structured and unstructured 

data analysis. We also encourage the adoption of 

adaptable data orchestration tools to help navigate 

and organize the complexity of city data. Finally, we 

provide an outlook on the future trends (such as 

Blockchain and cognitive computing) in urban 

systems decision making.  
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1 Introduction 

Traditionally, cities take a control-room approach, to 

centrally manage and optimize urban systems. The target 

is to develop and use technical operational policies that 

can make cities more sustainable, efficient, comfortable 

and enjoyable (de Waal & Dignum 2017). This is a 

service-user model, where citizens are considered as 

subjects, or, at best, customers. However, the concept of 

e-citizen is far more transformative. First, a smart city 

effectively tracks and is highly responsive to its citizens’ 

opinions, behavior and objectives. Support for behavior 

changes can be the most valuable resource for meeting 

the challenges of climate change and sustainability. This 

is because there is a limit to the extent of possible 

efficiency gains that smarter hardware can achieve. In 

contrast, a limited savings in energy at the individual 

level, if adopted by the crowds, will provide effective and 

lasting impact. Engaging citizens can help find the best 

approaches to support such behaviour change. For 

example, what incentives can be offered to citizens to 

encourage the use of public transit, what new 

technologies or motivations for energy saving can be 

implemented.  

Second, and more importantly, we should move 

citizens from a reactive role of service-recipients to co-

creator of policies. In post-modernist planning theories, 

knowledge is distributed with citizens possessing equally 

valid knowledge to that of professionals. The role of 

planners is not to decide, but rather to seek and actualize 

multiple knowledge(s) to support transformative decision 

making. Collaborative planning approaches span four 

major categories (Linnenluecke et al. 2017): predictive 

(using forecasting); adaptive (adjusting to changing 

conditions); visionary (generating alternatives); and 

transformative planning (co-creation of solutions). 

Transformative planning is not limited to the idea of co-

creation and harnessing community knowledge. It aims 

to empower communities, promote social learning/ 

innovation and foster behavior change.  

We aim to provide a high-level map for 1) the issues 

that should be considered in developing a socially-savvy 

e-city platform, and 2) illustrate the value, relevance and 

interactions between available enabling technologies. It 

is expected that a city manager or a director of capital 

projects will use the map as a benchmark or a starting 

point for scoping an actionable policy for engaging 

citizens, collating their input and supporting their 

collective deliberations and innovation.  

We present here a set of requirements and an initial 

architecture for augmenting sensor data about the 

physical city systems with that of people: their views, 

needs, ideas. The objective is to establish a repository of 

data for the access, use and analytics of (unstructured) 

data in the context of smart city.  
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2 The Smart City  

The complexity of the fusion of data about the 

physical systems (attributes of the infrastructure) with 

that of its citizen (input, views, ideas) is not limited to 

computational issues, but, more fundamentally, to the 

very definition of a smart city. Pardo and Nam (2011) 

view a smart city from three perspectives: i) a mandatory 

technological perspective with a general reference to 

smart hardware and information technology tools.; ii) 

citizen creativity perspective that considers the role of 

citizens in using and generating smart city data; and iii) 

an institutional dimension that refers to cooperation of 

societal institutions with governments to co-develop 

policies and decisions.  These three perspectives 

corresponds to the terms Digital City, Knowledge City 

and Smart Community, respectively. 

In a departure from the control-room approach, 

citizens and civic organizations are empowered to use 

digital technologies to create solution to advance city 

systems. They not only have the right to a share of 

decision making powers, but also an equal right to being 

the source of knowledge and innovation—technical and 

otherwise. Examples of this approach has inspired 

several new applications and concepts: citizen sensor 

networks, DIY-citizenship (Ratto and Boler 2014), 

tactical urbanism (Lydon and Garcia 2015) or hackable 

city-making (de Waal et al. 2017). Such state-of-the-art 

practices use interactive citizen science for pooling 

citizen knowledge across all phases of city management 

including data collection, selecting amongst proposed 

alternatives, definition of the problems to consider, 

generating solutions, initiation of decision making, and 

monitoring actual implementations. This infuses more 

democracy into decision making, harness social 

innovation and allow citizens to act as agents of change. 

In fact cities of the future are described to be 

“territories with high capability for learning and 

innovation, which is built-in the creativity of their 

population, their institutions of knowledge creation, and 

their digital infrastructure for communication and 

knowledge management” (Komninos 2006). The co-

creation of knowledge by citizens and institutions is in 

fact “continuous creation, sharing, evaluation, renewal 

and update of knowledge” (Ergazakis 2004).  

2.1 Collaborative Social Innovation 

Several recent initiatives showcase that a paradigm 

shift towards citizen science in urban areas is viable and 

valuable—for example, Hackerspace (with 1330+ 

physical sites); include Network of ‘Science Shops’: 

scientific research in cooperation with citizens and local 

and national civil society organizations; DESIS-network: 

over 30 design labs supporting ‘social innovation 

towards sustainability’; Global Ecovillage Network: 

network of 500 ecovillages; and Transition Towns: 450 

grassroots community initiatives working on “local 

resilience”. These advocate using sensing tools to 

enhance perception of environmental conditions (ex, 

Extreme Citizen Science); diffusion of solution and 

implementation tools (ex. Citizen Cyberlab); creating 

new sets of data (ex. Mapping for Change); provide open 

access to data (ex. DataShare); collection of idea (ex. 

IdeaConnection); taking collective actions (ex. Hacking 

the City). These efforts entwine electronics, media and 

humans, into co-agents in data and knowledge-

production and decision-taking (Parikka, 2011). 

2.2 Data Challenges for the Smart City 

Smart city data is categorized into structured and 

unstructured data. Structured data follows a formal pre-

defined data model and typically relates to physical and 

technology data—for example sensor and camera data or 

vehicle location. Unstructured data does not adhere to 

specific models. Unstructured data such as social media 

and popular media contents or citizen reviews is a 

fundamental input to any socio-technical analysis of 

smart city systems. This makes unstructured data more 

essential to citizen science, because it helps in 

understanding user needs and in customizing data 

delivery to them. For example, structured data can be 

used to define patterns of use of autonomous vehicles 

(AV) to support predicting traffic volumes or to correlate 

electric vehicles travel patterns to determine best location 

for electric charging stations. Unstructured data can be 

used to represent citizen willingness to support efficient 

mobility and energy usage; best means to operate an AV 

system or fix a broken pipe.  

In general, one of the main challenges for serving data 

to citizens is the manipulation of data (especially the 

unstructured), due to the following challenges: 

Complexity: The complexity of issues to consider in 

any urban decision is increasing. For example, Lambert 

et al. (2011) developed a model to prioritize major civil 

infrastructures projects. It included the following 

fourteen indicators: create employment, reduce poverty, 

improve connectivity and accessibility, increase 

industrial/agricultural capacity, improve public services 

and utilities, reduce corruption/improve governance, 

increase private investment, improve education and 

health, improve emergency preparedness, improve 

refugee management, preserve religious and cultural 

heritage, improve media and information technology, 

increase women's participation and improve 

environmental and natural resource management. 

Multidisciplinary analysis: In addition to complexity, 

the issues are multidisciplinary. For example, 

considering the scope of assessment knowledge, Kabir 

and Khan (2013) enumerated 300 different possible 

issues for analysis. They span seven classes (each class is 
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followed by the number of related issues): hydrological 

resource systems (68), potable and wastewater (54), 

transportation (56), bridges (58), buildings (33), 

underground infrastructures (11) and urban systems (21). 

Subjectivity: many of these issues are quite subjective 

in nature. To help quantify the assessment, a variety of 

quantification approaches have been developed 

(Hoogmartens et al. 2014), including life cycle analysis 

(LCA), life cycle costing (LCC) and cost–benefit analysis 

(CBA). Domain-specific methods were further explored, 

including environmental LCA (eLCA), social LCA 

(sLCA), financial LCC (fLCC), environmental LCC 

(eLCC), full environmental LCC (feLCC), societal LCC 

(sLCC), financial CBA (fCBA), environmental CBA 

(eCBA) and social CBA (sCBA). 

3 The Proposed Architecture: Overview  

The proposed roadmap aims to maximize the 

contribution of smart city systems (hardware and data) to 

empower citizens to lead innovation and knowledge 

generation within the city. The focus is on the know-how 

dimensions, which spans the creation of platforms to 

enable data management, processing, protection, 

visualization and analytics. It is out of scope for this 

roadmap to consider the know-why dimension, which 

models and understands the externalities that impact the 

development and effective management of smart city, 

including economic, legal, political, social and ethical 

issues. Also out of scope is the know-what dimensions 

which focuses on developing policies to create technical 

and process-based standards, and skill development and 

training (Cuquet et al 2017).  

A high-level map that describes the main elements 

relevant to a typical smart city architecture is shown in 

Figure 1. Raw active data is ingested, curated and 

archived in long-term storage. Then data is catalogued 

and metadata and context information are extracted and 

used to tag/ annotate data. This enables searching through 

the “data lake.” This workflow can be divided into 

detailed lower-level workflows that span each step; for 

example data upload and ingestion requires its own sub-

workflow and User Interface.  

The main pillars in the proposed map are as follows:   

 The acquisition and ingestion of intrinsic data. 

Securing access to diversified and easy to use data. 

That is, the data has a higher value if it can be fused 

with other relevant data.  

 Computational services. Much like an API or an 

“app store”, this pillar offers citizens services to 

process data. Here, we assume that a citizen or a 

decision maker is using such data to create new 

products or conduct certain analyses.  

 Modeling Pillar. Much like IFC (industry 

foundation classes), we need formalized models of 

data: rules that describe their behaviors, and basic 

relationships between datasets. How does the 

available data cohere to each other and how does 

the data relate to typical city analyses. Such 

conceptual models of data will require technical 

expertise, which is not easily available to citizens. 

For example, creating a bridge between IoT raw 

data and BIM-based software will enable users to 

access and develop a large number of applications 

without having to manipulate the technical 

architectures of this data (such as understanding 

IFC). Still, a savvy user can use the bridge to 

generate higher order models—without worrying 

about interoperability between the two data models.    

4 Pillar 1: Data Acquisition 

We identify below a set of challenges for acquiring 

smart city data and suggestions for possible solutions 

based on recent advances in data management 

approaches.  

4.1 Data Heterogeneity  

Establishing meaningful data from a multitude of 

structured and unstructured data will remain a challenge. 

For example, how to make sense and integrate CCTV 

data, with sensor data with citizen data. While ontologies 

can be very effective in handling this, their static nature 

will limit their ability to be exhaustive. Different types of 

tools were proposed to solve this problem: 

Fact-finding platforms such as YAGO2 contains 350, 

000 classes, 10 million entities and 120 million facts 

extracted automatically from online sources, with an 

accuracy of 95% (Hoffart et al. 2013). 

Linked data and distributed stream computing help 

manage the high-variety and high-volume data within 

high-velocity activities (Hasan and Curry 2014). The 

combination of linked data tools and stream computing 

tools with machine learning tools will facilitate the 

semantic coupling of know-how knowledge with real 

time data. This creates a realm of self-improving data 

models and associated learning/analytics needed to 

support spot decision making (Curry et al. 2013).  

Edge computing: Decision-embedded analytics that 

have real-time access to big data will facilitate in-

network and in-field analytics (called edge-computing). 

In conjunction with enterprise-level analytics, these tools 

are poised to create higher levels of customization (for 

example, which driverless car is best choice for each 

commuter), real-time operational (what are the best 

evacuation routes for each commuter in the case of 

emergency), and even new business models (for example, 

carbon tax refunds based on usage of energy 

within/outside home) 
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Figure 1. Overview of the proposed roadmap 

4.2 High-Performance Data Access  

Access can be provided by customizable and 

intelligent sharding of the data streams based on 

application and infrastructure requirements. 

Technologies such as Apache Kafka already provides an 

ability to shard relative to the memory capacity of the 

system conducting the analysis. Two of the key 

challenges that must be addressed by any smart city 

architecture are contextualization and federation. 

The architecture needs to enable and include a 

process of contextual sharding. A set of intelligent 

mechanisms at the network edge are required to 

understand specific applications. This ranges from 

understanding their data structures to identifying access 

rights to specific users.  

Another challenge is data federation. How to 

accommodate data query and retrieval functionality from 

multiple individual platforms. MicroELement (MEL) is 

a simplified software used to describe a basic IoT 

computation (Ranjan et al. 2018):  

1. MicroServices: functionalities deployed/migrated 

across different infrastructures (e.g., Docker) 

available across Cloud, Edge, and Things layers; 

2. MicroData: contextual information about i) devices, 

protocols for collecting and sharing data, ii) the 

specific type of data (e.g., temperature, vibration, 

pollution) it needs to process, and iii) data 

management steps, such as storage and access rules. 

3. MicroComputing: executing analysis tasks based 

on historic and real-time data through tools such as 

NoSQL, stream processing, batch processing, etc.);  

4. MicroActuator: interfaces with actuator devices for 

changing or controlling object states in the IoT. 

MEL will need to expose a uniform programmatic 

interface (APIs) to models and analytics, hence, reducing 

the barriers to data ingestion. The new federated API 

suite may utilize the Apache Spark SQL API to benefit 

from its existing interoperability features, in addition to 

other Apache libraries such as Samza and Kafka. The 

API must be lightweight, and enable integration with 

services supported by other vendors. 

4.3 Data Provenance 

Traditional data provenance techniques require 

collection and transmission of large data volumes, which 

is impractical for IoT applications that warrant sub-

second decision making and data processing latency. 

Hence, new techniques are required which can reduce 

and enhance the efficiency of provenance and metadata 
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collection, recording, and transmission. Understanding 

how provenance relationships can be derived from IoT 

data processing activities is a challenge, as precedence 

relationships identifying which output was a 

consequence of an inputs may be difficult to establish. 

One possible opportunity is to develop IoT data 

provenance technique based on Blockchain’s Distributed 

Ledger Technology (DLT) to record lifecycle activities 

on data as it travels through the IoT ecosystem. Another 

hard challenge to solve will be to develop provenance 

techniques than can verify complying with data privacy 

regulation such as GDPR (Berberich & Steiner 2016). 

Undertaking GDPR compliance for statically held data 

(e.g. user information) can be easier to manage, however 

extending this to a dynamic data stream (which may be 

context dependent) remains a challenge. Another 

challenge is when IoT deployments involve more than 

one vendor. Finally, the authenticity of data and 

protecting it against organized campaigns is important. 

The roadmap recommends investing in technology to 

detect and eliminate misinformation and bias (amplified 

through the viral nature of social media) using algorithms 

like WSARE (What's Strange About Recent Events) and 

platforms such as SwiftRiver (Yu et al. 2016).   

4.4 Access Control 

It is important to identify application actors: 

Information flows between actors is modelled as message 

passing. Such messages are to be stated explicitly along 

with identification of the content of such messages. This 

makes it possible to discover which actors have access to 

information items necessary for answering provenance 

use case questions. 

Of equal important is to map out actor interactions. 

This is a network of data items, users with access to them, 

and platform components processing them. 

Finally, identify knowledgeable actors. Any actor that 

has access to an information item is known as a 

knowledgeable actor. The team will associate every 

information item (within a use case) with an actor. For 

each, the necessary provenance functionality is to be set. 

When an information has not been exposed in the 

interactions between actors through message exchanges, 

use cases (in data management system) must be revised. 

4.5 Geo-Distributed Cross-Querying 

In smart city applications, there is a need to curate 

data based on its geo-location. The challenge is to design 

multi-query planning algorithms that can not only map 

queries to different parts of an IoT infrastructure but also 

map that to the requirements of data analytics 

applications. The algorithms are required to also optimize 

end-to-end QoS associated with the query plan, to 

improve resource utility and meet users’ SLAs. Existing 

geo-distributed querying systems were designed for 

managing only static data. They neither consider 

heterogeneous processing infrastructure, nor execute 

queries using standard heterogeneous models (e.g., 

stream processing, NoSQL, SQL, batch processing).  

Event Processing Language (EPL) can enhance the 

performance of existing geo-distributed querying 

systems, EPL can limit the query data size to guarantee 

real-time processing. Hence, EPL has been used in 

majority of stream process platform such as Apache 

Spark, Kafka, Flink and Esper. Similar to SQL, however, 

one of the core limitations of EPL-based querying 

approaches is that they cannot handle heterogeneous data 

stored across multiple types of storage platforms and/or 

programmed using multiple types of storage and 

analytics programming models. 

A more dynamic approach is to find data linkage 

through bottom-up discovery of association patterns. 

New tools such as blockmodeling (part of network 

analysis techniques) allow a platform to detect data 

clusters. Studying the patterns of repeated clusters can 

help discover and designate a set of data templates: a set 

of typical heterogeneous data that can be seen as 

complementary. This can span both the semantic and 

structured data. Machine learning approaches can also be 

very effective in this regard. 

5 Pillar 2: Computation and Generation 

of New Knowledge  

The computation pillar aims to create a bottom-up 

environment to foster collaborative analysis and re-

mixing of data through collaboration between citizen 

scientists. This pillar spans the following features. 

 Data representation: Structure and represent the 

data to facilitate multiple modalities (i.e. different 

models of data logic), exploiting the redundancy of 

different data sources. 

 Data translation: Interpret data from one modality 

to another, i.e., a translator allows the modalities to 

interact with each other for enabling data exchange. 

 Data alignment: bridges among modalities. 

 Data fusion: integrate data from different domains  

 Data co-learning: transfer modality knowledge 

between users.  

The following are some relevant approaches to 

support bottom-up analyses of city systems:  

5.1 Citizen Sensor Networks 

Scientists and engineers are already providing 

interactive cloud-based models to help users (with 

limited or no technical background) to learn, conduct or 

study the use of some of these assessment methods. This 
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can cover purely technical issues such as environmental 

modelling; visualization systems through interactive 3D 

modelling and GIS maps; and even tools to help connect 

mental models with quantitative system dynamics 

(Voinov et al. 2016). Examples includes (Evers al. 2016): 

stakeholder participation in developing an agent based 

model to profile social values; and modelling through 

role playing games (Haase et al. 2013); enhance 

acceptability of environmental models (Wassen et al., 

2011); and environmental models validation (Newig et 

al., 2008). Kishita et al. (2016) developed a review of 

scenario generation for sustainability analysis, which is 

very relevant to supporting citizen science.  

5.2 Gaming 

Gaming has been used to help in recruiting and 

sustaining participants. Evolving as a venue for 

interactive co-creation, games galvanize partnerships and 

provide opportunities for peer-to-peer learning. They are 

also some of the best tools to study “choice molecules” 

(action-outcome combinations) especially when non-

linearities make it hard to communicate system features 

and reactions in conventional learning and dialogue 

processes (de Suarez et al. 2012). 

Cases for the use of games in co-creating and 

studying alternative futures include, for example, the 

game “Paying for Predictions”. It helps in risk 

assessment in relation to resource shortages and disaster 

management in light of climate change. “Ready!” is a 

game that uses narrative to help identify solutions to 

environmental problems. The Rockefeller “Resilience 

game” addresses the disconnection between decisions 

and actions: government or communities not following 

options selected. The game “Before the Storm” generates 

decisions as players think through the various options 

that may be available to them when a particular disaster 

strikes. “Upstream, Downstream” game promotes 

consensus building and social learning through providing 

players with the ability to assign risks based on individual 

views. Through repeated reviews by all, a better 

collective understanding of risk can emerge. The game 

“Dissolving Disasters” considers choices in the context 

of changing probability of, say, rainfall. It is designed to 

rush players into decision making. Later, players are 

given time to reflect on the problem, and, more 

importantly, the decision making process. 

5.3 Application Orchestration 

An IoT application is typically expressed as a 

collection of multiple self-contained data analysis 

activities (e.g., MEL). These activities are orchestrated to 

execute in a specific order with specific rules that 

respond to user requirements. To realize a dynamic 

environment for citizens to collaborate on creating new 

knowledge, there is a need for platforms that can enable 

application orchestration, including the following:  

 Choosing storage and analytics programming 

models (e.g., stream processing, batch processing, 

NoSQL) and data analysis algorithms to seamlessly 

execute in highly distributed and heterogeneous IoT;  

 Dynamically detecting faults across multiple parts 

of the IoT infrastructure;  

 Dynamically managing data, and software available 

in “Things, Edge and Cloud” layers driven by IoT. 

6 Pillar 3: Modelling 

Established models (such as IFC, for example) add 

context and structure to data. Such models represent the 

best means by which technical experts can communicate 

their knowledge to citizens in an indirect way. Because 

such models are limited to the data level, they allow users 

to benefit from the basic rules embedded in the data 

model, but, at the same time, they do not mandate specific 

analysis approach on the users. They act as connectors 

and check-system on data. This is similar to the IFC-BIM 

relationship. Users can be very innovative in their 

programming of BIM without worrying about the basics 

of data structures (they are served through IFC) 

Using flexible data structures foster social learning. 

The proposed roadmap advocate balancing the top-down 

approach of data standards with a bottom-up discovery 

means. For example, the roadmap advocate using 

ontologies (formalized and programmed conceptual 

model) and, at the same time, using folksonomies (ad hoc, 

bottom-up and loose model of concepts). 

On the long term, lifelong Machine Learning is a 

central paradigm in smart city systems. How to discover 

knowledge based on smart search, conduct intelligent 

analysis, and constantly re-train algorithms based on 

newly found knowledge. Recent trends in Transfer 

Learning and multitask learning are task-specific and 

domain-agnostic (Liu 2017). Such smartness is rooted 

and supported by the surge in synthesis research and the 

advancement of knowledge capture and representation 

tools. Synthesis is a type of inferential reasoning that 

recursively integrates inductive thinking (combine 

observations into a larger model) with deductive analysis 

(examining the consistency of a general model to real 

cases). Emphasis in recent years is focused on 

automating the inductive part given the mushrooming 

number of models in all domains. 

6.1 Knowledge Capturing and Representation 

Thanks to amazing advancement in semantic 

systems/ algorithms, the field of knowledge acquisition 

and representation has evolved into extensive and 

efficient levels. Probase (and its successor Microsoft 
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Concept Graph) is a probabilistic taxonomy (with 5.4 

million concepts) that constantly assesses the typicality 

of knowledge using probabilities, which in turn is used to 

support probabilistic reasoning (Zang et al. 2013). 

YAGO2 is an informatics ontology based on WordNet 

and Wikipedia YAGO2 contains 10 million entities and 

120 million facts, which were extracted automatically 

from Wikipedia, GeoNames, and WordNet. YAGO2 

stores extraction rules in text files, which allows easy 

extension without changing source code. Human 

assessment of facts in YAGO2, showed that it achieved 

an accuracy of 95% (Hoffart et al. 2013). Freebase was a 

scalable graph database used to structure general human 

knowledge. The data in Freebase could be collaboratively 

created, structured, and maintained by people and 

software. Freebase provided automatic suggestion to help 

the user enter new knowledge. It was replaced by Googl’s 

Knowledge Graph, which contains 70 billion facts! 

Open Information Extraction (OPEN IE) is a protocol 

for extracting a large number of relations from arbitrary 

text on the Web without specifying the targets to be 

extracted (Fader et al. 2011). KnowItAll is a scalable and 

domain-independent system that uses OPEN IE for 

extracting facts from the Web in an unsupervised manner. 

It ran for four days on a single machine and extracted 

over 50 000 facts (Etzioni et al. 2004). 

6.2 Cognitive and Anticipatory Computing  

One of the most promising technologies in citizen 

science is cognitive computing. It refers to computers 

learning how to complete tasks traditionally done by 

humans. The focus is on finding patterns in data, carrying 

out tests to evaluate the data validity. A key technology 

in this regards is natural language generation (NLG). 

NLG is not like traditional natural language process 

(NLP) systems. NLG tools are able to transform 

unstructured data into readable summaries with synthesis 

of key takeaways. Advanced NLG offers traceability: 

why the system chose to communicate in a particular 

manner. Bots (a short name for software robots) are used 

for live chat with customers. Story Engine is a program 

that can read through unstructured data and summarize 

conversations, including the ideas discussed, the 

frequency of the communication and the mood of the 

speakers. Interestingly, some newspapers are starting to 

use some of these Bots to summarize sport events based 

on transcripts of commentators’ speech. 

The next frontier is anticipatory/assistive computing. 

In this regards, the computer moves from reacting to 

explicit commands into understanding implicit queries 

and anticipating questions and actions. Bot help search 

engines exploit big data analytics to infer similar/related 

strings of searches/questioning by other users (Reed et al. 

2012). They exploit advances in inductive (logic) 

programming, which is predicated on finding solutions to 

problems/queries in the same manner humans would do 

through predicting next steps and inductively collating 

related facts from the web. Some of the most successful 

and sophisticated examples of Bots that deploy cognitive 

and anticipatory computing include Apple’s Siri, 

Amazon’s Alexa, Microsoft’s Cortana, and Google’s 

Google Home and Facebook Messenger. These and 

IBM’s Watson apply deep learning for superior 

knowledge acquisition and representation. . 

7 Discussion 

Our aim here was not to build a technical architecture 

for smart city and citizen science applications. Rather, 

collate and organize relevant paradigms, governance 

issues and analysis approaches into a roadmap that can 

guide cities in developing the technical architecture. We 

advocated that smart city architecture has to balance the 

use of structured and unstructured data. They also have 

to be able to provide processed data and means to process 

data. A user, based on their technical agency can have the 

choice of using either approach. One of the main 

technical roles for a smart city architecture is in providing 

computational services (apps) that enables users to mix 

and match data analyses to produce new original 

contribution. Another significant contribution is to 

provide users with basic models that can create minimal 

and meaningful structure to data. This can include data 

models and ontologies or folksonomies.  

The proposed architecture places special attention to 

machine learning and cognitive computing. These are 

very promising approaches in enabling smarter and easier 

analyses and, at the same time, customize the access, 

delivery and usage of data (including BigData) to user 

profiles.   
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