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Abstract – 

Unmanned Air Vehicles (UAVs) are increasingly 

used and have many potential applications in the 

architecture, engineering, and construction (AEC) 

industry. UAVs are now commonly controlled 

manually with an experienced survey engineer in field 

operation, but UAVs can also fly autonomously with 

the support of localization technologies such as 

simultaneous localization and mapping (SLAM). 

Autonomous flying of UAVs can reduce human effort 

and minimize human error.  However, it requires 

careful flight path planning, active environment 

sensing, and effective obstacle avoidance techniques, 

especially where the built environment is complex and 

space is tight. Currently, algorithms flight path 

planning, object detection and obstacle avoidance are 

developed based on testing that involves actual 

Survey UAVs; this is not only time consuming but also 

expensive and hazardous in the sense that it may 

damage hardware and injury ground personnel if 

error-induced crashes occur. This paper presents a 

hardware-in-the-loop simulator which can simulate 

the behavior of a drone and generate synthetic images 

from the scene as datasets, detect and verify as-built 

MEP objects with a trained neural network, and 

generate point cloud data for validating as-designed 

BIM model with as-built BIM model in the future. 

The system architecture, operations, and 

performance of the developed simulator are discussed, 

followed by an illustrative example.  
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1 Introduction  

Surveying using terrestrial laser scanners has been 
common practice in the AEC industry. Meanwhile, 

building information modeling [1] (BIM) has been 
increasingly required by both public and private sectors as 
a part of any building and infrastructure developments. As 
the more recent a design is, the higher level of details its 
digital 3D model will contain, and as-designed BIM 
models need to be validated against their as-built 
counterparts. For example, mechanical, electrical and 
plumbing (MEP) inspection of a tunnel traditionally 
requires inspectors to go inside the tunnel and use a 
terrestrial laser scanner to inspect and confirm coherence 
with the as-designed BIM model. This method normally 
requires much manpower, making it inefficient, time-
consuming and risky. Some civil structures like tunnels 
and wastewater treatment plants can have hazardous 
volatile organic chemicals (VOCs) [2] which can lead to 
cancer and other medical problems. For another example, 
to conduct a bridge inspection, expensive high-energy 
laser scanners and a helicopter are often required. UAVs 
equipped with cameras, Lidar and/or other detection 
equipment are promising alternatives as they can collect 
point cloud data [3] and photogrammetry images [4] and 
generate 3D models for inspection and visualization.  

Testing a physical survey UAV in a real-world 
environment can be dangerous, expensive and time-
consuming. On April 28, 2017, the US Federal Aviation 
Administration (FAA) released a very detailed report on 
drone crash tests. The 107-page report was a joint research 
involving 23 academic institutions working together with 
the FAA with the aim to understand the risk and hazards 
(including possible injuries) of the system failure of a 
UAV. The objective is based on the FAA’s research 
addressing seven questions: (1) What are the hazard 
severity criteria for a UAV collision (e.g. weight and 
kinetic energy)? (2) What is the severity of a UAV 
collision with aircraft on the ground? (3) What is the 
severity of a UAV collision with property on the ground? 
(4) What is the severity of a UAV collision with a person 
on the ground? (5) What are the characteristics of a UAV 
where it will not be a risk to an aircraft or person/property 
on the ground? (6) Can the severity of a UAV collision 
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with an aircraft or person/property on the ground be 
characterized into UAV categories and what would those 
categories look like? (7) How can UAV be designed so as 
to minimize the potential damage done during a collision? 
[5] In the study of human injuries due to loss of control of 
a UAV, Section 2.4.4 (Payload Loss Injury Applications) 
and Section 2.4.5 (Fire Injury Applications) of the report 
are the most relevant to our research interest: indoor UAV 
scanning application. In an indoor environment under the 
condition with no magnetic and wind interference, yet 
with low lighting and weak GPS signals, a UAV can still 
be prone to crashes even when the operator is an 
experienced pilot. Energy sources such as Lithium 
Polymer battery or Nitromethane mixed with methanol 
[6] (depending on the overall payload of the vehicle) may 
ignite upon ground collision, which poses danger to the 
ground operator. In addition, a survey UAV that carries 
high precision laser scanners, cameras, and/or various 
control and processing units on board are too expensive to 
be damaged. Even a single failure can result in a 

devastating crash. Therefore, designing a virtual 
environment close to the real environment for UAV 
simulation and training before testing a physical UAV on 
site is proposed in this framework. 

Many simulators have been established in the fields of 
robotic research, computer vision, gaming technology. 
The UE4 [7] engine, for example, is considered a leading 
game engine among others such as Unity to provide many 
resources such as AAA-level realistic virtual 
environment, through its state-of-the-art shader and the 
recently improved ray tracing rendering technique. These 
photorealistic virtual environments can be used as a 
source for generating images for neural network training, 
such as training a convolutional neural network to detect 
objects. However, simulators like UE4 or Unity [8], 
despite the shader rich feature that they support, lack 
features such as predefined sensors models provided in 
the (robotics operating system) ROS [9] simulator. 

 

 

Figure 1. The developed framework for UAV planning using hardware-in-the-loop simulation and BIM technology 

Section 2 illustrates the developed framework for 
UAV planning using hardware-in-the-loop simulation 
and BIM technology, which contains the following 
three major parts:  

1. The creation of a high-fidelity simulation 

environment with MEP pipes models and 

connected flight controller in hardware-in-the-loop 

[10] mode.   
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2. The creation of ROS nodes that link the virtual 

Lidar from ROS to UE4 simulator and generate 

point cloud data and obstacle avoidance. 

 

3. The creation of a perception system by training 

of a YOLO v3 [11] object detection neural network 

with pictures of MEP models.  

 

Implementation details and results of these three parts 

will be presented separately in the followings.  

2 Proposed Framework for UAV 

Planning Using Hardware-in-the-

Loop Simulation and BIM 

The proposed framework (as shown in Figure 1) 

starts where a radio control signal is passed from a 

radio controller to the virtual flight control module, 

which drives an actuator on the UAV. Gravity and 

weather information from the environment will then 

be sent to the physics engine to simulate the 
kinematics and return pose information of the UAV. 

The image API will then acquire high-fidelity images 

from the scene and compose a directory for neural 

network training, for the purpose of object detection. 

The ROS API layer will receive the vehicle pose and 

location information and via each ROS node for 

simultaneous localization and mapping, and trajectory 

planning.  

2.1 Simulation Environment Setup 

     A MEP scene is focused in this study due to the 

complexity in geometry. The scene, which contains 

common MEP components such as pipes, elbows and 

supports, is generated in realistic visual effect using the 

UE4 engine. This virtual environment consists of MEP 

pipelines, both having similar object settings and made 

with appropriated UV to make it realistic. A virtual 
quadcopter is also created as an avatar to simulate a 

physical UAV with a weight of 3 kg. A physical flight 

controller is installed in hardware-in-the-loop mode, 

and we use a physical 9-channel radio controller which 

is plug in our server USB port to control the virtual 

quadcopter within the scene. The simulated 

environment is shown in Figure 2. 

 

 
Figure 2. The simulation environment 

2.2 Hardware-in-the-Loop 

simulation with Pixhawk Flight 

Controller 

 

Hardware-in-the-loop simulation is a type of real-

time simulation that are commonly used to test 
complex embedded system [12]. Figure 3 illustrated 

the relationship between the flight controller hardware 

and to the developed simulator.  

 
Figure 3. Connection between Pixhawk 4 and the 

developed simulator 
 

Pixhawk 4 [13] is connected to the USB port of 

a server. Through the UDP port of the simulation 

engine, the flight controller can establish 

communication with the simulator and interact with 

the built-in physics sub-engine to send actuator signals, 

pass environment data (e.g. gravity, wind, atmospheric 

pressure, etc.), and update the real gyro and 

accelerometer sensors onboard the flight controller. In 

this way, the simulated environment can behave as 

close to the real environment as possible.  

2.3 Training of an Object Detection 

Neural Network with YOLO v3 

Tiny 

The simulator has a Python API so that it can 

connect with Keras [14], a high-level deep learning 
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Python middleware that runs on top of Tensorflow 

[15], which we use for the neural network training (of 

xxx). There are numerous deep learning-based object 

detection architectures. YOLO (You Only Look Once) 

v3 Tiny [16] is used in this research because it is 100 

times faster than Fast R-CNN [17] and it is a very 

small model, comprising only 9 convolutional layers, 

which is ideal where computational power is limited, 

such as what is available on the Nvidia TX2 [18] 

embedded unit. Darknet [19] is used as a trained deep 

architecture with trained YOLO weights. The training 
process consist of the following four steps.  

  

1. Create a dataset which includes image classes 

of MEP models such as pipes, valves, 

industrial air conditioning units, fittings, 

water heating, etc. 2000 images are used as 

training set for each class.  

 

2. Tag images via Visual Object Tagging Tool. 

 

3. Batch and subdivision, using an input 

resolution of (416 x 416) with a batch of 64 
and a subdivision of 3. (Note: values were 

chosen based on the maximum result 

achieved without CUDA [20] error.) 

 

4. Train a model, weights will be given for 

every 100 epochs in Darknet. The result is 

shown in Table 1. 

 

Table 1. 

Input Resolution 416 x 416 

Weights 
YOLO v3-tiny-VM.cfg 

Iterations 
50,000 

Average Loss 
0.2103 

Average IoU (%) 
47.18% 

mAP 
62.39% 

 

Finally, we will test the result of training by 

connecting this object detection network with our 
simulator via the Python API. MEP pipes are detected 

in the simulator as the simulated UAV flies, detects 

objects of interest, and marks their locations in the 

simulated scene in the virtual environment, as shown 

in Figure 4. 

 

 
Figure 4. Detection with YOLO v3 Tiny 

2.4 Generate Virtual Lidar Data with 

ROS and UE4 

The virtual Lidar in the UE4 engine requires the 

implementation of two technologies: (1) ray tracing 

within the UE4 engine to have the visual effect of a 
laser beam, and (2) construction of virtual sensors 

within ROS via ROSbridge to publish the defined 

Lidar sensor reading from ROS to the listening port of 

the UE4 engine.   

The parameters of the virtual Lidar in the simulator 

are configured in the same way as the RS-Lidar 32 

with 32-channel laser, 640K points per second, +/- 15-

degree FOV (vertical) and 360-degree FOV 

(horizontal). [21] The green line indicates the laser 

beam is generated, as shown in Figure 5 and Figure 6. 

The acquired point cloud data will need to change 
the camera projection matrix with a Build Projection 

Matrix function, which computes a 4x4 matrix using 

FOV, width, height and near plane.  

 

 

Figure 5. Virtual Lidar in the simulator 
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Figure 6. Point cloud visualization  

 

3 Implementation and results 

 

The proposed survey UAV is implemented with 

a DJI F350 chassis and a Nvidia TX2 embedded unit. 

The Nvidia Jetson TX2 features a Nvidia Denver dual-

core and an ARM Cortex-A57 quad-core. TX2 also 

carries a 256-core Nvidia Pascal GPU with 8GB of 

RAM. The power consumption is only 7.5 watts. A 

stereo camera is incorporated for running a visual 

simultaneous localization and mapping (SLAM) [22] 

algorithm for the purpose of localization and obstacle 
avoidance. A 32-channel Lidar is also mounted on the 

system to generate some point cloud data. A Pixhawk 

flight controller with radio receiver is installed along 

with four electronic speed controllers and 

corresponding RC rotors. A 9-channel radio controller 

is used to control the UAV. The total weight of the 

system is approximately 3 kilograms with a 20K mAh 

Lithium Polymer battery. 

 

 
Figure 6. UAV implementation 

 

The stereo camera is a global shutter camera, 

which does not have an onboard IMU. It is calibrated 

using a checkerboard (shown in Figure 7) to calculate 

the intrinsic and extrinsic camera parameters with 

Pinhole model. With the calibrated stereo camera, we 

flew the UAV with a VINS SLAM algorithm running 

in TX2, and a circular trajectory is generated. The 

trajectory is visualized in Rviz as shown in Figure 8 

and Figure 9. 

 

 
Figure 7. Stereo Camera Calibration 
 

 
Figure 8. ORB SLAM in Rviz 

 

 
Figure 9. Trajectory in simulator  

 

We also load the AirLib library from our 

simulator and deployed it on the TX2. The simulator 

uses the MavLinkCom component, which is a proxy 

architecture where a connection to the Pixhawk flight 

controller can be achieved via a serial or UDP port. 

The Pixhawk flight controller will send messages via 

MavLink, which allows the controller to be connected 
to the serial port of QGroundControl (QGC) [23]. We 

can control the UAV as a client to run on the TX2 

meanwhile have it connected to our server with virtual 

simulation environment. 
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Running the VINS stereo algorithm along with 

the YOLO v3 Tiny object detection neural network 

gives a high load of computation. Usage statistics 

show that VINS uses roughly 60% of the processing 

power in the TX2. 

4 Conclusion and Future Work  

This paper presents a hardware-in-the-loop 
simulation, which can simulate the behavior of a UAV, 

generate synthetic images from the scene as datasets, 

detect and verify as-built MEP objects with a trained 

YOLO v3 neural network, and generate point cloud 

data for future as-designed BIM and as-built BIM 

validation. This demonstrates an effective way of 

testing the behavior of a UAV prior to live demo flight 

and blazes a trail toward implementing AI-based 

robotic inspectors in the AEC industry. Moreover, the 

capability of generating virtual point clouds in the 

simulation engine provides a low-cost way for 
verifying the trajectory of a survey UAV before actual 

UAV-based scanning takes place. This can simulate 

any missing point cloud region in the environment 

constructed with an as-designed BIM model. 

The developed framework will be improved in 

the future. In particular, (1) the proposed framework 

has not been tested in a real industrial environment 

with MEP piping installed for field detection. Future 

tests at a plant room site with MEP components will 

be conducted. (2) A better stereo camera with IMU 

will be installed to give the VINs’ SLAM performance 

a boost, potentially resulting in better localization and 
mapping. (3) A trajectory planning module will be 

developed on the system and further tested its stability 

with a motion capture system.   
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