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Abstract -
Concrete structures are heavily used in most modern so-

cieties and the population of structures in need of inspection
is rapidly growing. On the other hand, the manpower for
inspection is decreasing. This has brought into focus the
need for automated inspection methods for concrete struc-
tures. The hammering test is a popular method for inspec-
tion that uses the sound resulting from a hammer impact on
the surface of the structure for defect detection. Previous
methods largely employed machine learning approaches for
the automation of the hammering test. Weakly supervised
methods used positive queries answers on sample pair sim-
ilarity: a human user was questioned on the similarity of
pairs of hammering samples and similar pairs were used to
transform the feature space. However, it can be expected
that dissimilar pairs would also be gathered in this process.
Therefore, in the present paper is proposed a method for
weakly supervised defect detection in concrete structures us-
ing hammering with both positive and negative answers to
queries. After the initial feature space transformation based
on positive query answers, another feature space transfor-
mation is introduced based on negative query answers. Ex-
periments in laboratory conditions showed the effectiveness
of the proposed method.
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1 Introduction
Concrete structures are featured heavily in most modern

societies. This is especially true for social infrastructures
such as tunnels, highways and bridges. Due to various
factors ranging from simple aging to damage caused by
environmental conditions, concrete structures require reg-
ular and careful inspection. This is a critical aspect for
social infrastructures due to their large number of users,
for which safety is of utmost concern [1]. Recent events
such as the collapse of the Sasago tunnel in Japan [2] or
the collapse of theMorandi bridge in Italy [3] have empha-
sized the issues caused by an ever-increasing population
of aging structures facing an ever-decreasing population
of workers tasked with inspection work.

Figure 1. A human inspector conducting the ham-
mering test on the wall portion inside a tunnel. The
hammer is used to hit the surface of the concrete
structure and the returned sound used to assess the
presence of defect beneath the surface.

One popular inspection method for concrete structures
is the hammering test, illustrated in Figure 1. It consists
in a human inspector using a simple hammer to hit the
surface of the structure and assessing the presence of de-
fects beneath the surface from the impact sound. Due to
both its simplicity and non-destructive nature, it is widely
popular. However, it requires a skilled human inspector to
be able to distinguish impact sounds resulting from defect
portions of the structures. Due to the manpower short-
age and the population of structures in need of testing, the
hammering test in its current, traditional form, is not effec-
tive. Therefore, the automation of the hammering test is
highly sought after and has attracted much focus in recent
years [4][5][6].
Previousworks havemainly employedmachine learning

approaches to tackle this issue. Supervised learning ap-
proaches use training data to train classifiers to distinguish
defect and non-defect sounds. In [7], a Neural Network
was usedwith aRadial Basis Function in order to detect de-
fects in concrete bridges by the sound of dragging chains.
In [8], Time-Frequency Analysis was employed together
with Ensemble Learning and achieved accurate classifi-
cation of hammering samples into defect and non-defect
classes. Furthermore, classification of defects samples
into shallow and deep classes was also achieved. Super-
vised learning approaches often boasted remarkable per-
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formance. However, they are limited by the availability of
adequate training data. Indeed, if the training data does
not correspond to the actual tested concrete structure, dif-
ficulties arises when attempting to produce a good model.
Since concrete is an aggregate, each structure is unique and
therefore, besides the fact that generating training data is
a human labor intensive task, adequate training data may
only be obtainable on site, i.e., on the very tested structure.
This severely limits the practicability of such approaches.

Unsupervised learning methods, characterized by the
fact that they to not require training data, offer an interest-
ing alternative to this issue. In [9], clustering was used on
Fourier spectrumof hammering sampleswith a correlation
distance. In [10] and [11], clustering of audio hammering
samples was considered along each hammering sample’s
hit location using a camera. Unsupervised learning ap-
proaches successfully bypassed the practical issue caused
by training data. However, they generally have lacking
performance compared to supervised learning methods
in their optimal conditions. Furthermore, Unsupervised
Learning approaches also incorporate strong priors, which
requires careful consideration in the design phase.

Between supervised and unsupervised learning meth-
ods, weakly supervised approaches aims to combine the
best of both worlds by only requiring weak supervision,
i.e., a form of supervision which is less informative but
also presents less burden on the human user than gener-
ating training data. In [12], an initial framework for the
automation of the hammering test based on pairs of ham-
mering samples a human user has indicated as similar was
proposed. In [13], this initial framework was reinforced
by the addition of hammering samples’ hit location using
a camera. In [14], an active query scheme was proposed
to ensure more consistent weak supervision quality. Good
results were obtained. However, only positive answers to
queries were considered in those works: weak supervision
is gathered from human users, through queries on sample
pair similarity. Positive answers to such queries, i.e., the
sample pair is similar, are known as must-links. Negative
answers, i.e., the sample pair is dissimilar, are known as
cannot-links. It is realistic to assume that the human user is
limited in the number of queries it can answer to and while
approaches such as [14] attempted to maximize the num-
ber of obtained must-links through active query, all the
queries resulting in must-links cannot be ensured. This
means that there will inevitably be cannot-links generated
during the query process, which are not taken advantage
of in previous work regarding automation of hammering
test.

Therefore, in this paper, the objective is to achieve defect
detection in concrete structures using acoustic data with
both positive and negative answers to queries.

Figure 2. Overview of the proposed method.

2 Method
2.1 Overview

An overview of the proposed method is shown in Fig-
ure 2. The input, audio data, is first pre-processed: this
involves a conversion to Fourier spectrum, normalization
and conversion to Mel-Frequency Cepstrum Coefficients
(MFCC). Then, weak supervision, provided by a human
user under the form of must-links and cannot-links, is used
to conduct a transformation of the feature space to match
the human user’s notion of similarity. Finally, separation
between defect and non-defect samples is conducted by
clustering using K-Means.

2.2 Initial Feature Space

Hammering samples are initially collected as audio seg-
ments. The first step of the processing is conversion
to Fourier spectrum. Given a sound sample defined by
x = (G1, ..., G3), its Fourier spectrum a = (01, ..., 03) is
calculated. Next, since there is no assumption about reg-
ularity of the input, i.e., the hammer strike is not assumed
to be of constant force, a normalization to zero mean and
unit variance is conducted as in (2), with 0̄ being the mean
of the components of 08 as defined in (1).

0̄ =
1
3

3∑
8=1

08 , (1)

08 =
08 − 0̄√∑3
8=1 (08−0̄)2
3−2

. (2)

In [10], theMFCC feature space was shown to be a good
feature space for discrimination of defect hammering sam-
ples. MFCC are hand-crafted feature vectors originally
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build for speech recognition and popular across several
fields dealing with audio data [15, 16]. MFCC are suited
for hammering samples because they emulate the human
hearing and the human hearing is able to discriminate
defect hammering samples from non-defect hammering
samples.
To compute the MFCC, first the periodogram estimate

of the power spectrum is computed. Then, what are known
as Mel filterbanks, a set of #filter triangular filters equally
spaced in the Mel scale, are applied. The Mel scale is
an empirical scale tuned to the sensitivity of the human
cochlea, as in (3) with 5 the frequency in Hertz. The
logarithm of the resulting #filter energy values are further
processed by Discrete Cosine Transform to finally obtain
MFCC.

" ( 5 ) = 1125 ∗ ln(1 + 5

700
). (3)

For the sake of clarity, in the remainder of this paper, the
MFCC feature vector of a hammering sample will simply
be noted as x.

2.3 Weakly Supervised Feature Space Transforma-
tion: Extended Relevant Component Analysis

The feature space defined by MFCC is a good one
for separating defect and non-defect hammering samples.
However, improvements can be achieved by further trans-
forming the feature space to match the human user’s no-
tion of similarity according to answers provided to queries.
Those answers to queries can come in two forms: pairs of
samples the human user considers similar are called must-
links whereas pairs of samples the human user considers
dissimilar are called cannot-links.
The previous work [14] only employed must-links

through Relevant Component Analysis (RCA). RCA is a
weakly supervised metric learning method initially pro-
posed in [17]. While the authors in [17] puts the fact
that RCA is only based on must-links as an advantage, as
must-links are easier to generate compared to cannot-links,
in practice it can be reasonably expected that the human
user answering queries would be limited in the number
of queries he can answer to, rather than in the number of
must-links he can provide. This means that the querying
process is very likely to produce cannot-links along must-
links. Therefore, not using cannot-links to contribute to
the feature space transformation is wasteful.
Extended RCA is an extension of the original RCA ini-

tially proposed in [18]. The feature space transformation
matrix build upon must-linksM differs slightly fromwhat
is used in RCA, as shown in (4). This allows to build a
similar transformation matrix on the set of cannot-links C
as well, as in (5).

ĈM =
1

2|M|
∑

(x8 ,x 9 ) ∈M
(x8 − x 9 ) (x8 − x 9 )) , (4)

ĈC =
1

2|C|
∑

(x8 ,x 9 ) ∈C
(x8 − x 9 ) (x8 − x 9 )) , (5)

y8 = Ĉ1/2
C Ĉ−1/2

M x8 , 1 ≤ 8 ≤ #. (6)

Therefore, given a dataset containing # samples, each
sample x8 is first linearly transformed to y′

8
= C−1/2

M x8 ,
using must-links, and then linearly transformed again to
y8 = C1/2

C y′
8
, using cannot-links this time, as in (6). The

transformation based on ĈM aims to reduce the within-
class scatter while the transformation based on ĈC aims
to increase the between-class scatter.

2.4 Clustering

After the weakly supervised feature space transforma-
tion described in the previous section, separation of ham-
mering samples between defect and non-defects is con-
ducted using K-Means [19]. K-Means is simple iterative
clustering algorithm that aims to achieve a partitioning of
the dataset by minimizing the variance of each cluster (: .
Algorithm 1 shows a pseudo-algorithm of K-Means.

3 Experiments
Experiments were conducted in laboratory conditions

using concrete test blocks containing simulated defects.
The used setup is illustrated in Figure 3. The blocks were
hit on several locations, once per location, using a KTC
UDHT-2 hammer (head diameter 16 mm, length 380 mm,
weight 160 g). This hammer is commonly used in ac-
tual inspection sites. Audio recording was done using a
Behringer ECM8000 microphone fixed roughly at 0.5 m
from the concrete test block and coupled with a Roland

Algorithm 1: Pseudo-algorithm of K-Means.
Data: Dataset � of # samples y8 ,
number of clusters  
Result: Partition of � into  clusters
Initialization:

Initialize cluster centroids c1,c2,...,c randomly;
while termination criterion not met do

Assign samples:
for each sample y8
;8 → argmin

:

‖y8 − c: ‖2

Update centroids:
for each centroid c:
c: → 1

|(: |
∑

y8 ∈(: y8
end
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Figure 3. The experimental setup in laboratory con-
ditions with (A) a concrete test block containing a
simulated defect, (B) a hammer and (C) a micro-
phone to record the hammering sound.

UA-25EX sound board at 44.1 kHz. MFCC were com-
puted with #filter = 26 and 10 coefficients. 30 queries
were allowed for each run.
Two scenarios were considered, those are the same as

featured in [14] and the setting  = 2 was used for both:

• Case 1: single delamination. This dataset contains
462 samples: 272 non-defects and 190 defects. The
delamination is at an angle of 30 degrees.

• Case 2: dual delaminations. This dataset contains
270 samples: 155 non-defects and 115 defects. Two
delaminations are present, both at an angle of 15
degrees.

A picture for both cases is provided in Figure 4.

4 Results and Discussion
In Table 1 is reported the average number of must-links

and cannot-links obtained out of 30 queries over 50 runs.
About half of the queries effectively resulted in cannot-
links, which are essentially wasted queries for previous
approaches. Since sample pairs were queried randomly,
the ratio of must-links and cannot-links reflected approxi-
mately the datasets’ ratio of defect/defect, non-defect/non-
defect pairs and defect/non-defect pairs.

In Figure 5 are reported the average performance ob-
tained over 50 runs in both considered cases for the ap-
proach of [12] and the proposed method. Error bars cor-
respond to one standard deviation. The performance was

(a) Case 1: single delamination.

(b) Case 2: dual delaminations.

Figure 4. Concrete test blocks used in laboratory
experiments containing man-made defects. Defect
areas are therefore precisely known and indicated by
light red overlays.

measured using the Rand index [20]. The Rand index is
a common measure of performance for clustering meth-
ods and is essentially a ratio of correctly clustered sample
pairs over the total number of sample pairs in the dataset.
It ranges between 0 and 1, with higher values of Rand
index indicating the better clustering.
For both Case 1 and Case 2, it can be noticed that the

proposed method achieved better clustering on average
than the method of [12]. The spread of the output seems
to be also narrower for the proposed method, indicated by
lower values of standard deviation. This is especially no-
ticeable for Case 2. This is certainly due to the increased
number of constraints used in the feature space transfor-
mation by the proposed method, defining more precisely
the target feature space.
The performance of the method of [12] on Case 1 is

significantly lower than reported in the initial publication.
This is due to the difference in number of effective must-
links: while 20 must-links were allowed in [12] whereas
in the present paper 30 queries were allowed, resulting in
about only 15 must-links in average. This indicates that,
depending on the dataset, a significantly larger number of
queries is potentially required to obtain the desired number
of must-links.
With the same number of must-links, the proposed

method, that makes use of cannot-links as well, does per-
form better. However, the performance increase enabled
by the additional feature space transformation computed
based on cannot-links does not bring asmuch improvement
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Table 1. Average number of constraints of each type over 50 runs for 30 allowed queries.
Number of

allowed queries
Average number of
obtained must-links

Average number of
obtained cannot-links

Case 1: single delamination 30 15.01 14.99
Case 2: dual delaminations 30 15.41 14.59

Method of [12] Proposed method
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(a) Case 1: single delamination.
Method of [12] Proposed method
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(b) Case 2: dual delaminations.

Figure 5. Performance of the method of [12] and the proposed method. Average over 50 iterations reported, error
bars correspond to one standard deviation. 30 queries were allowed and random seeding was used for each run.

per constraint compared to must-links. This potentially
indicates that must-links are more informative and better
suited for fine-tuning the feature space, at least within the
RCA framework.

5 Conclusion

In the present paper was proposed a method for defect
detection in concrete structures using acoustic data based
on both positive and negative constraints. Using Extended
RCA, an additional feature space transformation based
on negative constraints was conducted following the first
feature space transformation using positive constraints.
Experiments in laboratory conditions using concrete test
blocks showed that the proposed method achieved better
results more consistently than the previous method that
only used positive constraints.
As future work, we would like to further study the influ-

ence of negative constraints on the final feature space. As
unavoidable by-products of the querying process, cannot-
links should be employed to maximize the data provided
by the human user. However, a straight inclusion of those
negative constraints in the RCA framework might not be
their only use. For example, negative constraints obtained
early in the query process could be used in the selection
process for the next sample pair to query the human user
on.
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