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Abstract – 
Cable path optimization is a commonly 

encountered problem in industrial construction 
projects. Numerous designs are technically feasible 
but are associated with varying construction costs and 
effort. Hence, selecting the right network is deemed a 
critical decision. Multiple shortest path algorithms 
could be deployed to identify the optimal solution. 
Although they could potentially identify solutions of 
equal values, there could be differences among their 
performance which become more significant as the 
project size increases. Thus, this study compares the 
results of applying three shortest path algorithms, 
Dijkstra, A* and Bellman-Ford, in finding the 
shortest paths for power and instrument cables in an 
industrial facility project. Moreover, it presents an 
integrated methodology that combines different 
software to help practitioners experiment with 
different scenarios in a fast and systematic manner 
and make decisions accordingly: (1) Build a 3D model 
of the project under study, (2) Design a database for 
data retrieval and management, (3) Import data from 
the model into the database, (4) Develop a code that 
reads from the database, finds the optimal paths for 
the planned cables in the facility, and writes the 
results back into the database, and (5) Import the 
obtained results into NavisWorks for visualization 
and validation purposes. The results have shown that 
the three algorithms identified the same paths for six 
cables. Yet the optimal path found using Dijkstra and 
A* for the seventh cable was one node longer than 
that identified using Bellman-Ford, but the three 
paths were of equal weights. Generally, Dijkstra and 
A* exhibited a close performance. Meanwhile, the 
main difference between Dijkstra and A*, on one 
hand, and Bellman-Ford, on the other hand, lied in 
fact in the time needed to solve the optimization 
problem. The percent difference between Dijkstra 
and Bellman-Ford’s runtimes for one of the cables 

reached 4,800% making Dijkstra superior with 
respect to runtime. Even though the impact of the 
runtime difference is considered insignificant within 
the scope of this study as it is in the range of 
milliseconds, its criticality would increase as the size 
of the network increases. Therefore, a proper 
selection of the optimization algorithm would support 
a rapid and efficient decision-making process.  
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1 Introduction 
Construction projects entail critical decisions in 

connection with planning, developing and executing 
major engineering elements, which would have a severe 
impact on cost and time savings if not dealt with in a 
responsible manner. In particular, the issue of planning 
and designing cable networks on industrial projects is of 
great concern for construction managers and owners, 
specifically with respect to cost implications. The main 
problem encountered in such networks is their 
complexity as deciding on the optimal solution with 
respect to different considerations is not a 
straightforward decision. Cable network optimization is, 
thus, one of the several optimization problems in 
construction that need supportive methods, such as 
mathematical techniques, to help in identifying the most 
feasible solutions [1]. Examples of similar optimization 
problems comprise time-cost trade-off [2], resource 
levelling [3], site layout optimization [4,5], planning and 
allocating equipment [6], among others.  

Mathematical algorithms have a great potential in 
solving complex problems, specifically those including a 
large number of alternative solutions given the numerous 
possible permutations [2]. For cable network problems, 
specific algorithms are found that deal with identifying 
the optimal path for a given connection. Three of the most 
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prevalent algorithms used to determine the shortest path 
between two nodes are Dijkstra, A* (A-star) and 
Bellman-Ford [7]. Similar algorithms prove to be highly 
useful for various applications given their ability to 
account for factors other than distance when identifying 
the optimal path [8]. For instance, the Dijkstra and A*, 
along with other algorithms, were evaluated for their 
performance and accuracy in finding the optimal path on 
construction sites considering multi criteria requirements, 
including travel distance, safety and visibility [8]. Such 
studies offer a detailed comparison between the different 
algorithms to help specify what type of problems best fit 
each algorithm.  

While the literature offers a plenty of studies 
comparing shortest path algorithms in different contexts, 
the construction industry literature remains in shortage 
for research discussing opportunities for the application 
of shortest path algorithms in a systematic manner 
specifically for cable networks. Given the potential cost 
and performance impact of cable network design on 
construction projects, this paper aims at presenting an 
application of the shortest path method to find optimal 
paths for a set of pairs of start and destination nodes for 
power and instrument cables in an industrial facility. The 
optimal path in the context of this paper represents the 
shortest path for connecting the cables in the facility 
while achieving minimum costs that are dictated by the 
type of trays that cables pass through. The paper achieves 
this by utilizing the commonly used algorithms: Dijkstra, 
Bellman-Ford and A* algorithms. The performance of 
these algorithms is also compared based on the number 
of connection nodes in the identified shortest paths, the 
total weight of the paths, and the computation duration 
(i.e. runtime) to recommend the most suitable algorithm 
for this type of problem.  

The main contribution lies in presenting a convenient 
approach for solving a critical practical problem on 
industrial projects while analysing some key points of 
departure whenever considering similar problems on 
different projects.  

2 Literature Review 

2.1 Overview of the Selected Algorithms 
Although various algorithms could yield similar 

results, they exhibit distinct properties such as speed, 
efficiency, and computation method. This section 
provides a brief and general overview of the three 
algorithms employed in this study.  

2.1.1 Dijkstra Algorithm 

Theoretically, Dijkstra is considered the most 
common algorithm for finding the shortest path in 
network problems having a single-source (i.e. one source 

node) [7]. It is a straightforward and simple algorithm 
which has gained popularity in network optimization 
field [9]. In Dijkstra, the number of nodes is specified, 
and the node which represents the source is just one 
specific vertex while the destination could include 
several vertices [10]. Thus, this algorithm is beneficial 
when the destination is unknown [11]. The function of 
this algorithm f(n) is equal to g(n), where g(n) is the cost 
of the path from the source node to the destination node, 
n [11].  

Dijkstra’s time complexity is computed by O(n2), 
where n is the total number of nodes [9], [12]. Hence, in 
case of problems that are relatively large, Dijkstra is 
successful as it has a time complexity of an order of n2. 
However, the algorithm is generally considered to take a 
long time and waste resources due to the blind search it 
performs [11], [13]. Dijkstra adopts the “Greedy Best 
First Search” approach, and it takes a big search area 
prior to reaching the destination [11]. It works by going 
equally in all directions [11] and terminates after visiting 
all the nodes [14].  

2.1.2 A* (A-Star) Algorithm 

Another common algorithm for solving the shortest path 
problem is A*. A* comprises the summation of two 
functions; a function, g(n), that constitutes the exact cost 
of the path extending from the start node to node n, and a 
heuristic function, h(n), that represents an acceptable 
estimated cost to reach the destination node [12]. The 
heuristic function provides an estimate of the best path 
from any node to the destination node, where the order of 
this estimate defines how the nodes will be visited [11]. 
A* uses the “Best First Search” approach in which the 
node with the best heuristic value is chosen to be visited 
first [15]. The algorithm focuses only on the region in the 
direction of the goal [12]. However, there is no assurance 
that optimal solutions will be obtained with the use of 
heuristics [16]. 

The performance of A* is significantly impacted by 
the choice of the heuristic function. In fact, heuristics are 
used as guidance to improve performance, and they affect 
the time complexity of the algorithm [12]. If h(n) is 
exactly equal to the cost required to move from node n to 
the destination node, the algorithm will only follow the 
optimal path, without expanding into anything else, 
resulting in a high search speed. The path to the goal node 
can be discovered even faster if h(n) overestimates the 
cost required to reach the destination node from node n. 
Yet the cost of the identified path might not be the most 
favorable one in this case [12]. The time complexity is 
O(n log n), where n is the number of nodes [11]. A* is 
usually efficient when both the start node and the target 
node are known [11]. 

Overall, it can be said that the main difference 
between Dijkstra and A* algorithms is the heuristic 
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function h(n) used in A*. In fact, if the value of h(n) is 
set to zero, A* will give the same outcomes as Dijkstra 
[12]. Since A* uses the “Best First Search”, it is 
considered faster than Dijkstra which adopts the “Greedy 
Best First Search” approach [11]. 

2.1.3 Bellman-Ford Algorithm 

Similar to Dijkstra algorithm, Bellman-Ford is a 
traditional algorithm used for solving shortest path 
problems from a single-source node [17]. However, 
Bellman-Ford algorithm can run in a distributed manner 
unlike the Dijkstra algorithm which is a global algorithm 
and cannot run easily in a distributed manner [18]. In this 
sense, distributed algorithms, being subtypes of parallel 
algorithms, are characterized by the ability of the nodes 
to keep track of the shortest distances between 
themselves and the other nodes, while communicating 
with its neighbour nodes by transmitting messages over 
the links [19]. Thus, unlike Dijkstra, parallelization takes 
place in Bellman-Ford easily [20], [21]. Additionally, 
Bellman-Ford has a looping behaviour, where iterations 
occur over all edge connections in order to continuously 
update the nodes until the final distances are reached. 
However, this reduces Bellman-Ford’s efficiency in 
comparison to Dijkstra’s [20], and this is considered a 
major drawback of the distributed Bellman-Ford 
algorithm [19]. As for the runtime of Bellman-Ford 
algorithm, it is O(nm), where n is the number of nodes 
and m is the number of edges [22]. Bellman-Ford is also 
dominant in solving the majority of routing problems 
which have various constraints and occur in a flat 
network found in an autonomous system, where the 
primary objective function is the minimum node count 
[23]. 

2.2 Some Applications of Shortest Path 
Algorithms in Construction 

Various optimization problems that require the use  
of shortest path algorithms are found in the construction 
industry. Material flow on construction sites is an 
example of similar problems. Optimizing material flow 
and reducing travel time are valuable as cost and time are 
impacted by the path that the materials go through [8]. 
Moreover, optimizing site layout to minimize travel 
distances can boost production rate as wastage and 
working time are reduced [8].  

Shortest path algorithms are also used in 
transportation applications. Related examples include in-
vehicle route guidance systems that require an immediate 
response upon request for information and identify 
vehicle routing and scheduling. Accordingly, a rapid 
identification of the shortest paths is needed [24]. 
Moreover, with the use of intelligent robots in 
construction, there is a need for planning their movement 
path on site. The focus is on finding an effective and short 

path that is also collision-free from the initial position to 
the final position, by avoiding both stationary and 
movable obstacles [25]. 

Other applications are focused on optimizing some 
more important aspects of construction operations while 
trying to minimize the travel distance. Lei et al. [26] 
developed a generic algorithm to manage the movement 
of large mobile cranes used to lift prefabricated units on 
site while taking into account the site constraints 
including the congestion of different site areas, the 
geometry of lifted items and the configuration of cranes. 
This aims at saving time, satisfying safety and efficiency 
requirements as well as minimizing the risks of failure 
and accidents’ occurrence on site.  

3 Problem Description and Modelling 
Designing paths for power and instrument cables 

within a project requires identifying the shortest feasible 
paths in order to minimize costs accompanied with their 
installation. The project presented in this paper deals with 
this problem of finding the optimal solution for 
connecting five power cables and two instrument cables 
between pre-specified source and destination points. The 
project under study is an industrial facility of which the 
network consists of a total of 6,155 nodes. These nodes 
are connected via different types of trays which are 
modelled as edges. Edges are grouped into three different 
categories based on their type:  

• Category 1: It accommodates the extension of 
power cables only and is, thus, designated as “CTP”.  

• Category 2: It accommodates the extension of 
instrument cables only and is, thus, designated as 
“CTI”. 

• Category 3: It accommodates the extension of both 
types of cables and is, thus, designated as “All”.  

The nodes and edges of the network are modelled as 
shown in Figure 1 below. In the 3D model, a CTP is 
represented by a red line, a CTI is represented by a blue 
line, and the “All” type is represented with an orange line. 
The total number of edges is 9,711.  

 
Figure 1. Network Model 
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Given equal lengths, different types of trays/edges 
differently impact the final cost. Thus, the type of each 
edge must be considered when finding the optimal path. 
This is achieved by factoring a cost-related weight into 
the total weight. Accordingly, for each tray type, a weight 
multiplier is computed to reflect its cost. This multiplier 
is used to adjust the distances between the nodes 
reflecting cost considerations for each edge type. 
Different edge types and their corresponding multipliers 
are summarized in Table 1 below.  

Table 1. Weight Multipliers for Weight Groups 

Weight Group Multi 
-plier Weight Group Multi-

plier 
Cable Tray 1 Field Run to Tag 25 
Cable Tray 

Angled 3D or 
Rotated 

1.5 Ignore 1000 

Cable Tray 
Angled East 

Vertical 
1.5 Jumper Manual 15 

Cable Tray 
Angled 

Horizontal 
1.5 Steel Jumper 15 

Cable Tray 
Angled North 

Vertical 
1.5 Steel Tray 

Connect 1.1 

Cable Tray 
East 1 Structural Steel 10 

Cable Tray 
Elbow 1.5 

Structural Steel 
Angled East 

Vertical 
15 

Cable Tray 
North 1 

Structural Steel 
Angled North 

Vertical 
15 

Cable Tray 
Vertical 2 Structural Steel 

East 10 

Cable Tray 
Jumper 1.5 Structural Steel 

North 10 

Cable Tray 
Steel Jumper 1.5 Structural Steel 

Vertical 20 

4 Methodology 
The study presents a structured methodology that 
integrates multiple software to help decision makers find 
optimal network solutions quickly and efficiently. The 
methodology has been devised based on the following 
steps: 
1. Build a 3D model of the cable network under study.  
2. Design a database to store relevant data and identify 

the properties of nodes and edges. Microsoft Access 
database is used in this study. The database 
comprises five different tables as summarized in 

Table 2.  

Table 2. Access Tables and Attributes 

Table Attributes 
Nodes ID, x, y, and z coordinates 

Edges ID, start node, end node, edge 
length (i.e. distance between 

nodes), edge type, edge category 
Weight 
Groups 

Edge type, weight multiplier 

End Points Source node, destination node 
Shortest Paths Tag (i.e. cable), start node, end 

node, sequence number (i.e. the 
position of the connection edge 

(node1, node2) in the path) 
2.1 Extract the (x, y, z) coordinates of nodes from the 

3D model of the facility and import them into the 
database.  

2.2 Compile data on the edges which are represented 
by the nodes they connect. Identify and record the 
types of different edges as well as their lengths. 
The lengths of edges are computed using the 
Euclidean distance (Equation 1). Note that this 
distance is to be multiplied by the weight 
multiplier to obtain the total weight used for path 
optimization.  

𝑑 = #(𝑥! − 𝑥")! + (𝑦! − 𝑦")! + (𝑧! − 𝑧")! (1) 

2.3 Identify the source node and destination node for 
each cable of the seven cables.  

3. Develop a program that retrieves data from the 
database, identifies the shortest path, and exports 
the optimal path back into the database. Python 
programming language is used in this study; Python 
is widely used in numeric computation and includes 
libraries that help in data analysis and modelling of 
data [27]. The problem presented in this paper 
benefits from the built-in libraries, mainly 
NetworkX and pyodbc. NetworkX is a package 
used for the creation and the study of complex 
networks and includes standard shortest path 
algorithms [28]. pyodbc is an open-source Python 
module that allows accessing ODBC databases [29] 
and is used to establish a direct connection to the 
Access database. For each cable, the developed 
program performs the following tasks: 

3.1 Retrieve relevant information from the database 
using SQL queries. Based on the cable type 
(power vs. instrument), the queries select the 
edges belonging to the categories that are 
compatible with the cable type. They also select a 
total weight column calculated by multiplying the 
distance by the weight multiplier.  

3.2 Build a weighted graph from the nodes and the 
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available weighted edges.  
3.3 Identify the shortest path using Dijkstra, A*1, and 

Bellman-Ford algorithms from Networkx library. 
3.4 Compute the total weight of the identified paths 

using the three algorithms.  
3.5 Compute the time taken by each algorithm to 

identify the shortest path (i.e. runtime). The 
runtime is computed to compare the performance 
of the algorithms.  

3.6 Select the path with the lower total weight if there 
is a difference between the weights.  

4. Store the nodes of the identified shortest path back 
into the database. 

5. Store the shortest path nodes in XML structure 
format that is readable by NavisWorks to visualize 
and verify the shortest path. 

The presented methodology is illustrated in Figure 2.  

5 Results and Comparison 
The three algorithms found the same shortest paths 

for six sets of source and destination nodes out of the 
seven sets. Nevertheless, the shortest path identified for 
one set using Bellman-Ford passes through 100 nodes 
while those found using Dijkstra and A* require 101 
nodes. However, the three of the identified paths have the 
same total weight indicating that both solutions are 
equally favourable given the imposed optimization 
criterion (i.e. minimal total weight).  

The identified shortest path nodes for each set were 
imported into NavisWorks and highlighted. Figure 3 
illustrates the shortest paths for three of the cables. The 
paths are highlighted in blue. It could be noted that the 
optimum path between the source and destination nodes 
is not necessarily the path with the shortest distance 
between them. As illustrated, the first path bypasses the 
location of the destination point before it returns back to 
it. This is a result of factoring costs of different types of 
edges in the total weight of edges.  

The results of the three algorithms for each set are 
summarized in Table 3. Dijkstra and A* algorithms 
generally showed close performances with respect to 
runtime. Meanwhile, Bellman-Ford exhibited a lower 
performance in terms of computation speed as compared 
to the other two algorithms. The percentage difference 
between Dijkstra and Bellman-Ford’s runtimes for the 
first cable reached 4,800% as it took 0.0980 and 0.00200 
seconds to identify the optimal path using Bellman-Ford 
and Dijkstra, respectively.  

 
1 The Euclidean distance is used as the heuristic function 
for A* algorithm 

 
 

Figure 2. Methodology 
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Figure 3. Shortest Paths in NavisWorks  

The obtained results have shown that there is no 
significant difference between Dijkstra and A* 
algorithms. This could be attributed to the fact that the 
heuristic estimates (the Euclidean distance) of the A* 
algorithm are lower than the actual cost (the weighted 
distance) of moving from the nodes to the destination 
nodes. Consequently, the algorithm expands more nodes 
and, hence, takes a longer computation time. On the other 
hand, Bellman-Ford’s underperformance in terms of 
speed was anticipated as a result of its looping behaviour. 
Although the difference between their performances is in 
the order of milliseconds, it becomes more significant as 
the size of the problem increases (i.e. as the number of 
nodes and edges increase). As the algorithm runtime is 
considered a major determinant in selecting the most 
convenient algorithm for a specific application [30], it 
could be concluded that Dijkstra and A* algorithms are 
deemed more suitable for solving a similar type of 
problems.  

 

Table 3. Shortest Paths Results 

Dijkstra 
Cable Number of Nodes Runtime Weight 
Test 1 45 0.00200 611.929 
Test 2 78 0.0150 467.658 
Test 3 101 0.0240 654.499 
Test 4 41 0.00400 317.676 
Test 5 55 0.00800 564.203 
Test 6 84 0.0220 435.403 
Test 7 78 0.0220 502.488 

A* 
Cable Number of Nodes Runtime Weight 
Test 1 45 0.00400 611.929 
Test 2 78 0.0300 467.658 
Test 3 101 0.0480 654.499 
Test 4 41 0.00400 317.676 
Test 5 55 0.00900 564.203 
Test 6 84 0.0270 435.403 
Test 7 78 0.0350 502.488 

Bellman-Ford 
Cable Number of Nodes Runtime Weight 
Test 1 45 0.0980 611.929 
Test 2 78 0.0510 467.658 
Test 3 100 0.114 654.499 
Test 4 41 0.0620 317.676 
Test 5 55 0.0670 564.203 
Test 6 84 0.0720 435.403 
Test 7 78 0.0480 502.488 

6 Conclusion  
Shortest path algorithms have been proven effective 

in providing support for decision makers when solving 
complex path-defining problems. On construction 
projects, these algorithms were used for diverse problems 
to attain optimal solutions. This paper considers the 
problem of selecting the shortest path for power and 
instruments cables in an industrial facility. The Dijkstra, 
Bellman-Ford, and A* algorithms were adopted to find 
the shortest path while considering the total weight of the 
edges. The total weight for this problem is dependent on 
both the distance and the cost subject to the type of each 
edge/tray.  

Using the developed Python program to identify the 
shortest paths, results showed that all algorithms gave the 
same paths for six cables out of the seven cables. 
Additionally, the total weight is found to be the same 
across all tests indicating that these methods were equally 
efficient in finding the optimal solution given the 
optimization criteria. However, the results showed that 
the Dijkstra and A* algorithms had a better performance 
than that of Bellman-Ford with respect to runtime in all 
of the cases. Specifically, the difference between 
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Dijkstra’s and Bellman-Ford’s runtime reached 1,524% 
in one of the cases. Although for this case the difference 
is only in milliseconds, the difference between their 
performance becomes more significant in larger scale 
problems.  

The paper also presented an integrated approach that 
combined different software platforms to automate the 
process of inputting data, computing the shortest path and 
then plotting this path in 3D format for visualization. The 
problem represented a case on the importance of using 
the shortest path method when dealing with decisions that 
are complicated by nature. Construction projects could 
benefit from using such algorithms and integrated 
approach for helping in various decision-making 
processes. 

The methodology presented in this study could be 
extended to address the previously mentioned 
applications of shortest-path algorithms in construction. 
Today, with the continuously increasing level of 
automation in construction, the problem of finding the 
collision-free shortest paths for mobile robots on 
construction sites is of a particular importance. Hence, a 
case study on mobile construction robots shall be 
addressed in a future study. Efforts shall be devoted to 
select a case study of a larger size to demonstrate the 
impact of the performance of the different algorithms on 
the efficiency of solving the problem.  
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