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Abstract – 

In recent years, deterioration of concrete structu-
res such as floating and delamination has occurred. 
These damages can lead to the falling of concrete 
pieces. It may cause damage to third parties such as 
vehicles or pedestrians passing under the bridge. 
Therefore, the concrete damages need to be detected 
and repaired early. 

Japanese highway companies conduct hamme-
ring tests on concrete structures once every five 
years to detect damages such as floating and flaking. 
However, the inspector must be near the bridge to 
perform the hammering sound inspection, which 
requires work at a high place and a lot of time and 
cost. Also, when using aerial work vehicles, traffic 
regulation under the bridge is required which may 
cause traffic congestion and accidents. 

Infrared thermography is a non-destructive 
inspection technique that detects areas of floating or 
delamination by imaging a unique temperature 
distribution on the concrete surface using an 
infrared camera. The inspection cost of infrared 
thermography is significantly lower than that of 
hammering test.  Since it is a long-distance non-
destructive inspection, work at heights and traffic 
restrictions are not required. However, it is difficult 
to ensure the accuracy of damage detection because 
the peculiar temperature distribution acquired by 
infrared thermography includes an abnormal 
temperature distribution caused by something other 
than damages. 

In this study, by using deep learning, we 
improved the accuracy of the unique temperature 
distribution imaged by infrared thermography and 
ensured detection accuracy that can be used 
practically. We also report on the construction of an 

automatic discrimination system that implements the 
deep learning discrimination algorithm on a cloud 
server.  

 
Keywords – 

Deep Learning;Infrared Thermography;Cloud 
Computing System 

1 Introduction 

Aging of concrete structures has been escalating 
recently, and there have been several reports of concrete 
piece falling accidents due to fractures of PC 
reinforcement rods and PC stranded wire in prestressed 
concrete, or corrosion of reinforcement steel rods. For 
instance, On April 3, 2009, the cover concrete with a 
length of 1 m, a width of 100 mm, a thickness of 260 
mm, and a weight of 6 kg fell due to the corrosion of the 
rebar installed in the drainage unit of Tooridani bridge 
in Shikokuchuo-city. If flaky concrete hits a passer-by, 
it can cause a secondary disaster, so such accidents 
should be prevented as much as possible. 

Several nondestructive inspection (NDI) techniques 
are available for the task [1][2]. In our project, we have 
decided to establish a detection technique of areas with 
floating and delamination based on the passive infrared 
thermography method, which would not limit the target 
bridges and should be able to inspect the target remotely 
and entirely. 

The infrared thermography method has already been 
applied in the detection of floating of building tiles, but 
currently, it has not been applied to the inspection of 
floating and delamination of the concrete structures that 
have been put to practical use[4][5]. That's because the 
detection rate is significantly lower than conventional 
hammering tests. To enhance the detection rate, we first 
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examined infrared cameras by comparing their 
performances. As a result, the most suitable type was a 
cooling type camera, which has a shorter measurement 
wavelength range. We also developed a method to 
analyze the acquired thermal images and detect 
damages thoroughly. Specifically, it enables the 
machine to detect damages through machine learning, 
which has learned both  anomalous forms in the areas of 
temperature alteration and the texture within the target 
areas. 

2 2 EQUIPMENT AND METHOD OF 
INSPECTION 

2.1 Equipment 

ASTM D 4788 (Standard Test Method for Detecting 
Delaminations in Bridge Decks Using Infrared Thermo-
graphy) requires the following conditions in thermal 
imaging [3]. 
1) Targets that are in constant contact with water, ice, or 
snow should not be applicable for shooting; they must 
be dried at least for 24 hours. 
2) The condition with over 25 km/h wind velocity 
should not be applicable for shooting. 
3) Thermal imaging at night should be taken in fine 
weather. 

It also requires specific weather criteria for shooting 
as shown in the following table. 

 
Table 1. The weather criteria for thermal imaging. 

The weather condition of two hours 
before the test start 

Determination 

Fair Possible 
Fair with occasional clouds Possible 
Cloudy with occasional fine weather Possible 
Cloudy with temporary fine weather Impossible 
Cloudy Impossible 
Rain Impossible 

 

It is also critical to select the right infrared camera to get 
accurate detection results. Some of the essential 
specifications for an infrared camera should be its pixel 
resolution, detecting element, measurement wavelength, 
noise equivalent temperature difference (NETD), or 
frame rates, in which NETD is the most important. 
Regarding NERD, the infrared camera candidates we 
evaluated for our investigation were roughly classified 
into two groups; 0.02℃-NETD and 0.06℃-NETD. To 
determine the selection criteria for the thermal camera, 
we need to confirm the temperature difference in the 
target floating/delamination areas. Considering the fact 

that the typical cover of the bridge's upper structure is 
40mm, it is essential to select the camera capable of 
detecting cracks and voids 40mm below the surface. We 
built some model structures to investigate thermal 
cameras' detection capability and weather conditions 
and selected one that could detect the cracks and the 
voids 40 mm below. 

2.1.1 Building Model Structures and Photograp-
hing Conditions 

We built cubic concrete model structures. Each 
model has a void with the size of 100mm x 100mm 
(t=10mm) in a different depth from the surface; 20mm, 
30mm, 40mm, and 60mm, respectively (Fig. 1). In order 
to avoid the influence of daytime sunshine, a model was 
installed in the shade under the bridge on the Takamatsu 
Expressway and photographed at night (23:00) under 
weather conditions with a daily difference of 10°C or 
more. 

 

 
Figure 1. Concrete model structures and locations of 
voids. 

2.1.2 Thermal Images of Each Infrared Camera 

We used three cameras with different measurement 
wavelength and NTED in photographing model 
structures. We set two cameras of different NTED in 
line and photographed model structures simultaneously. 
Photographing with the camera of the minimum thermal 
sensitivity below 0.06℃ could not detect the void. The 
thermal images of the camera with minimum thermal 
sensitivity of 0.025℃ or less succeeded in detecting the 
void up to the depth of 40mm. We also learned that 
even the camera with below 0.025℃ minimum thermal 
sensitivity could not detect the void in 60mm deep, due 
to signal-to-noise ratio (SNR) of the camera. The result 
suggests that the camera with minimum thermal 
sensitivity below 0.025℃ is applicable for inspection of 
the upper structure, but not for lower structures with 
much thicker covers. 
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(a) Thermal sensitivity below 0.06℃ 

 
(b) Thermal sensitivity below 0.025℃ 

Figure 2. Thermal images of concrete model structure 

2.2 Thermal Environment Suitable for Infra-
red Thermography Method 

The infrared thermography method requires the 
generation and the retention of heat flow inside the 
target object for several hours. Usually, Equation 1 
should calculate the required time for the operation. 
However, due to heat transmission from the area around 
the target, it takes longer than the time derived from 
Equation 1 before the surface temperature of the 
floating/delamination area changes. In our experiment, 
the temperature change appeared in the condition with 2℃ 
difference continuously for an hour between object and 
air temperatures. 

3

2

where

: Heat transmission depth (m)

: Heat conductivity (W/mk)

: Time of appearance (sec)

: Density (kg/m )

c: Specific heat (J/kg K)
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3 3 EXAMINATION OF THERMAL 
IMAGE ANALYSIS METHOD 

3.1 Necessity and outline of the thermal ima-
ge analysis method 

Some of the problems with infrared thermography 
measurements are the risk of overlooking and false 
detection of floating and delaminations by inspection 

personnel. Therefore, we have built an automatic 
detection system for floating and delamination based on 
machine learning. 

However, the analysis requires preprocessing of the 
target images. Due to the different thickness of 
components in concrete structures, external influences 
such as solar radiation cause temperature differences in 
the components depending on the component thickness 
(Figure 3). 

Figure 4 is a model showing a unique temperature 
distribution under different thermal conditions, that is, 
detection in uniform temperature and detection with 
temperature gradient. If the temperature of the target 
structure is uniform, not only the amount of temperature 
change but also the size of the damage can be easily 
detected. However, in reality, the surface temperature of 
the target concrete structure has a significant 
temperature gradient due to the difference in component 
thickness, which makes it harder to detect damages than 
in stable temperature conditions. 

 
Figure 3. Thermal image example of RC hollow bridge 
with temperature difference 
 

 
Figure 4. Concept of thermal change in the damaged 
area 
 

In our study, to eliminate the influence of 
temperature gradient in concrete structures, we calculate 
the moving average of temperature distribution and 
subtract the target pixel temperature. It enables damage 
detection in concrete structures under the influence of 
temperature gradient; the detection result should be free 
from the temperature gradient in the target structures. 
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After the abovementioned preprocessing, we have 
constructed a system by machine learning to detect 
floating/delamination from thermal images. Machine 
learning requires training data, for which we collected 
through infrared thermography measurement, as well as 
the full-scale hammering tests on RC, steel and box-
girder bridges that has been in service for 5 to 38 years. 
As for the infrared thermography, we conducted the 
measurement at night on the day when the diurnal range 
exceeded 10°C. Detecting singular temperature 
distribution with infrared thermography does not always 
mean the detection of floating/delamination. For 
instance, there are several factors that affect the 
temperature distribution of the target, such as free limes 
piled up by rainwater infiltration and roughness of the 
target surface itself. The following Table 2 shows the 
list of factors that cause temperature irregularity. Each 
is described in the following sections. 
 

Table 2 Factors of temperature irregularity 
Floating area 

Delamination area 

Adhered slag 

Foreign substances 

Repair marks 

Free limes 

Color irregularity 

 

3.2 Factors of temperature irregularity 

3.2.1 Floating area 

The floating area, in this case, is an area where noise 
is generated in the hammering test, but the concrete 
surface is still intact. Comparing with the thermal image 
of the healthy area where a foreign object attached, the 
temperature distribution image on the floating area is 
not distinct. 

3.2.2 Delamination area 

The delaminating area, in this case, is an area where 
concrete flakes should fall when the hammering tests 
are conducted. Compared to the thermal image of the 
floating area, the image of this area distinctively shows 
a singular temperature distribution. 

3.2.3 Adhered slag 

The delaminating area, in this case, is an area where 
Slags remain on the joint form marks after the initial 
concrete placement turned to a thickness of 2-5 mm; 
thus, they are detected distinctively as thin linear 
singular temperature distributions that run along with 

the joint form marks by infrared thermography. 

3.2.4 Foreign substances 

If foreign materials such as wood chips are mixed in 
the concrete of the covered components, they are 
detected as temperature irregularities by infrared 
thermography. Because the mortar plastered on top 
conceals the wood chips, it is impossible to detect from 
the visual image whether the foreign materials are 
mixed in it. 

3.2.5 Repair marks 

The standard repair procedure of the floating/de-
lamination of concrete due to rebar corrosion is to 
remove that areas and fill the damaged sections with 
materials such as shrinkage-compensating mortar. If the 
thermal conductivity of the materials used for repair is 
different from that of concrete, they appear as singular 
temperature irregularities. 

3.2.6 Free limes 

Free limes adhering to the concrete surface appear as 
singular temperature irregularities in thermal detection. 
The difference in reflectance or thermal conductivity 
between free limes and healthy concrete surface or the 
existence of gaps in between free limes and concrete 
surface would be the cause of the detection. 

3.2.7 Color irregularity 

The color irregularity causes a singular temperature 
irregularity detection in the thermal image. 

3.3 Full-Scale Hammering Test Results Su-
mmary 

Figure 5 shows thermal images organized according 
to characteristics in detection shapes. We collated 
organized images with hammering test results to 
confirm significant characteristics in the shape of areas 
with singular temperature irregularity in the following 
five types; 1) delamination, 2) floating, 3) slag, 4) 
foreign substances, and 5) healthy area.  Table 3 shows 
each characteristic. If we can calculate the value 
expressing the shape of the temperature irregularity area 
(shape features), we determined that it is possible to 
classify using these five types of machine learning.  
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Figure 5. Relationship between hammering test results 
and image processing 

 

Table 3 Relationship between hammering test results 
and detection image shape characteristics 

Sounding 
result 

Unique temperature area 
shape characteristic 

note 

delamination 
The red area is off the 
center of the whole area 

Knock 
down 

Abnormal 
sound only 

The red area is at the 
center of the whole area 

floating 

foreign 
substances 

Square shape, high red 
occupancy 

False  
positive 

slag(t=2～
5mm) 

The occupancy rate of red 
is high and the shape is 
square, but the periphery 
is more complicated than 
foreign substances 

False 
positive 

healthy area
（Reflection） 

High yellow area 
occupancy 

False  
positive 

3.4 Discrimination Index Using Geometrical 
Features in Thermal Images 

In this study, we have examined the image filtering 
process that ternarizes the thermal images. Based on the 
emphasized index, we set the threshold values of 
ternarized red, yellow, and blue as follows; over 0.11 as 
red, over 0.08 and less than 0.11 as yellow, and over 
0.04 and less than 0.08 as blue, respectively. 

Considering the results in the previous section, the 
positional relationship between the red, yellow, and blue 
areas is important. If the red area appears near the center 

of the blue area, the detected image is probably a 
floating area with abnormal sound alone. On the other 
hand, if the red area appears at the location apart from 
the center of the blue area, the detected area could be a 
delamination area. Thus, the distance between the 
centers of each area should be calculated as a feature for 
the discrimination index. 

 
Figure 6. Concept of shape feature calculation of 
ternarized thermal images 

 
The Shapes of red, yellow, and blue areas are also 

significant. In the thermal images of false detection, if 
its edge is smooth, it could be a floating area. Therefore, 
we examined shape features of red, yellow, and blue 
areas. The number of pixels represents circumference 
and dimension of the area. Occupancy rate, degree of 
shape complexity, and circularity level of each shape 
are calculated by the following equaitons, where L is the 
circumference and S is the area. 

2

Occupation rate (O) =
( ) ( )

Degree of shape complexity (C) =

4
Circularity level (CL) =

S

R height R width

L

S
A

L




    (2) 

In addition to the above values, we use the co-
occurrence matrix[6][7][8], which is an image texture 
analysis method that can quantify changes in image 
contrast. The co-occurrence matrix firstly derives the 
matrix that uses the P-value of the target contrast in a 
specific position δ = (r, θ) away from the point i should 
be the contrast j, Pδ = (i, j), as its element (hereinafter 
referred to as stochastic matrix) to calculate several 
features by the matrix as shown in Figure 7. Values of 
the stochastic matrix represent frequency to each sample 
image, but practically we normalized them so that all 
numbers should be 1. 

Y：width
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Y:Rectangle center coordinates
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R:Center of gravity X，
R:Center of gravity Y）
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B
：

hi
gh

t

B:Perimeter

R:Perimeter

R:width

Y:Rectangle area=Y:width×Y:hight

B:Rectangle area=B:width×B:hight
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Distance between each center of gravity
(Straight line distance of 

rectangle center of gravity)

R:Rectangle area=R:width×R:hight

R:area(red only)
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B:Rectangle center coordinates
B:Center of gravity X，
B:Center of gravity Y）

Y:Perimeter
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Figure 7. Co-occurrence matrix sample 
 
We calculated following 14 features in total by the 

co-occurrence matrix mentioned above; Angular second 
moment, Contrast, Correlation, Sum of square variance, 
Inverse difference moment, Sum average, Sum variance, 
Sum entropy, Entropy, Difference variance, Difference 
entropy, Information measure of correlation 1, Infor-
mation measure of correlation 2, Maximal correlation 
coefficient. We also set the position value δ as r = 1, 2 
and the angle value θ as 0, 45, 90, 135, 180, 225, and 
270. As for the contrast, we set it in 32 levels of gray, 
and we generated the co-occurrence matrix. 

3.5 Deep neural network 

We used hammering test results as the training data 
for the deep neural network[9][10][11] developed in this 
study based on shape features obtained from analyzed 
images in the previous section. The shape features are 
ternarized areas, their positional relations, and those 
obtained by co-occurrence matrix. The data amount was 
2,353 cases (hammering test results from 2008 to 2010). 

In this study, a deep neural network with one input 
layer, six hidden layers, and one output layer was 
developed. The number of nodes in hidden layers are 
453, 500, 600, 400, 300, and 100. The drop-out layer is 
also sandwiched between these layers. In this paper, the 
number of layers of the hidden layer for high accuracy 
is investigated by grid search. It is probably not the 
optimum value, but it is almost the optimum value and 
there is no problem in practical use. 

4 RESULTS AND CONCLUSION 

4.1 Results 

Table 4 shows the accuracy of the deep neural net-
work model. The overall accuracy was 88.7 % 
(2,086/2,353). In addition, 800 data which were not 
used for the learning were prepared, and the analysis by 
this method was carried out. As a result, Over 97% of 
the hammering results are in the top two of the 

prediction results, which proves that this system is 
highly accurate. 

 
Table 4 Analysis results of training dataset 

 

4.2 Conclusion 

It has been confirmed that the temperature gradient 
generated in the structure is removed by the image 
filtering process of the thermal image taken by the 
infrared camera, and the damage detection rate is 
improved. In addition, the image filtering process 
should be sufficient to deal with the influence of 
temperature differences around bridge appendages. 

We also succeeded in building a deep neural 
network model that evaluates the presence and type of 
damage due to temperature changes. As inputs of deep 
neural network model, 14 feature quantities obtained 
from co-occurrence matrix, etc. were used. As a result, 
the accuracy of 88.7% was realized. Furthermore, the 
high accuracy was obtained even in the data set which 
was not used for the training. As a result of this study, 
floating/delamination can be remotely evaluated, which 
is considered to contribute to drastic improvement in 
efficiency of present inspection that depends on 
hammering sound. 

5 Automatic detect system using a cloud 
server 

5.1 Introduction of the system 

Statistical analysis software is required to perform 
the damage detection described above, but such 
software can only be used by a limited number of users. 
Therefore, we have built a cloud server that can 
automate the damage detection for many users, and are 
currently conducting trial operations as shown in Fig. 8. 
This system is based on the machine learning system 
described above and can automatically detect damages 
based on infrared measurement and hammering test 
result data. Figure 9 shows an example of the use of an 
automatic detect system using a cloud server. 
1. The thermal image (Figure 9(a)) is loaded into the 

analysis software “J-system” and ternarized areas, 
and their positional relations, and those obtained by 

sounding 
results

analysis results
Delamination Floating Slag

Healthy 
area

Foreign 
substances

total

Delamination 111 2 0 32 2 147

Floating 2 116 2 12 0 132

Slag 1 0 34 6 0 41

Healthy area 64 71 17 1,732 42 1926

Foreign substances 3 0 0 11 93 107

total 181 189 53 1793 137 2353
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co-occurrence matrix are automatically output. 
2. Upload the output to the cloud server. 
3. Users download the results of the damage detection 

by the cloud server (Figure 9b). 
The results of the infrared measurement are 

summarized in the above procedure. Figure 12c shows 
an example of delamination in a hammering test. This 
was the damage the proposed system determined to 
have a high probability of damage. 

 

 
Figure 8. Automatic detect system using a cloud server 

 

 
Figure 12. Example of Automatic detect Results from a 
Cloud Server 

Utilizing a highly accurate system that automatically 
detects damages from infrared measurement results, the 
individual differences of surveyors are eliminated. The 
more data this system has, the more accurate the system 
will be at determining damages. When users of J-system 
perform the infrared survey and use the cloud server, the 
survey data will be stored on the cloud server, and as a 
result, the accuracy of the automatic detect system will 
be improved. 

5.2 Introduction result 

The J-system has been evaluated as a "non-destruc-
tive inspection technology that can detect floating and 
delamination of concrete structures" by the Bridge Ma-
intenance Subcommittee of the Committee for Verifi-
cation of Robots for Next Generation Infrastructure. 

In addition, the J-system has been installed in the 
Shikoku branch of NEXCO West Japan since 2008 as a 
hammering sound screening system for periodic bridge 
inspections. It has also been used by NEXCO Central 
Japan, NEXCO East Japan, and Honshu-Shikoku Bridge 
Expressway, and has been introduced on a trial basis on 
bridges owned by the national government since fiscal 
2015. The total survey area that West Nippon Express-
way Engineering Shikoku Co., Ltd. received an order 
for is 2.55 million square meters (as of the end of 
FY2017). We will continue to develop a high-precision 
infrared measurement system so that it can be widely 
used for bridge inspection and surveys, including 
prevention of damage to third parties. 
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