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Abstract –  

The development and implementation of risk 

response strategies contributes to effective risk 

management processes in construction organizations. 

Risk response strategies need to be developed and 

implemented as follows: first, all possible risk 

responses for each given risk event of a project are 

identified; next, each risk response is evaluated to 

determine its effectiveness; then, for each risk event 

of the project, the optimal risk response is identified 

and implemented; and finally, the risk events and 

responses are consistently monitored. The existing 

literature confirms that there is a lack of research on 

evaluation criteria for risk responses, making it 

difficult to determine their effectiveness. This paper 

presents research that fills this gap by developing a 

way to evaluate the effectiveness of risk response 

strategies using a fuzzy rule-based system (FRBS) 

that consists of three inputs and one output. The 

inputs of the FRBS are the affordability and the 

achievability of risk responses and the controllability 

of risk events; the output is the effectiveness of the 

risk response. The application of fuzzy ranking 

methods instead of crisp ranking methods allows the 

model to mimic three human attitudes towards risk: 

risk averse, neutral, and risk taking. The proposed 

model lays the foundation for an automated 

evaluation of risk response strategies and provides a 

decision support tool for experts in the field. 
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1 Introduction 

Risk management is vital for achieving business 

objectives on construction industry projects. Current 

trends in the construction industry are towards bigger and 

more complex projects, which can result in a greater 

amount of risks and uncertainties [1]. These risks can 

cause failures in terms of cost overruns, schedule delays, 

environmental damages, and fatal injuries. In general, 

risk management processes include identification, 

qualitative analysis, quantitative analysis, risk response 

planning, and monitoring and control [2]. First, risk 

events need to be identified and documented. These risk 

events should be analyzed by qualitative methods so they 

can be prioritized based on probability and impact. Next, 

quantitative risk analysis must be performed to model the 

combined effects of randomly occurring risk events and 

to develop a synthesized view of the overall effects of 
risk events on the project. Then, risk responses should be 

identified, evaluated, and implemented to mitigate 

occurrence probability and/or the negative impacts of 

risk events. Finally, the overall effectiveness of the risk 

management process needs to be monitored, reviewed, 

and controlled on a regular basis. The effectiveness of the 

risk response is the extent to which the risk events’ 

probabilities and/or impacts are reduced as a result of 

implementing the risk responses. 

A large amount of the research on risk management 

acknowledges the importance of risk response planning 

[3]. Hillson [4] argues that identifying and analyzing 
risks and uncertainties is clearly vital for the risk 

management process, as it is not possible to address risks 

that are not identified or that are poorly analyzed. Risk 

response planning is considered an important step for 

effective risk management; it is a process that is 

complementary to risk identification and analysis; and 

without risk response planning, only limited benefits can 

be had from the risk management process [4]. Risk 

response strategies need to be developed and 

implemented as follows: first, all possible risk response 

strategies for each given risk event of the project are 
identified. Next, each risk response strategy is evaluated 

to determine its effectiveness. Then, for each risk event, 

the optimal risk response strategy is identified and 

implemented. Finally, the risk events and the response 

strategies are consistently monitored.  

Although some researchers have developed 

optimization-based methods for selecting an optimal set 

of risk responses [5], the application of these methods on 

real projects can be a complex and costly process due to 
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the effort and amount of data that are required. Moreover, 

these models account for only a limited number of 

criteria, namely time, cost, and quality, which can lead to 

the selection of risk responses that are cost effective but 

unfeasible in terms of technology, environment, and 

achievability. Optimization-based approaches have low 

transparency (i.e., they operate in such a way that it is not 

easy for others to see what actions are performed) during 

the process of selecting the optimal set of risk responses. 

Employing approaches with the ability to address the 

abovementioned weak points can result in more realistic, 
applicable, and feasible risk responses—a fuzzy ruled-

based system (FRBS) is just such an approach. The 

existing literature confirms that there is a lack of research 

on evaluation criteria for risk response strategies, making 

it difficult to determine their effectiveness. The 

objectives of this paper are to (1) identify appropriate 

criteria for evaluating risk responses; (2) develop an 

FRBS to determine the effectiveness of risk responses; 

and (3) develop a fuzzy ranking method for selecting the 

most effective risk responses. 

This paper is organized as follows. First, a brief 

literature review of risk management and risk response 
planning in construction projects is presented, followed 

by a discussion about the application of fuzzy logic 

methods in the risk management process. Second, 

evaluation criteria for risk responses are identified and an 

FRBS is developed for determining the effectiveness of 

risk responses; a fuzzy ranking method is then applied to 

rank the risk responses based on their effectiveness 

(determined by the FRBS) on construction projects. 

Third, a hypothetical example is provided to illustrate the 

proposed framework. Finally, conclusions are presented 

and future extensions of the current research are 

discussed. 

2 Overview of Risk Response Evaluation 

and Selection Approaches 

Risk response planning involves reducing the 

negative impact and probability of occurrence of risk 

events to ensure project success. Identified risk responses 

need to be evaluated, and the optimal risk response needs 

to be implemented for each risk event. Several 

researchers have developed decision support systems for 

evaluating and selecting risk responses using different 

approaches, including the trade-off approach [4, 6, 7], the 

zonal-based approach [8, 9], mathematical modeling and 

optimization [5, 3, 10–13], and a combination of these 

approaches and fuzzy logic [14].  
The trade-off approach makes trade-offs between 

parameters—such as cost, time, and quality—that are 

either risk event-related or risk response-related in order 

to evaluate a set of risks. Kujawski [6] makes trade-offs 

that account for a project’s objective requirements and 

project stakeholders’ subjective preferences. Risk 

responses are selected based on the cost of implementing 

each risk response compared with the probability of 

project success when the risk response is implemented. 

Hillson [4] argues that the effectiveness of proposed risk 

responses must be assessed based on appropriateness (i.e., 

the correct level of risk response according to the severity 

of the risk event, ranging from a crisis response to a “do 

nothing” response), affordability (i.e., the cost 

effectiveness of the risk response), achievability (i.e., 

how realistically achievable or feasible the risk response 
is, either technically or in terms of a respondent’s 

capability and authority), agreement (i.e., the consensus 

and commitment of stakeholders), and allocation (i.e., the 

responsibility of and accountability for implementing the 

risk response). Qazi et al. [7] develop a model for 

selecting a set of optimal risk responses by measuring the 

impacts of different combinations of risk responses on 

the objective function of a project. In zonal-based 

approaches, two-dimensional diagrams are applied to 

assess the regions of the risk responses using one of two 

common assessment tools: (1) a matrix that features 

different factors in a two-dimensional diagram and (2) a 
two-axis graph that maps risk responses based on the 

values of the two dimensions.  

Using an optimization-based approach, Fan et al. [5] 

suggest a model for assessing the effectiveness of risk 

responses based on three criteria: risk event 

controllability, risk response costs, and project 

characteristics. Kayis et al. [10] employ five heuristic 

algorithms to minimize the cost of implementation within 

the constraints of the implementation budget and 

acceptable risk effects for new product development. 

Zhang and Fan [11] maximize the sum of estimated risk 
response effects (i.e., they reduce the expected loss of the 

risk event) after risk response strategy implementation 

using a method for selecting risk responses with an 

integer linear programming (ILP) model. Zhang [12] uses 

an ILP model that accounts for the cost of 

implementation and the determined budget for risk 

responses. Wu et al. [13] propose a multi-objective 

decision-making model for the selection of risk responses 

that minimize total expected losses, total expected 

schedule delays, and total expected quality reduction. An 

optimization model is used to minimize expected time 

loss, expected cost loss, and expected quality loss. To 
calculate the coefficients of the objective function, a 

fuzzy analytic hierarchy process (FAHP) is employed as 

a technique to guide the risk analysts [14].  

3 Developing the Risk Response 

Evaluation and Selection Approach  

In order to develop the proposed FRBS for the 

evaluation of risk responses, appropriate evaluation 
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criteria are identified, which are the inputs of the FRBS. 

The output of the FRBS is the effectiveness of the risk 

responses. Based on the output of the FRBS, the risk 

responses are then ranked using a fuzzy ranking method 

that allows the model to mimic the three human attitudes 

towards risk: risk averse, neutral, and risk taking. 

3.1 Evaluating Risk Responses: Identifying 

Inputs and Outputs  

This study uses three criteria to evaluate risk 

responses: affordability of the risk response, 

achievability of the risk response, and controllability of 

risk events. These criteria make up the three inputs of the 

FRBS, and its output is the effectiveness of the risk 

response strategy. There is a positive correlation between 

the controllability of a risk event and the effectiveness of 

its risk response. For example, even if you implement a 

risk response with high affordability and high 

achievability, the risk response will not be effective in 
addressing a risk event with low controllability. 

Therefore, the FRBS developed for the evaluation of risk 

responses needs to evaluate both risk events and their 

identified risk responses in order to identify the most 

effective risk responses. Subjective system variables 

(evaluation criteria) are represented by triangular fuzzy 

membership functions, which are commonly used in 

engineering applications. 

Affordability refers to the cost-effectiveness of risk 

responses, where the amount of time, effort, and money 

spent on addressing a risk should not exceed the available 

resources for implementing risk responses. One way to 
measure the cost-effectiveness of risk responses is to use 

the risk reduction leverage (RRL) factor, which can be 

calculated by converting the impact of the risk event into 

a monetary value (for example, the cost of delay and/or 

the cost of negative impacts on quality) [4]. RRL 

represents the ratio of the increase in risk event exposure 

to the cost of risk response implementation. RRL can be 

calculated by dividing the difference between the risk 

responses’ cost impacts before and after implementation 

by the implementation cost (see Equation (1)) [4].  

𝑅𝑅𝐿 =   

(Cost Impact) 𝑏𝑒𝑓𝑜𝑟𝑒 
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

− (Cost Impact) 𝑎𝑓𝑡𝑒𝑟
 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

Cost of response
 

(1) 

Hillson [4] proposes that responses with high 

effectiveness in terms of affordability should have RRL 

values above 20. Responses with medium effectiveness 

have RRL values ranging from 1 to 20, and RRL values 

of less than 1 can be labelled as having low effectiveness 

(i.e., they are ineffective) because their implementation 

cost is more than what they might save later. Thus, the 

fuzzy membership functions for affordability are defined 

as low (less than 1), medium (between 1 and 20), and 

high (more than 20). 

Achievability refers to the feasibility of a risk 

response in terms of three considerations: the technical 

complexity of the proposed risk response, the capability 

of the respondent, and the authority of respondent [4]. 

According to Fan et al. [5], the complexity of a risk 

response may stem from technical obstacles, political 

obstacles, limited access to information, or conflict 

resolution obstacles. Three fuzzy membership functions 

of achievability can be defined, namely low, medium, 

and high achievability. 

Miller and Lessard [15] define controllability as the 
likelihood that the probability of occurrence of a risk 

event can be changed. This criterion describes the nature 

of the risk situation. Risk events with a low degree of 

controllability include occurrences such as natural 

disasters, while risk events with a high degree of 

controllability are caused by scheduling and budget 

problems. The latter can be addressed more effectively 

than the former by implementing an identified risk 

response [5]. Although the controllability value of a risk 

event is the same for all of its related risk responses, this 

criterion can be used to ascertain whether risk responses 

meet the threshold for effectiveness, which can be 
determined by risk decision makers. As with affordability 

and achievability, controllability can be categorized into 

three fuzzy membership functions, namely low, medium, 

and high.  

3.2 Evaluating Risk Responses Using an 

FRBS 

An FRBS is a methodology for modeling human 
logical thinking and decision-making. These systems use 

membership functions and fuzzy rules to make a decision 

[16]. An FRBS can be developed with either data or 

expert judgments using one of the few approaches 

proposed in the literature. Fuzzy c-means (FCM) 

clustering can be employed when there is access to 

historical data [17]. Expert judgments can be applied to 

develop an FRBS when historical data is unavailable [18, 

19]. In this paper, the FRBS for the evaluation of risk 

responses is developed using expert judgments. The 

membership functions of three inputs and one output are 
determined based on documented literature using 

MATLAB® R2018b. 

In this paper, a Mamdani fuzzy inference system is 

used to develop an FRBS for the evaluation of risk 

responses; by delivering fuzzy outputs, the Mamdani 

inference system facilitates the use of different 

defuzzification methods for fuzzy ranking. The 

membership functions of affordability are determined by 

RRL values between 0 and 20 as recommended by 

Hillson [4]. Figure 1 shows the membership functions of 

affordability.  
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Figure 1. Membership functions of affordability 

For the achievability and controllability membership 

functions, the three linguistic terms low, medium, and 
high are used, as illustrated in Figure 2 and Figure 3, 

respectively. 

 

Figure 2. Membership functions of achievability 

 

 

Figure 3. Membership functions of controllability 

The membership function of the FRBS output 

(effectiveness) is also between 0 and 1, as shown in 

Figure 4.  

 

Figure 4. Membership functions of effectiveness 

Fuzzy rules are defined as “if-then” rules. In this 

system, 27 if-then fuzzy rules are defined. Some of these 

rules are presented in Table 1.  

Table 1. Fuzzy rules used in the FRBS 

Rule If Then 

 Affordability Achievability Controllability Effectiveness 

1 Low Low Low Low 

2 Low Low Medium Low 

3 Medium Medium Medium Medium 

4 Low Medium Medium Medium 

5 High High High High 

6 Medium High High High 

Figure 5 shows the three-dimensional curve that 

represents the mapping from inputs to output and the 

dependency of effectiveness on controllability and 

affordability.  

 

Figure 5. Three-dimensional representation of the 

proposed FRBS  

3.3 Selecting Effective Risk Responses Using 

the Fuzzy Ranking Method  

In the next step, the risk responses need to be ranked 

based on their effectiveness, so that the most effective 

risk response can be selected for each risk event. In order 

to solve decision-making problems, fuzzy ranking 

methods are commonly used, wherein the evaluation 

scores (i.e., effectiveness) of decision alternatives (i.e., 

risk responses) are represented by fuzzy membership 

functions [20, 21]. There are various fuzzy ranking 
methods discussed in the literature, the majority of which 

can be grouped into three categories based on the 

approaches they use to rank fuzzy numbers. The first 

category of fuzzy ranking methods includes those 

methods that rank fuzzy numbers based on their α-cuts at 

a pre-specified level of α [22]; thus, these methods 

change the fuzzy ranking problem into an interval 

ranking problem. The second category of fuzzy ranking 

methods includes those methods that use fuzzy distance 

measures to rank fuzzy numbers [23]. The third category 

285



36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

of fuzzy ranking methods includes those that rank the 

fuzzy numbers based on their defuzzified values [21]; 

these methods change the fuzzy ranking problem into a 

simple problem of ranking crisp numbers. The first two 

categories of fuzzy ranking methods (i.e., α-cut-based 

methods and fuzzy distance-based methods) usually 

require that fuzzy numbers be regularly shaped (e.g., 

triangular or trapezoidal fuzzy numbers) [21]. However, 

in this paper, the output of the FRBS (i.e., the 

effectiveness of the risk responses) is an irregularly 

shaped fuzzy membership function. Therefore, in this 
paper, the third category of fuzzy ranking methods (i.e., 

ranking methods based on the defuzzified value) is used 

to rank risk responses based on their effectiveness. To do 

this, the results of the FRBS need to be defuzzified. There 

are various defuzzification methods proposed in the 

literature; the smallest of maximum (SOM), largest of 

maximum (LOM), and center of area (COA) methods are 

commonly used in different engineering applications of 

fuzzy logic. Figure 6 presents the three aforementioned 

defuzzification methods implemented on a hypothetical 

example of risk response effectiveness. Moreover, Figure 

6 also shows how different defuzzification methods can 
result in different defuzzified values for risk response 

effectiveness. 

 

Figure 6. COA, SOM, and LOM defuzzification 

methods 

When ranking risk responses based on the defuzzified 

value of their effectiveness, the use of different 

defuzzification methods can mimic different human 

attitudes towards risk. Ranking risk responses based on 

the results of the SOM method means that the decision 

maker considers the smallest maximum value of 

effectiveness for each risk response and ignores all other 
possible values for the effectiveness of the risk response 

(see Figure 6). Thus, ranking risk responses based on the 

results of the SOM method mimics a risk-averse attitude. 

In contrast, ranking the risk responses based on the 

results of the LOM method means that the decision 

maker considers the largest maximum value of 

effectiveness for each risk response and ignores all other 

possible values for the effectiveness of the risk response 

(see Figure 6). Thus, ranking the risk responses based on 

the results of the LOM method mimics a risk-taking 

attitude. The COA, on the other hand, determines the 

defuzzified value of effectiveness by taking into 

consideration all possible values of effectiveness for each 

risk response. Accordingly, ranking risk responses based 

on the results of the COA method mimics a neutral 

human attitude towards risk. In this paper, the three 

aforementioned defuzzification methods (i.e., SOM, 

LOM, and COA) are used to rank risk responses based 

on their effectiveness so that all three human attitudes 

towards risk can be mimicked in the selection of the most 

effective risk responses. 

4  Hypothetical Example  

In this section, a hypothetical example is presented to 

demonstrate how to use the proposed approach to 

evaluate the effectiveness of risk responses and select the 

most effective. Assume two risk events: (1) incomplete 

design and (2) operation interruption due to adverse 

weather conditions. The first risk event can be addressed 
by two possible risk responses: (1-1) outsourcing design 

to subcontractors or (1-2) employing professional design 

teams. To mitigate the second risk event, two risk 

responses are possible: (2-1) schedule compression using 

extra resources or (2-2) considering alternative 

construction methods, such as using precast materials. A 

number between 0 and 10 represents achievability (where 

10 is high) and another number between 0 and 10 

represents controllability (again, 10 is high); these 

numbers are determined for each risk response by expert 

judgment. The values for each criterion can be found in 

Table 2.  
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Table 2. The input values of each risk response and its 

related risk event  

Risk 

Event 

Risk 

Response 

Affordabilit

y 

(RRL) 

Achievability Controllability 

1 
1-1 7.00 9.00 6.00 

1-2 12.00 5.00 6.00 

2 
2-1 7.00 6.00 2.00 

2-2 5.00 3.00 2.00 

Since this hypothetical example is presented simply 
for illustrating the proposed approach, a limited number 

of risk factors are identified for risk response evaluation. 

In a real construction case study, a comprehensive list of 

risk factors such as environmental and safety risk factors 

may be considered for risk response evaluation. Table 3 

shows the effectiveness values, which are based on the 

information in Table 2. The inputs are imported to the 

FRBS to evaluate the effectiveness of the risk responses. 

Crisp numbers representing the effectiveness of the risk 

responses are then predicted by the FRBS using three 

defuzzification methods (i.e., SOM, LOM, and COA) as 
discussed in Section 3.3 and the risk responses are ranked 

accordingly. Table 3 presents the effectiveness of the risk 

responses and their rankings for the two risk events. 

Table 3. The effectiveness values of each risk response 

and its related risk event  

Risk 

Response 

Effectiveness 

(SOM) Rank (LOM)  Rank (COA) Rank 

1-1 8.50 1 10.00 1 6.95 1 

1-2 4.10 2 6.00 2 5.00 2 

2-1 0.00 - 2.00 2 3.74 2 

2-2 0.00 - 2.50 1 3.92 1 

Table 3 presents the most effective risk response for 

each of the two risk events as determined by three 

different defuzzification methods. The effectiveness 

value determined using the SOM defuzzification method 

mimics a risk-averse attitude; the LOM defuzzification 

method mimics a risk-taking attitude; and the COA 

defuzzification method mimics a neutral attitude towards 

risk. Although in this case study the rankings of the risk 
responses are similar for each of the three defuzzification 

methods, on real construction projects with numerous 

risk responses, rankings can be different for different 

defuzzification methods. Since higher effectiveness of 

risk responses is favorable, in the hypothetical example, 

risk responses 1-1 and 2-2 should be selected for risk 

events 1 and 2, respectively. As shown in Table 3, the 

values of effectiveness for risk responses 2-1 and 2-2 are 

equal to zero, which indicates neither of these two risk 

responses should be applied to risk event 2 if the risk 

response strategy is based on a risk-averse attitude. 

Moreover, as discussed in Section 3.1, risk responses can 

be rejected if their effectiveness is less than a threshold 

value that is determined by the decision maker. For 

instance, assuming an effectiveness value of 5 as the 

threshold for the risk responses’ effectiveness, both risk 

responses for the second risk event (i.e., 2-1 and 2-2) are 

not acceptable in this case study (refer to Table 3). In this 

situation, new risk responses should be identified for the 

second risk event or its adverse effects on the project 

should be accepted.  

5 Conclusions and Future Research 

This paper presents a methodology for evaluating the 

effectiveness of identified risk responses by applying an 

FRBS that has three inputs as evaluation criteria and that 

produces the effectiveness of risk responses as an output.  

The three inputs are the affordability of each risk 

response, the achievability of each risk response, and the 

controllability of related risk events. The FRBS uses the 
estimated crisp values of affordability, achievability, and 

controllability to evaluate the effectiveness of risk 

responses according to the rules developed based on 

experts’ opinions. The output, which is a fuzzy set, is 

used as an input for three different fuzzy ranking methods, 

one based on SOM, one based on LOM, and one based 

on COG (COA), to determine the most effective risk 

response in terms of affordability, achievability, and 

controllability. Applying an expert-driven FRBS and 

fuzzy ranking methods can help automate the evaluation 

of risk response strategies, and this technique delivers an 

expert-level risk management tool to a non-expert in the 
field. The contributions of this paper are threefold: first, 

the appropriate criteria for evaluating risk responses are 

identified from the literature; second, an FRBS is 

developed to automate the evaluation of risk responses; 

and third, the application of different fuzzy ranking 

methods is proposed to mimic the risk-taking attitude of 

experts for risk response evaluation. 

On construction projects, risk events are often 

dependent on one another; for example, the risk of 

precipitation is linked to the risk of excessive soil 

moisture in earthmoving operations. In order to develop 
a comprehensive risk response planning tool, 

interdependencies between different risk events need to 

be taken into consideration. In future research, the FRBS 

developed in this paper will be extended to capture these 

interdependencies and determine the most effective risk 

responses for each risk event, accounting for all risk 

events that affect a project throughout its life cycle. 
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