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Abstract –  

The construction industry is one of the most 

hazardous industries suffering from a high on-site 

accident rate. A lot of safety hazards result from 

dynamic activities of construction workers and 

equipment. Therefore, tracking the location and 

motion of workers and equipment as well as 

identifying the interaction between them are crucial 

to preventing safety hazards on construction sites. 

Currently, with the extensive installation of 

surveillance cameras, computer vision techniques can 

be applied to process the videos and images captured 

on construction sites, which can be used to monitor 

site safety and to identify potential hazards. With the 

aim to predict and prevent the safety hazards among 

workers and equipment, this paper proposes a 

methodology to monitor and analyse the interaction 

between workers and equipment by detecting their 

locations and trajectories and identifying the danger 

zones using computer vision and deep learning 

techniques. First, workers and construction 

equipment are automatically located from cameras 

and classified by a deep region-based convolutional 

neural network (R-CNN) model. Then, the location 

and classification results are further processed by 

another CNN-based model to obtain trajectories of 

those objects. Based on the detection and trajectories, 

the spatial-temporal relationship between workers 

and equipment is analysed, from which the danger 

zones for the workers are identified and the 

corresponding safety alarms are generated. 

Experiments are conducted to demonstrate the 

capability of the proposed methodology for 

accurately identifying and predicting safety hazards 

among construction workers and equipment, which 

can contribute to the safety conditions on 

construction sites.  
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1 Introduction 

The construction industry is one of the most 

hazardous industries suffering from a high on-site 

accident rate. Between 2013 and 2017 in Hong Kong, the 

construction industry has reported the highest fatality rate 

among 11 industry sections in every year [1]. In 

particular, striking against or struck by moving objects 

has been ranked the top 3 highest number of industrial 

injuries out of 23 accident types [1]. These figures reflect 

that the construction industry has been significantly 

hazardous. Specifically, the dynamic characteristic of the 

construction site activities such as the movement of 

construction workers and equipment is one of the major 

causes for construction safety accidents, such as injury of 

workers due to the surrounding equipment. Therefore, 

monitoring the interaction among workers and equipment 

is essential to predict and prevent safety hazards on 

construction sites.  

Currently, construction safety monitoring mainly 

relies on observing the real-time site conditions manually 

through on-site surveillance cameras. Early alerts of 

potential hazards are judged based on previous 

experiences and provided based on observations from the 

cameras. Such manual approaches are labor-intensive 

and error-prone considering the difficulty of monitoring 

through multiple cameras simultaneously. Human 

fatigue could lead to the ignorance of potential hazards, 

such as workers unconsciously approaching heavy 

equipment. Furthermore, the alerts based on personal 

experiences can be subjective or belated, leading to 

severe consequences. Therefore, a method capable of 
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automatically monitoring and predicting safety issues on 

construction sites is desired to reduce the resources and 

to improve the efficiency for safety monitoring. 

Computer vision techniques are adopted to 

automatically process images or videos to assist with 

various human activities. In addition, deep learning 

techniques have been widely applied to facilitate 

computer vision tasks and achieved promising 

performance. The objective of this study is to 

automatically predict the safety hazards among 

construction workers and equipment through analyzing 

spatial-temporal interaction among workers and 

equipment using computer vision and deep learning 

techniques. In the rest of the paper, related works are 

reviewed in Section 2 and the proposed methodology is 

introduced in Section 3. Experiments and results are 

elaborated in Section 4, followed by conclusions and 

future work in Section 5. 

2 Related Work 

Previous studies for construction safety monitoring 

were reviewed. In particular, computer vision-based 

techniques for construction safety monitoring were 

categorized by [2] into three aspects. 

The first category is object detection. Some 

researches detected workers and equipment by 

background subtraction algorithm [3], Histograms of 

Oriented Gradients (HOG) descriptor with Support 

Vector Machine (SVM) classifier [4], and Scale-

Invariant Feature Transform (SIFT) [5]. The approach of 

SIFT in [5] segmented a wide range of objects on images 

covering workers, different kinds of equipment and 

materials. More recently, Fang et al. [6] used a region-

based CNN framework named Faster R-CNN to detect 

workers standing on scaffolds. A deep CNN then 

classified whether workers are wearing safety belts. 

Those without safety belt appropriately harnessed were 

identified to prevent any fall from height. Adoption of 

deep learning was shown to achieve promising detection 

accuracy [6]. 

The second group of techniques is object tracking. 

Some studies adopted detection-based tracking method, 

where by definition newly detected objects either 

initialize new tracks or are mapped to existing tracks for 

identity maintenance over certain duration. The 

DeepSORT developed by [7] is a detection-based 

tracking model. Zhu et al. [8] used SIFT to extract visual 

features for detecting workers and equipment. Kalman 

Filter was then used to predict future movement with 

respect to past measurement. Another study by [9] 

detected workers and equipment based on HOG features, 

while their movement were tracked with Particle Filter. 

For construction site monitoring, deep learning has not 

been fully studied for target detection in many detection-

based tracking approaches. 

The third cluster is action recognition. For example, 

Ding et al. [10] combined CNN with Long-Short-Term-

Memory (LSTM) to identify unsafe actions of workers, 

such as climbing ladders with hand-carry objects, 

backward-facing or reaching far. While safety hazards of 

workers were effectively identified, their method only 

captured single worker and multi-object analysis was not 

considered. On the other hand, Soltani et al. [11] used 

background subtraction to estimate posture of an 

excavator by individually detecting each of its three 

skeleton parts including dipper, boom and body. 

Although knowing the operating state of construction 

equipment would allow safety monitoring nearby, the 

influence of the equipment on the surrounding objects 

was not studied [11]. 

Overall, in terms of automated safety monitoring with 

computer vision techniques, previous studies focused on 

different parts accounting for the safety issues separately, 

such as identifying working status of construction 

equipment or tracking the movement of workers. There 

is a lack of an integrated analysis of the spatial-temporal 

interaction among workers and equipment considering 

the potential influences from different aspects. A robust 

mechanism that analyzes the spatial-temporal interaction 

among workers and equipment is desired for automated 

and real-time monitoring of on-site safety. 

3 Methodology 

In this study, an integrated approach is proposed for 

predicting safety hazards among construction workers 

and equipment using computer vision and deep learning 

techniques. The proposed approach involves three parts, 

as shown in Figure 1. First, images are extracted from 

videos, and construction workers and equipment in video 

frames are extracted by the detection model. Then, the 

detection results are imported into the second part. For 

construction equipment, the danger zone is identified 

Figure 1. Overall workflow for predicting the safety hazards among construction workers and equipment 
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while for construction workers, the trajectory is tracked 

and predicted. By combining the identified danger zone 

and predicted trajectory, the spatial-temporal relationship 

among construction workers and equipment is analyzed. 

In the end, safety hazards are predicted based on the 

spatial-temporal relationship analysis. 

3.1 Equipment and Worker Detection 

The detection of equipment and workers are realized 

through Faster R-CNN, in view of its higher accuracy 

demonstrated by previous studies [12,13]. The 

architecture of Faster R-CNN includes (1) backbone 

network to extract image features; (2) region proposal 

generate (RPN) network for generating region of interest 

(ROI), and (3) classification network for producing class 

scores and bounding boxes for objects. Details of each 

part are introduced as follows. 

3.1.1 Backbone Network 

The backbone of the Faster R-CNN is used for feature 

extraction through a stack of convolution, activation, and 

max pooling layers.  After pre-processing, each image is 

fed into the network as a three-dimensional array 

representing the pixel values on the RGB channels. In the 

beginning, a certain number of filters are assigned with 

random weights as initialization. During convolution, 

each filter slide across the input volume and the dot 

product between the filter and the corresponding image 

patch convolved is calculated and added with a bias value 

to obtain the convolution result. To add non-linearity to 

the network, the convolution result is fed into an 

activation function, for which rectified linear units 

(ReLU) is used in this study. After activation, max 

pooling is performed to reduce the dimension of feature 

maps by selecting the maximum value from each image 

patch covered by the filter and use the maximum value as 

the new feature value. Through setting the max pooling 

filter size and stride, the dimension of feature maps is 

down-sampled by a factor of 2 each time, such that the 

computational cost is reduced. A stack of convolution, 

ReLU and max pooling layers are performed to generate 

the feature maps, which are then fed into the RPN 

network for generating candidate ROIs (i.e. the potential 

regions with objects). As training the model from scratch 

is time-consuming and requires a large number of images, 

transfer learning is applied in this study as the low-level 

features of objects such as edges and corners are 

transferable among different datasets. Specifically, the 

weight of a model namely VGG16, which is pre-trained 

on another large dataset, is utilized to initialize the 

backbone network. The model is then fine-tuned with our 

dataset of construction equipment and workers such that 

high-level features (i.e. the characteristics of equipment 

and workers) are learned in the applied model. 

3.1.2 RPN Network 

The generated feature maps from the backbone 

network are passed through the RPN network which 

consists of a convolutional layer and a ReLU layer. The 

results are then fed into two parallel layers for label 

classification and bounding box regression. The class 

labels include foreground and background, indicating 

whether an object is contained in the region or not while 

the bounding box regression layer is used for refining the 

location of bounding boxes. In the beginning, a number 

of small windows, named anchors, with different sizes 

and aspect ratios are designed at each pixel location such 

that multi-scale features can be extracted. During the 

training, the class scores and the four coordinates of each 

bounding box are predicted for each anchor, after which 

the loss for both class scores and coordinates are 

computed. The number of anchors is reduced by non-

maximum suppression (NMS) based on the foreground 

scores. 

3.1.3 Classification Network 

After obtaining the potential ROIs from the RPN, the 

regions on the feature maps corresponding to the ROIs 

are extracted through a crop pooling method. The 

extracted regions of the feature maps are reshaped and 

fed into the classification network, where two parallel 

layers are used for predicting the class labels with 

probability of each class and bounding boxes with more 

accurate locations. There are 7 classes included in this 

study including 5 types of equipment, the worker and the 

background. In the end, the loss of the predicted classes 

and the bounding boxes are computed based on the 

ground truth labels. The model weights are then updated 

by back-propagation during training process.  

The layers of the three networks are combined 

together and the weights are trained in an end-to-end 

manner. After training the model on our dataset, the 

model is capable of detecting construction equipment and 

workers accurately during inference using the optimal 

trained weights. 

3.2 Worker Trajectory Tracking 

For trajectory tracking and prediction, the 

DeepSORT framework proposed by Wojke et al. [7] is 

used as our baseline because it demonstrated robustness 

of identity preservation upon arbitrary duration of 

occlusion. As a detection-based tracking framework, the 

worker detection results at a frame either initialize new 

tracks or are mapped to the most similar identities being 

tracked. Kalman Filter is used to predict future position 

of the target for position proximity matching. Apart from 

position constraint, identity assignment of the set of new 

detection also considers appearance similarity against the 

targets being tracked. Readers are referred to the original 
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publication for more detailed mathematical formulation 

of DeepSORT. 

There are several parameters in DeepSORT that 

define its track management mechanism. Two of them 

are highlighted since their values are adapted to our site 

analytics. ‘Lambda’ controls the relative influence of 

position and appearance constraints in identity matching. 

For our analysis, Lambda is set as 0.5 for a 

complementary effect among these two factors. On one 

hand, construction sites tend to be crowded such that 

many workers may walk very close to others. Position 

proximity alone may make identity matching inaccurate 

when there are many candidates near a target. On the 

other hand, construction workers tend to have very 

similar appearance when wearing reflective vest and 

safety helmet, such that appearance may not explicitly 

distinguish multiple worker. Therefore, a balanced 

reliance among these two aspects is granted. 

Another parameter ‘Max_age’ is set to be 200 frames 

in our study. This means that unique identity of a 

disappeared worker is remembered for 200 consecutive 

frames, during which it can be retrieved upon 

reappearance of the target. A long memory increases the 

computational burden for handling many targets, while a 

short memory leads to discontinuous trajectory history 

and subsequently inaccurate prediction of future 

trajectory. A 200-frames memory is considered 

reasonable for obtaining trajectory history. Acquiring 

complete trajectory history would support the prediction 

of future trajectory. 

3.3 Worker Trajectory Prediction 

Trajectory prediction for workers is based on the 

inference output from Kalman Filter used in DeepSORT. 

The translation of the ‘foot’ position of a target is 

considered, since it represents the area on which he/she 

walks. Therefore, the bottom center coordinate of a box 

is obtained by relating the corner coordinates with the 

width and height of a box. Since Kalman Filter only 

infers target movement at next timestamp, a mechanism 

is proposed to predict movement in a longer future. In 

particular, the future position of the ‘foot’ of a target 

(𝑥2, 𝑦2) is linearly extrapolated with respect to its current 

position (𝑥1, 𝑦1) and velocity: 

𝑥2 = 𝑥1 + (𝛼𝑥 ∗  𝑥̇) (1) 

𝑦2 = 𝑦1 + (𝛼𝑦 ∗  𝑦̇) (2) 

where 𝑥̇ and 𝑦̇ are velocities along individual direction 

output by Kalman Filter, 𝛼𝑥 and 𝛼𝑦 are number of future 

frames for position prediction. 

With the current and future positions, 𝑃 =
(𝑥1, 𝑦1) and 𝑃′ = (𝑥2, 𝑦2) , respectively, the predicted 

trajectory of a target is defined to be the directed line 

segment 𝑃𝑃′ pointing from  𝑃 to 𝑃′. On the image plane, 

this trajectory line is represented by a linear equation, 

while the coordinates of 𝑃  and 𝑃′  define its boundary. 

An assumption is that targets tend to produce smooth 

motion within the inference period, like standing still or 

walking constantly with current velocities 𝑥̇ and 𝑦̇. 

3.4 Definition of Danger Zone 

When a construction equipment (e.g. excavator) is in 

its working state, there is an activity region around the 

construction equipment. There is a high potential of 

safety hazards when workers or other construction 

machines enter this activity region. In this study, this kind 

of activity region is defined as a danger zone.  

For an excavator, the exact danger zone could be 

defined as a located circle in a real construction site, 

which is an ellipses when projected to 2-D images, based 

on danger parameters including the position (pos) of the 

excavator, the lengths (l), working directions (d) and 

ranges (r) of arms, the size (s) of its body, and other 

factors (o). An exact danger zone (edz) is defined in 

Equation (3) 

𝑒𝑑𝑧 = 𝑓(𝑝𝑜𝑠, 𝑙, 𝑑, 𝑟, 𝑠, 𝑜) (3) 

On a construction site with a working schedule for on-

site machines, most danger parameters of a construction 

machine are deterministic during a certain time interval, 

such as the lengths, working directions and ranges of 

arms, and the size of the construction equipment. On the 

other hand, the location of the excavator is obtained from 

the bounding box coordinates through the equipment and 

worker detection model, as introduced in Section 3.1. 

With those danger parameters, the size of the danger zone 

around an excavator could be determined. 

3.5 Spatial-Temporal Analysis 

Safety status of each worker is categorized into 3 

types, based on the geometric relationship between the 

predicted trajectory and danger zone. As shown in Figure 

2, ‘Normal’ is marked if the starting point of a trajectory 

(current position) is outside any danger zone while the 

predicted trajectory does not touch any danger zone (e.g. 

T1, T6). ‘Danger Now’ is marked as long as the start 

point lies within a danger zone (e.g. T2, T3). ‘Potential 

Danger’ is marked if the start point is outside any danger 

zone while the predicted trajectory intercepts a danger 

zone at least once (e.g. T4, T5, T7).  
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Figure 2. Examples of categorizing safety statuses 

based on predicted trajectory of a worker 

The mathematical relationship between an ellipse and 

a straight line is derived to check for interception. 

Equation (4) and Equation (5) show the general forms of 

an ellipse and an infinite straight line on x-y plane 

respectively, while Figure 3 summarizes the notation of 

all related symbols. 

(𝑥 − 𝑥𝑐)2

𝑟𝑥
2

+
(𝑦 − 𝑦𝑐)2

𝑟𝑦
2

= 1 
(4) 

𝑦 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

∗ 𝑥 + 𝑦0 
(5) 

where, 𝑦0 = 𝑦1 − (
𝑦2 − 𝑦1

𝑥2 − 𝑥1

) 𝑥1 
(6) 

 

Figure 3. Notation for general representation of 

ellipse and straight line 

A danger zone is centered at (𝑥𝑐 , 𝑦𝑐) with radiuses 𝑟𝑥 

and 𝑟𝑦 . As for the predicted trajectory of a worker, an 

infinite straight line is defined by the current position as 

(𝑥1, 𝑦1)  and future position as (𝑥2, 𝑦2) . To find the 

intercept(s) between an ellipse and a straight line, 

Equation (4) and Equation (5) are solved simultaneously 

for 𝑥  and y. After substitution, a quadratic equation is 

obtained, as shown in Equation (7).  

𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0 (7) 

𝐴 =
1

𝑟𝑥
2

+
𝑚2

𝑟𝑦
2
 

(8) 

𝐵 = −
2𝑥𝑐

𝑟𝑥
2

+
2𝑚(𝑦0 − 𝑦𝑐)

𝑟𝑦
2

 
(9) 

𝐶 =
𝑥𝑐

2

𝑟𝑥
2

+
(𝑐 − 𝑦𝑐)2

𝑟𝑦
2

− 1 
(10) 

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

 (11) 

The solution(s) to Equation (7), if any, correspond to 

the x-coordinate(s) at which the straight line intercepts 

the ellipse. The expression in Equation (12) is used to 

check whether interception exist. If Δ ≥ 0, the line either 

passes through the ellipse at two distinct points, or 

touches the ellipse at one point. In this case, Equation (13) 

provides the corresponding intercepted x-coordinate(s). 

If Δ < 0, the line is always outside the ellipse. 

Δ = 𝐵2 − 4𝐴𝐶 (12) 

𝑥+ =
−𝐵 + √Δ

2𝐴
 𝑎𝑛𝑑 𝑥− =

−𝐵 − √Δ

2𝐴
 (13) 

The key consideration when checking interception is 

that each trajectory is a definite segment spanning from 

the current to future position of the target. It is possible 

that the interception point(s) is/are outside the definite 

segment which is only a portion of its associated infinite 

line. Therefore, an additional condition is imposed to 

check whether the definite segment intercepts the ellipse. 

Table 1 illustrates the decision logic. In case of no 

interception at all, ‘Normal’ is assigned to a target (e.g. 

T1 in Figure 2). Otherwise, if the current position lies 

between the intercepted points, it lies within the danger 

zone and ‘Danger Now’ is assigned (e.g. T2, T3 in Figure 

2). If the current position lies outside the zone while at 

least one of the intercepted point(s) is within the definite 

segment, the trajectory passes through the zone and 

‘Potential Danger’ is assigned (e.g. T4, T5, T7 in Figure 

2). Otherwise, the trajectory does not enter the zone at all 

and ‘Normal’ is assigned (e.g. T6 in Figure 2). 

Table 1. Algorithm for assigning safety status based on 

worker trajectory and danger zone 

If Δ < 0: 
Assign ‘Normal’ 

Else: 

If 𝑥1 ∈ [𝑥−, 𝑥+]: 
Assign ‘Danger Now’ 

Else if 𝑥− ∈ [𝑥1, 𝑥2] or 𝑥+ ∈ [𝑥1, 𝑥2]: 
Assign ‘Potential Danger’ 

Else: 

Assign ‘Normal’ 

4 Experiments and Results 

Experiments are performed to demonstrate the 

capability of the proposed methodology for automatically 

predicting safety hazards on construction sites through 

the analysis of spatial-temporal relationship between 

construction workers and equipment based on the 

captured images and videos from surveillance cameras. 

The spatial-temporal relationship is analysed based on 

two inputs: (1) the danger zone obtained from the 

detected location of the construction equipment and other 
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parameters, and (2) the predicted worker trajectory based 

on the historical trajectory records.  

4.1 Experiment Dataset  

Several videos captured from surveillance cameras on 

construction sites are collected and images are extracted 

from those videos. 2410 images containing 5 types of 

construction equipment (i.e. dump trucks, excavators, 

loaders, mixer trucks, and rollers) and construction 

workers are extracted and each image is annotated with 

ground truth labels and bounding boxes. 90% of the 

images are used for model training and validation while 

10% are for model testing. In the end, the methodology 

is also applied on a new construction site video to 

demonstrate the real-time prediction of the hazards.  

4.2 Experiment Implementation 

The danger parameters of a construction equipment 

are assumed to be known in the experiment. Based on this 

assumption, the size of the danger zone around a 

construction equipment such as excavator is pre-defined. 

Then, the exact danger zones on a construction site are 

determined with the result of equipment detection, and 

the identified danger zones are used for spatial-temporal 

analysis. 

Firstly, the architecture of the model for construction 

worker and equipment detection, as introduced in Section 

3.1, is constructed using Pytorch, which is a common 

platform for implementing deep learning models. The 

model is trained using the annotated images for 40 

epochs and the training loss is plotted to monitor the 

learning progress of the model. The model is evaluated 

using average precision (AP) for each class and the mean 

AP (mAP) for all the classes.  

As for the worker trajectory prediction introduced in 

Section 3.3, 𝛼𝑥 and 𝛼𝑦 are both set to be 60 frames, such 

that for each target his/her position after 60 frames is 

inferred. This is a reasonable period because it predicts 

the target movement in the next 2 seconds, if considering 

a typical video with 30 frames per seconds. For safety 

monitoring on construction sites, 2-second movement 

prediction would allow identification of potential hazards. 

4.3 Experiment Results and Analysis  

The results include two parts – (1) the accuracy of 

equipment and worker detection; (2) the prediction 

results of safety hazard based on the analysis of spatial-

temporal relationship among workers and equipment. 

4.3.1 Accuracy of the detection model  

The accuracy of the Faster R-CNN model on the 

testing dataset is summarized in Table 2. The model 

achieved high detection accuracy for both workers and 

construction equipment. The AP values of all the classes 

achieved at least 85% and even exceed 95% for most 

classes except for dump trucks, rollers and workers. With 

a mAP of 92.55%, the model is demonstrated to be 

promising for detecting workers and equipment 

accurately on the construction site. 

Table 2. Accuracy of worker and equipment detection 

Class Name AP (%) mAP (%) 

Dump truck 85.12  

Excavator 95.94  

Loader 96.19  

Mixer truck 97.73  

Roller 86.91  

Worker 93.40  

  92.55 

Nevertheless, as shown in Figure 4, the detection 

model tended to miss the excavator when its arm was not 

hanged horizontally, and those workers squatting or 

carrying objects. These cases could be attributed to our 

limited training dataset, which may not have covered a 

variety of view angles or human gesture. An enriched 

dataset would further enhance the detection accuracy. 

 

Figure 4. Examples of incorrect detection of 

equipment and workers 
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4.3.2 Accuracy of the spatial-temporal analysis 

The detection model was applied on a construction 

site video to detect the equipment and workers. 

Trajectories of workers were also tracked and predicted. 

Danger zones were then defined to monitor safety 

statuses of workers based on spatial-temporal 

relationship among their trajectories and the danger 

zones. As shown in Figure 5, an ellipse around the 

excavator bounded a danger zone. In addition, historical 

trajectories of workers were displayed in purple, while 

their predicted trajectories after 60 frames were 

visualized as blue arrows. Safety statuses were then 

assigned to individual worker, based on the mathematical 

formulation in Section 3.5. Different safety statuses were 

categorized by colorized bounding boxes. 

 

Figure 5. Examples of identified danger zones and 

different safety statuses of workers 

The accuracy of assigning safety statuses is evaluated 

by Average Precision of Status (𝐴𝑃𝑠𝑡𝑎𝑡𝑢𝑠), as defined by 

Equation (14). 

𝐴𝑃𝑠𝑡𝑎𝑡𝑢𝑠 =
𝑇𝑆

𝑇𝑃
 

(14) 

where 𝑇𝑆 counts the number of workers assigned with 

true safety status, 𝑇𝑃  counts the number of detected 

workers as true positives from the detection model. In our 

experiment, assignment of safety statuses achieved an 

87.45% 𝐴𝑃𝑠𝑡𝑎𝑡𝑢𝑠 . This suggests that our framework 

accurately revealed the safety status of individual worker 

against the danger zones. For example, in Figure 5, 

worker number 15 was alerted in red with ‘danger now’ 

since he lied within the danger zone, while worker 

number 16 was labelled in blue as ‘potential danger’ 

since he was about to enter the danger zone. 

Nevertheless, dangerous conditions were sometimes 

not identified. As shown in Figure 6, red alerts were not 

issued even when workers 15 and 16 stood close to the 

excavator, possibly because the equipment was not 

detected and hence no danger zone was defined. 

Moreover, blue alert was not issued to the worker 

walking towards the operating area of excavator, possibly 

because he was occluded by other objects. These cases 

reflect that the accuracy of assigning safety status heavily 

relies on the performance of equipment and worker 

detection. The spatial-temporal analysis would be further 

supported with a more robust detection model and an 

enriched training dataset. 

 

   

Figure 6. Examples of incorrect prediction of 

safety statuses 

5 Conclusion and Future Work 

Construction industry is reported to be the most 

hazardous with a high rate of accidents on construction 

site. There are various dynamic activities on construction 

sites such as the operation of various construction 

equipment and the movement of workers. The interaction 

between construction workers and equipment is one 

important reason resulting in on-site safety hazards. 

Therefore, to avoid potential safety hazards, it is 

necessary to monitor the working status of construction 

workers and equipment, and analyse the spatial-temporal 

interactions between them. Currently, on-site conditions 

are monitored and analysed manually from the 

surveillance cameras, which is labour-intensive and 

error-prone. Furthermore, the alerts for safety hazards 

may be subjective and belated, leading to severe 

consequences.  

In this study, an integrated approach based on 

computer vision and deep learning techniques is 

proposed to predict safety hazards on construction site 
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through the spatial-temporal analysis of construction 

workers and equipment. Specifically, Faster R-CNN is 

first applied to detect construction workers and 

equipment from surveillance videos. Based on the 

detection results, danger zones of the construction 

equipment are identified while worker trajectories are 

tracked and predicted as well. Finally, the spatial-

temporal interaction between the danger zone and the 

predicted worker trajectory is analysed, based on which 

the potential hazards are predicted and corresponding 

alerts are issued.  

Experiments are performed with videos captured 

from surveillance cameras on construction sites to 

validate the capability of the proposed methodology. The 

detection model obtained high accuracy on detecting 

workers and equipment, with a mAP of 92.55% and AP 

values above 95% for most classes. As for the spatial-

temporal analysis, the precision of assigning safety 

statuses to workers achieved 87.45%, based on which the 

safety hazard alerts are provided. The experiment results 

demonstrated that the proposed approach is capable of 

automatically predicting potential safety hazards through 

detecting construction workers and equipment, 

identifying danger zones, tracking and predicting worker 

trajectories, and analysing spatial-temporal interactions 

on construction sites. Even though there are still some 

negative examples in experiments, the overall 

experiment results demonstrate promising performance 

of the proposed integrated approach for predicting safety 

hazards among construction workers and equipment on 

construction sites. Future work will focus on exploring 

better methods to obtain danger zones around 

construction equipment and to improve the performance 

of the proposed approach. 
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