
36th International Symposium on Automation and Robotics in Construction (ISARC 2019) 

Automatic Classification of Design Conflicts Using Rule-

based Reasoning and Machine Learning—An Example of 

Structural Clashes Against the MEP Model 

Y. Huanga and W.Y. Linb 

aDepartment of Civil and Construction Engineering, National Yunlin University of Science and Technology, Taiwan 
bDepartment of Civil Engineering, Feng Chia University, Taiwan 

E-mail: huangyh@yuntech.edu.tw, weiylin@mail.fcu.edu.tw 

 

Abstract - 
With the emergence of 3D technologies in a 

recent decade, BIM software makes it easy to detect 

those conflicts in the early stage of a project. Clash 

detection in BIM software is now a common task. 

Among those conflicts found by BIM software, 

however, a relatively high percentage belongs to 

‘pseudo conflicts’—which are permissible or 

tolerable, but BIM software does not reveal this 

information. Thus, currently BIM managers have to 

manually inspect every detected conflict to classify 

the type of conflict. Some researchers urged an 

automated process to facilitate this laborious process. 

This study implemented both a rule-based reasoning 

system and machine learning classifiers to help 

classify those BIM-detected conflicts. Preliminary 

testing results indicate that machine learning 

algorithms can achieve comparable results to a 

traditional rule-based system, but with much less 

costs and energy in developing. 
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1 Introduction 

Generally, engineering designs are constructed and 

compiled by engineers of different professions, such as 

those in construction, structural engineering, and 

mechanical, electrical, and plumbing (MEP). Therefore, 

conflicts between different design disciplines are 

inevitable [1, 2]. Design conflicts are errors in which 

building components overlap in a certain space when 

various design plans are being compiled. Minor design 

conflicts often induce rework and cost increases, 

whereas severe conflicts may cause change orders, 

resulting in cost overruns, delays, and labour safety 

issues. Therefore, project performance will be 

substantially affected if design conflicts are not properly 

mitigated. [3]. 

The emergence of building information modelling 

(BIM) software in recent years has simplified design 

clash detection, with conflict or interference checking 

being basic functions of BIM software programs. 

Because resolving design conflicts is critical to project 

performance, combined with the popularity of BIM 

software, building codes in many countries have 

mandated the enforcement of clash detection in public 

projects [1]. For example, in the United Kingdom, a 

design team is mandated to perform clash detection 

every 1 to 2 weeks to ensure that engineering designs 

are fully coordinated and free of conflicts, thus reducing 

the likelihood of design changes occurring. 

However, a discussion of effective methods to 

mitigate design conflicts and the use of BIM to assist in 

decision-making has been neglected in the literature [3]. 

Due to the existence of numerous engineering interfaces 

in a single project, BIM software can often easily detect 

hundreds of clashes, even for small-scale projects. BIM 

managers thus must examine and analyse each conflict 

manually. Some researchers have stated that although 

BIM software programs have excellent clash detection 

functions, the classification of detected clashes is still 

difficult, time-consuming, and costly, and thus an 

automated classification method is urgently required [1]. 

Because classifying clash types requires the input of 

experts with vast knowledge and experience, 

conventionally a rule-based expert system is often used 

for automated process development. However, rule 

acquisition when developing an expert system is time-

consuming and laborious, and its prediction 

performance is usually limited by the number of rules. 

By contrast, supervised learning (i.e., machine learning) 

only requires the collection of sufficient cases and 

appropriate feature manipulation to quickly obtain 

required results. Furthermore, its accuracy increases 

continuously as the number of cases increases. 

This study used the structural and MEP models of a 

construction project as an example, and implemented 
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three automated processes to classify those conflicts 

detected by BIM software using rule-based expert 

system, individual classifiers of supervised learning, and 

multiple classifiers of ensemble learning, respectively. 

Their performances in terms of predictive accuracy 

were then compared and evaluated. The results showed 

that the accuracy of the rule-based expert system was 

approximately 58% while 92% and 94% were acquired 

using individual classifiers and ensemble learning, 

respectively. This indicated that machine learning 

algorithms can achieve comparable results to a 

traditional rule-based system regarding conflict 

classification, but with much less costs and energy in 

developing. 

2 Related Work 

2.1 Spatial clashes 

Wu [4] divided spatial conflicts into four categories: 

design conflicts, construction conflicts, damage 

conflicts, and congestion. Design conflict refers to 

spatial overlap between building components when 

different design teams develop their own designs. Wu 

also found that the existence of numerous interfaces 

among construction project participants is the main 

source of design conflicts. Researchers in another 

participatory action research project in the United 

Kingdom introduced a collaborative environment in a 

jointly designed large-scale, multistory construction 

project, and assisted the designers in avoiding design 

conflicts. However, more than 400 conflicts were still 

observed between the structural model and the MEP 

model [1]. The study revealed that although 

collaboration can decrease design conflicts, clash 

detection still remains a necessary process. 

In summary, design collaboration does not prevent 

all conflicts; thus, clash detection and resolution are still 

necessary. Although most BIM software provide clash 

detection, classifying and resolving those detected 

clashes remain manual and difficult. The UK study [1] 

found that after performing clash detection, BIM 

managers need to classify types of those detected 

clashes, namely: (1) errors, which must be resolved; (2) 

pseudo clashes, which are permissible and does not 

require to be resolved; 3) deliberate clashes; and (4) 

duplicate clashes. Due to the considerable number of 

engineering interfaces, BIM software will produce 

substantial clash detection results, even for small-scale 

projects. BIM managers must go through the above-

mentioned manual process. Since this process is highly 

mechanized, time-consuming, and costly, an automated 

classification method is urgently required; otherwise, 

the benefits of clash detection provided by BIM 

software will be reduced due to information overload 

[1]. Concluding remarks in those studies illustrated the 

necessity and importance of this study. 

2.2 Machine learning in civil engineering 

Machine learning is a computer science related to 

how machines can learn in a similar manner to humans. 

In machine learning, the process of human learning and 

adjustment is transferred to machines. According to 

whether or not the answers are provided during the 

training, machine learning has been usually identified as 

two categories: (1) Supervised learning ： During 

training, answers (labels) are supplied to a question to 

provide the machine with the ability to recognize errors. 

This study applied this approach to train and test those 

classifiers; and (2) Unsupervised learning：No answers 

are provided to a question during training process; thus, 

the machine must find the answer itself. The expected 

results from this learning method are usually less 

accurate than those in supervised learning.  

Machine learning has widely been used in numerous 

studies on civil engineering applications, such as for 

monitoring construction progress using 4D BIM, 

performing regulatory inspections using BIM, 

reconstructing 3D models using computer vision, and 

using static images to monitor constructability [5]. 

The development of machine learning algorithms 

involves five basic steps [6]: (1) Obtaining data required 

for training, analysing and selecting the features related 

to problem solving. (2) Choosing a performance metric. 

(3) Choosing a classifier and optimization algorithm (4) 

Evaluating the performance of the model; and (5) 

Tuning the algorithm. Once learning is completed, 

estimations can be performed by inputting new data into 

the algorithm. In most problem-solving tasks, the 

classifiers can be either linear or nonlinear models. The 

most common linear model is the linear regression 

model while non-linear models include the decision 

trees, k nearest neighbors (k-NN), support vector 

machine (SVM), and deep learning. However, due to 

problems having different domain-specific 

characteristics, it is nearly impossible for a single 

classifier to work well across all scenarios [7]. Besides, 

the performance may be dependent on the training and 

testing data, especially when the number of samples is 

not large enough. Therefore, it is highly suggested to 

compare the performance of different classifiers and 

select the best model for the domain problem. 

Since the problem of identifying clash types in this 

study belongs a classification problem in machine 

learning, this study used non-linear models to 

implement individual classifiers and ensemble learning 

models. 
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3 Methodology 

To evaluate the performance of the rule-based 

reasoning and machine learning algorithms on 

classification of clash types, this study developed a 

process of research methodology as shown in Figure 1. 

Section 3.1 and 3.2 describes the collection of clash 

cases and how we labelled the clash type by human 

experts. Section 3.3 introduced the implementation of 

the rule-based system, followed by Section 3.4 and 3.5 

which detailed the training of single classifiers and 

multiple classifiers, respectively. Section 4 then 

provides the results of prediction by different methods 

using the testing dataset as well as the evaluation of 

their performance in terms of prediction accuracy。 

 

Figure 1. Process of research methodology 

3.1 Data Collection 

This study used a large shopping mall with nine 

floors above ground and four floors underground as a 

sample case. Three floors of the structure were extracted, 

and Autodesk Navisworks was employed for clash 

detection. To reduce the load of subsequent labelling 

process, this study only selected water supply pipelines 

within the MEP model against the structural model for 

clash detection. Figure 2 shows the clash detection 

report for models on the sixth floor . The table at the top 

shows the total number of clashes while the following 

table lists all details of each clash, including grid 

location, clash point, distance, and information about 

the two clashed items (e.g., item ID, layer, item name, 

and item type). In addition, two image icons are 

available. The image can also be viewed by clicking on 

the icon (Figure 3). Table 1 shows the statistics of the 

entire clash detection report including 415 structural 

clashes against flow segments such as pipes and fittings. 

 

Figure 2. Illustration of the clash detection report 

produced by Autodesk Navisworks 2017 

 

Figure 3. The snapshot of a clash produced by 

Autodesk Navisworks 2017 

Table 1. Statistics of the clash detection report 

 Pipes Fittings Total 

Framings 153 25 178 

Walls 155 68 223 

Columns 1 1 2 

Landings 12 0 12 

Total 321 94 415 

3.2 Labeling the Clash Types 

After completing the clash detection report, the 

research team integrated the HTML-based clash report 

into a spreadsheet. Two senior engineers with 

experience in clash resolution were requested to classify 

the clash types. A column with a drop-down menu in 

the spreadsheet was provided for the experts to carry out 

labelling (Figure 4). This spreadsheet contains all the 

information in the clash detect report of Figure 2, 

including a hyperlink to view the clash image, as shown 

in Figure 3. The drop-down menu consists of four 
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options with intuitive common vocabulary: severe 

clashes, negligible clashes, legal interventions, and 

unknown. These four options were mapped to the four 

categories suggested in the literature: errors, pseudo 

clashes, deliberate clashes, and unknown, respectively. 

The research team also provided the experts with 2D 

CADs and 3D models of the building for their 

references. 

The labeling process took approximately 10 days. 

Table 2 shows the summary of results by the two 

experts. After a detailed comparison was undertaken, 89 

clashes were labelled with different answers by the two 

experts, accounting for approximately 20% of the total 

number of clashes. Therefore, the remaining 326 cases 

were used for subsequent analysis. 

 

Figure 4. Spreadsheet-based clash detection 

report for labelling by human experts 

Table 2. Statistics of training and testing data 

Clash Type Expert # Expert #2 

Serious clashes 159 208 

Neglectable clashes 0 0 

Legal intervenes 174 148 

Unknown 82 59 

Total 415 415 

3.3 Rule-based reasoning 

After obtaining the labelling results from the experts, 

the research team acquired 4 rules of clash type 

classification rules by interviewing the two experts as 

follows: 

1. Beam rule: If the structural component of a clash 

is a beam, then the clash type is either a severe 

clash (i.e., error) or negligible clash (i.e., pseudo 

clash). Severe clashes located near two ends of the 

beam can affect structural safety, whereas 

negligible clashes do not affect structural safety 

but require perforation processing. 

2. Column rule: If the structural component of a clash 

is a column, then the clash type must be a severe 

clash (i.e., an error). 

3. Slab rule: If the structural component of a clash is 

a slab, then the clash type must be a legal 

intervention (i.e., a deliberate clash). 

4. Wall rule: If the structural component of a clash is 

a wall and a load-bearing wall, the clash type must 

be a severe clash (i.e., an error); otherwise, it is a 

negligible clash. 

Some rules involve complex spatial operations or 

require other supporting information to be processed. 

For example, the identification of clash position and 

wall type is required for Beam and Wall rules, 

respectively. The limited information provided in the 

report did not allow for corresponding calculations. 

Therefore, under a conservative consideration, this 

study simplified the aforementioned Beam and Wall 

rules as follows: 

1. Simplified beam rule: If the structural component 

of a clash is a beam, then the clash type is a severe 

clash (i.e. errors). 

2. Simplified wall rule: If the structural component of 

a clash is a wall, then the clash type is unknown. 

Numbers in parentheses in Table 3 represent the 

numbers of clashes that are consistent with expert 

classification results. Because the simplified rule tends 

to be conservative, the prediction accuracy rate will be 

lower, especially for the Wall rule, which had an 

accuracy rate of only 15%, resulting in an overall 

classification accuracy of less than 60% (189/326). 

A further modification was made to the Wall rule: 

“If the structural component of a clash is a wall, then the 

clash type is negligible (i.e., a deliberate clash).” This 

increases the overall accuracy rates to 87% (283/326). 

However, this modification may carry a potential risk of 

mis-classification 

Table 3. Results of rule-based reasoning using 

simplified rules 

Clash Type 

Simp. 

beam 

rule 

Column 

rule 

Slab 

rule 

Simp. 

wall 

rule 

Total 

 

Serious 

clashes 

174 

(154) 

2 

(2) 
  

176 

(156) 

 

Neglectable 

clashes 
  

12 

(12) 
 

12 

(12) 

 

Unknown    
138 

(21) 

138 

(21) 

 

Accuracy 0.89 1.00 1.00 0.15 0.58  
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3.4 Feature selection and pre-processing for 

machine learning 

As described in the literature review, the first step in 

developing a machine learning algorithm involves 

selecting features that are relevant to problem solving. 

In addition, because the development tool used in this 

study (i.e., scikit-learn) can only process numerical data, 

the nominal or text features must be coded as numerical 

features. Table 4 shows the selection and manipulation 

of each feature that we used for training machine 

learning algorithms. Among them, numerical features 

such as “Distance”, “Floor-1”, and “Floor-2” remain 

unchanged; “Clash Point” is the coordinate with a 

mixture of numbers and text and is separated into three 

numerical features, namely “Clash Point_x”, “Clash 

Point_y”, and “Clash Point_z”; As for “ItemType-1” 

and “ItemType-2”, which are nominal features, one-hot 

encoding is performed separately, thus deriving six 

features as shown in Table 4. 

In addition, to test whether the results of rule-based 

reasoning (see Section 3.3) contribute to the 

improvement of the prediction accuracy of the machine 

learning algorithm, another feature “Rule-Tag” was also 

added to label the result of the rule-based reasoning. 

Since this feature is nominal, one-hot encoding is also 

performed before the training process. 

Table 4. Summary of feature selection and pre-

processing 

Original 

Feature 

Data 

Type 

Example 

Value 

Revised 

Feature 

 

Distance numeric -0.234 unchanged 
 

Floor-1 numeric 2 unchanged 
 

Floor-2 numeric 2 unchanged 
 

Clash Point text 

x:-7370, 

y:-1171, 

z:24 

Clash Point_x 

Clash Point_y 

Clash Point_z 

 

ItemType-1 nominal Pipes 
{Pipes, 

Fittings} 

 

ItemType-2 nominal Framings 

{Framings, 

Walls, 

Slabs, 

Columns} 

 

3.5 Modeling by machine learning classifiers 

The research team adopted a free software machine 

learning library, scikit-learn, as the implementation 

environment, which provides a rich set of tools for 

classification, regression and clustering using machine 

learning algorithms such as decision trees, SVM, k-NN, 

random forests, gradient boosting, k-means and 

DBSCAN. Researchers suggested that no single 

classifier can work well across all scenarios. Therefore, 

this study implemented three common single non-linear 

classifiers and three multiple classifiers of ensemble 

learning. We will evaluate the performances of those 

different classifiers later in Section 4. 

Table 5 summarizes the manipulation of training 

classifiers by this study. In order to test and evaluate 

classifier performances, the research team randomly 

selected 30% of the entire 326 cases as testing dataset, 

i.e. 98 cases, while the rest of cases is further split into 

training and validation datasets with a proportion of 4:1 

when applying k-fold cross-validation (k=5). For 

classifiers like kNN, SVM, Voting, the features of 

training dataset were standardized before the training 

process. 

Table 5. Summary of machine learning manipulations 

Measures Description  

Data splitting 
7:3 (228 cases for training; 98 

cases for testing) 

 

Performance 

metric 
Confusion matrix 

 

Classifiers 
Decision Tree, SVM, kNN, 

Voting, Bagging, Random Forest 

 

Evaluation k-fold cross-validation (k=5) 
 

3.5.1 Single classifiers 

1. Decision Tree 

First, the research team implemented a classifier 

using decision tree algorithm with a maximum tree 

depth of 6 and a criterion of Gini impurity. Figure 5 

shows its learning curves with the best f1-score of 0.92. 

Both the training and validation curves converge at a 

high prediction accuracy indicating the classifier doesn’t 

under-fit the real situation. However, two curves 

converge with a large gap indicating the model may 

suffer from over-fitting. 

2. K Nearest Neighbors (k-NN) 

Next, a classifier using k-NN algorithm with 3 

neighbors and a uniform weight. Figure 6 shows its 

learning curves with the best f1-score of 0.90. Both 

curves in Figure 6 also converge at a high prediction 

accuracy with a small gap indicating the classifier 

doesn’t suffer from under-fitting, but a bit from over-

fitting. 

3. Support Vector Machine (SVM) 

The last single classifier implemented in this study is 

using SVM algorithm with 1.0 penalty and a linear 

kernel. Figure 7 shows its learning curves with the best 
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f1-score of 0.90. Although the curves do not converge 

well as the previous two classifiers, its high prediction 

accuracy and small gap still indicate the classifier 

doesn’t suffer from high variance nor high bias. 

 

Figure 5. The learning curves of the classifier of 

a decision tree with a  maximum depth of 6 

 

Figure 6. The learning curves of a k-NN 

classifier with 3 neighbors and a uniform weight 

 

Figure 7. The learning curves of a SVM 

classifier with 1.0 penalty and a linear kernel 

3.5.2 Multiple classifiers by ensemble learning 

All single classifiers implemented previously have 

performed well in terms of prediction accuracy so the 

research team then moved forward to build up a set of 

classifiers following the principles of ensemble learning. 

The benefit of ensemble methods is to combine different 

classifiers into a multiple classifier that can often have a 

better predictive performance than each individual 

classifier alone. Those multiple classifiers implemented 

by this study include Voting classifier, Bagging 

classifier, and Random Forest classifier. 

1. Voting 

The first implemented ensemble learning algorithm 

is the Voting classifier, which combined three 

individual classifiers implemented previously, namely, a 

decision tree classifier, a k-NN classifier, and a SVM 

classifier, with a soft voting weight of 5:1:1, 

respectively.  

Figure 8 shows its learning curves where both 

training and validation curves converge with a small gap 

at the best f1-score of 0.94 indicating the classifier 

doesn’t suffer from under-fitting, but slightly over-fits. 

 

Figure 8. The learning curves of a Voting 

classifier combining a decision tree, k-NN, and 

SVM classifiers 

2. Bagging 

The research team then implement a Bagging 

classifier with 100 default estimators, where are 

decision tree classifiers.  The learning curves shown in 

Figure 9 indicate that the classifier has gained a higher 

prediction accuracy (0.96) than any of previous 

classifiers. The convergence of both training and 

validation curves also indicates this classifier does not 

over-fit nor under-fit. 

3. Random Forest 

Finally, the research team implemented the 

commonest ensemble learning classifier, Random Forest, 
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with also 100 default estimators, or the decision trees. 

Figure 10 shows its learning curves with a very similar 

shape with the Bagging classifier. 

 

Figure 9. The learning curves of a Bagging 

classifier with 100 decision tree classifiers 

 

Figure 10. The learning curves of a Random 

Forest classifier with 100 decision tree classifiers 

4 Results and Evaluation 

In this section, the testing dataset of 98 cases is used 

to test the performance of those trained classifiers. The 

confusion matrix is adopted for the evaluation, which 

reports the counts of the true positive, true negative, 

false positive, and false negative predictions of a 

classifier, as shown in Figure 11. Three rates derived 

from the confusion matrix are recorded as the 

performance metric against all trained classifiers, 

including precision, recall, and f1-score, which are 

defined as in formulas (1), (2), and (3). 

Besides those quantitative measurements, feature 

importance suggested by each classifier is also 

addressed to reveal which features explain more about 

the prediction results than others. Only the decision tree 

classifier and Bagging classifier are selected for 

evaluation. 

 

Figure 11. The confusion matrix used to evaluate 

the performance of the trained classifiers 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2) 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑇𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(3) 

4.1 Results 

Table 6 illustrate the testing results of 98 cases 

against the decision tree classifier with 6 levels. The 

average f1-score is 0.92 indicating a good predictive 

accuracy. Table 7 show the testing results of the 

bagging classifier with 100 decision trees. The average 

f1-score reaches an even better predictive accuracy of 

0.94. Compared with the classification accuracy 

obtained by the rule-based reasoning, both classifiers 

can produce a much better predictive performance. 

Table 6. Performance matrix of the decision tree 

classifier 

 precision recall f1-score 

Deliberate clashes 1 1 1.00 

Errors 0.89 0.95 0.92 

Unknown 0.78 0.58 0.67 

Average 0.93 0.93 0.92 

Table 7. Performance matrix of the Bagging classifier 

 precision recall f1-score 

Deliberate clashes 0.98 1.00 0.99 

Errors 0.93 0.95 0.94 

Unknown 0.80 0.67 0.73 

Average 0.94 0.94 0.94 

4.2 Evaluation 

According to the confusion matrix of the decision 

tree classifier shown in Figure 12, none actual “errors” 

is classified as deliberate clashes or pseudo clashes, 

which provides a conservative prediction with a lower 

risk. In addition, the classifier filters out 42 “noises” (in 
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this case, deliberate clashes), accounting for 43% of all 

clashes from the original clash report, remaining only 

57% to be inspected by human. Similarly, none actual 

“errors” is mis-classified by the Bagging classifier. The 

classifier also filters out 43% of clashes from the 

original clash report. 

Figure 13 lists the top 6 features that have the higher 

importance to contribute the prediction results. Item 

type-1 “Framing” is the most discriminative feature in 

the dataset, which aligns with the result of rule-based 

reasoning in Section 3.3. Likewise, the feature 

importance suggested by the Bagging classifier presents 

a similar distribution to that by the decision tree 

classifier. 

 

Figure 12. The confusion matrix of the decision 

tree classifier 

 

Figure 13. Feature importance suggested by the 

decision tree classifier 

5 Conclusions 

This study developed a tiny rule-based reasoning 

system to classify those conflicts detected by BIM 

software, which obtained a predictive accuracy of 58%. 

Then, both individual machine learning classifiers and 

multiple classifiers were also implemented to perform 

the same task. Preliminary testing results showed that 

both the decision tree classifier and 3 ensemble learning 

classifiers can obtain a much better predictive accuracy 

than the rule-based version.  

However, the current model and its predictive 

performance can only be applied to this setting since the 

dataset used to train and test the machine learning 

classifiers only contains clashes between structural 

components and piping components. The dataset needs 

to be extended to include other MEP components, such 

as ducts, conduits, fire alarm devices, or lighting 

devices. Besides, most classifiers built in this paper 

have an over-fitting issue according to their learning 

curves. This could also be resulted from a relatively 

small number of training cases in our dataset. This 

limitation originates from that fact that labeling the 

dataset highly relied on human experts’ experiences and 

labor work. All the mentioned issues remain to be 

solved in the future.   
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