
37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Comparison of Shortest Path Finding
Algorithms for Cable Networks on
Industrial Construction Projects

F. Alsakkaa, S. Khalifea, M. Nomira, Y. Mohameda, and R. Hermannb

a Department of Civil and Environmental Engineering, University of Alberta, Canada
b PCL Industrial, Canada

E-mail: falsakka@ualberta.ca, khalife@ualberta.ca, nomir@ualberta.ca, Yasser.Mohamed@ualberta.ca,
rhhermann@pcl.com

Abstract –
Cable path optimization is a commonly

encountered problem in industrial construction
projects. Numerous designs are technically feasible
but are associated with varying construction costs and
effort. Hence, selecting the right network is deemed a
critical decision. Multiple shortest path algorithms
could be deployed to identify the optimal solution.
Although they could potentially identify solutions of
equal values, there could be differences among their
performance which become more significant as the
project size increases. Thus, this study compares the
results of applying three shortest path algorithms,
Dijkstra, A* and Bellman-Ford, in finding the
shortest paths for power and instrument cables in an
industrial facility project. Moreover, it presents an
integrated methodology that combines different
software to help practitioners experiment with
different scenarios in a fast and systematic manner
and make decisions accordingly: (1) Build a 3D model
of the project under study, (2) Design a database for
data retrieval and management, (3) Import data from
the model into the database, (4) Develop a code that
reads from the database, finds the optimal paths for
the planned cables in the facility, and writes the
results back into the database, and (5) Import the
obtained results into NavisWorks for visualization
and validation purposes. The results have shown that
the three algorithms identified the same paths for six
cables. Yet the optimal path found using Dijkstra and
A* for the seventh cable was one node longer than
that identified using Bellman-Ford, but the three
paths were of equal weights. Generally, Dijkstra and
A* exhibited a close performance. Meanwhile, the
main difference between Dijkstra and A*, on one
hand, and Bellman-Ford, on the other hand, lied in
fact in the time needed to solve the optimization
problem. The percent difference between Dijkstra
and Bellman-Ford’s runtimes for one of the cables

reached 4,800% making Dijkstra superior with
respect to runtime. Even though the impact of the
runtime difference is considered insignificant within
the scope of this study as it is in the range of
milliseconds, its criticality would increase as the size
of the network increases. Therefore, a proper
selection of the optimization algorithm would support
a rapid and efficient decision-making process.
Keywords –

Cable Network; Shortest path algorithms;
Optimal path; Nodes; Edges

1 Introduction
Construction projects entail critical decisions in

connection with planning, developing and executing
major engineering elements, which would have a severe
impact on cost and time savings if not dealt with in a
responsible manner. In particular, the issue of planning
and designing cable networks on industrial projects is of
great concern for construction managers and owners,
specifically with respect to cost implications. The main
problem encountered in such networks is their
complexity as deciding on the optimal solution with
respect to different considerations is not a
straightforward decision. Cable network optimization is,
thus, one of the several optimization problems in
construction that need supportive methods, such as
mathematical techniques, to help in identifying the most
feasible solutions [1]. Examples of similar optimization
problems comprise time-cost trade-off [2], resource
levelling [3], site layout optimization [4,5], planning and
allocating equipment [6], among others.

Mathematical algorithms have a great potential in
solving complex problems, specifically those including a
large number of alternative solutions given the numerous
possible permutations [2]. For cable network problems,
specific algorithms are found that deal with identifying
the optimal path for a given connection. Three of the most

409

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

prevalent algorithms used to determine the shortest path
between two nodes are Dijkstra, A* (A-star) and
Bellman-Ford [7]. Similar algorithms prove to be highly
useful for various applications given their ability to
account for factors other than distance when identifying
the optimal path [8]. For instance, the Dijkstra and A*,
along with other algorithms, were evaluated for their
performance and accuracy in finding the optimal path on
construction sites considering multi criteria requirements,
including travel distance, safety and visibility [8]. Such
studies offer a detailed comparison between the different
algorithms to help specify what type of problems best fit
each algorithm.

While the literature offers a plenty of studies
comparing shortest path algorithms in different contexts,
the construction industry literature remains in shortage
for research discussing opportunities for the application
of shortest path algorithms in a systematic manner
specifically for cable networks. Given the potential cost
and performance impact of cable network design on
construction projects, this paper aims at presenting an
application of the shortest path method to find optimal
paths for a set of pairs of start and destination nodes for
power and instrument cables in an industrial facility. The
optimal path in the context of this paper represents the
shortest path for connecting the cables in the facility
while achieving minimum costs that are dictated by the
type of trays that cables pass through. The paper achieves
this by utilizing the commonly used algorithms: Dijkstra,
Bellman-Ford and A* algorithms. The performance of
these algorithms is also compared based on the number
of connection nodes in the identified shortest paths, the
total weight of the paths, and the computation duration
(i.e. runtime) to recommend the most suitable algorithm
for this type of problem.

The main contribution lies in presenting a convenient
approach for solving a critical practical problem on
industrial projects while analysing some key points of
departure whenever considering similar problems on
different projects.

2 Literature Review

2.1 Overview of the Selected Algorithms
Although various algorithms could yield similar

results, they exhibit distinct properties such as speed,
efficiency, and computation method. This section
provides a brief and general overview of the three
algorithms employed in this study.

2.1.1 Dijkstra Algorithm

Theoretically, Dijkstra is considered the most
common algorithm for finding the shortest path in
network problems having a single-source (i.e. one source

node) [7]. It is a straightforward and simple algorithm
which has gained popularity in network optimization
field [9]. In Dijkstra, the number of nodes is specified,
and the node which represents the source is just one
specific vertex while the destination could include
several vertices [10]. Thus, this algorithm is beneficial
when the destination is unknown [11]. The function of
this algorithm f(n) is equal to g(n), where g(n) is the cost
of the path from the source node to the destination node,
n [11].

Dijkstra’s time complexity is computed by O(n2),
where n is the total number of nodes [9], [12]. Hence, in
case of problems that are relatively large, Dijkstra is
successful as it has a time complexity of an order of n2.
However, the algorithm is generally considered to take a
long time and waste resources due to the blind search it
performs [11], [13]. Dijkstra adopts the “Greedy Best
First Search” approach, and it takes a big search area
prior to reaching the destination [11]. It works by going
equally in all directions [11] and terminates after visiting
all the nodes [14].

2.1.2 A* (A-Star) Algorithm

Another common algorithm for solving the shortest path
problem is A*. A* comprises the summation of two
functions; a function, g(n), that constitutes the exact cost
of the path extending from the start node to node n, and a
heuristic function, h(n), that represents an acceptable
estimated cost to reach the destination node [12]. The
heuristic function provides an estimate of the best path
from any node to the destination node, where the order of
this estimate defines how the nodes will be visited [11].
A* uses the “Best First Search” approach in which the
node with the best heuristic value is chosen to be visited
first [15]. The algorithm focuses only on the region in the
direction of the goal [12]. However, there is no assurance
that optimal solutions will be obtained with the use of
heuristics [16].

The performance of A* is significantly impacted by
the choice of the heuristic function. In fact, heuristics are
used as guidance to improve performance, and they affect
the time complexity of the algorithm [12]. If h(n) is
exactly equal to the cost required to move from node n to
the destination node, the algorithm will only follow the
optimal path, without expanding into anything else,
resulting in a high search speed. The path to the goal node
can be discovered even faster if h(n) overestimates the
cost required to reach the destination node from node n.
Yet the cost of the identified path might not be the most
favorable one in this case [12]. The time complexity is
O(n log n), where n is the number of nodes [11]. A* is
usually efficient when both the start node and the target
node are known [11].

Overall, it can be said that the main difference
between Dijkstra and A* algorithms is the heuristic

410

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

function h(n) used in A*. In fact, if the value of h(n) is
set to zero, A* will give the same outcomes as Dijkstra
[12]. Since A* uses the “Best First Search”, it is
considered faster than Dijkstra which adopts the “Greedy
Best First Search” approach [11].

2.1.3 Bellman-Ford Algorithm

Similar to Dijkstra algorithm, Bellman-Ford is a
traditional algorithm used for solving shortest path
problems from a single-source node [17]. However,
Bellman-Ford algorithm can run in a distributed manner
unlike the Dijkstra algorithm which is a global algorithm
and cannot run easily in a distributed manner [18]. In this
sense, distributed algorithms, being subtypes of parallel
algorithms, are characterized by the ability of the nodes
to keep track of the shortest distances between
themselves and the other nodes, while communicating
with its neighbour nodes by transmitting messages over
the links [19]. Thus, unlike Dijkstra, parallelization takes
place in Bellman-Ford easily [20], [21]. Additionally,
Bellman-Ford has a looping behaviour, where iterations
occur over all edge connections in order to continuously
update the nodes until the final distances are reached.
However, this reduces Bellman-Ford’s efficiency in
comparison to Dijkstra’s [20], and this is considered a
major drawback of the distributed Bellman-Ford
algorithm [19]. As for the runtime of Bellman-Ford
algorithm, it is O(nm), where n is the number of nodes
and m is the number of edges [22]. Bellman-Ford is also
dominant in solving the majority of routing problems
which have various constraints and occur in a flat
network found in an autonomous system, where the
primary objective function is the minimum node count
[23].

2.2 Some Applications of Shortest Path
Algorithms in Construction

Various optimization problems that require the use
of shortest path algorithms are found in the construction
industry. Material flow on construction sites is an
example of similar problems. Optimizing material flow
and reducing travel time are valuable as cost and time are
impacted by the path that the materials go through [8].
Moreover, optimizing site layout to minimize travel
distances can boost production rate as wastage and
working time are reduced [8].

Shortest path algorithms are also used in
transportation applications. Related examples include in-
vehicle route guidance systems that require an immediate
response upon request for information and identify
vehicle routing and scheduling. Accordingly, a rapid
identification of the shortest paths is needed [24].
Moreover, with the use of intelligent robots in
construction, there is a need for planning their movement
path on site. The focus is on finding an effective and short

path that is also collision-free from the initial position to
the final position, by avoiding both stationary and
movable obstacles [25].

Other applications are focused on optimizing some
more important aspects of construction operations while
trying to minimize the travel distance. Lei et al. [26]
developed a generic algorithm to manage the movement
of large mobile cranes used to lift prefabricated units on
site while taking into account the site constraints
including the congestion of different site areas, the
geometry of lifted items and the configuration of cranes.
This aims at saving time, satisfying safety and efficiency
requirements as well as minimizing the risks of failure
and accidents’ occurrence on site.

3 Problem Description and Modelling
Designing paths for power and instrument cables

within a project requires identifying the shortest feasible
paths in order to minimize costs accompanied with their
installation. The project presented in this paper deals with
this problem of finding the optimal solution for
connecting five power cables and two instrument cables
between pre-specified source and destination points. The
project under study is an industrial facility of which the
network consists of a total of 6,155 nodes. These nodes
are connected via different types of trays which are
modelled as edges. Edges are grouped into three different
categories based on their type:

• Category 1: It accommodates the extension of
power cables only and is, thus, designated as “CTP”.

• Category 2: It accommodates the extension of
instrument cables only and is, thus, designated as
“CTI”.

• Category 3: It accommodates the extension of both
types of cables and is, thus, designated as “All”.

The nodes and edges of the network are modelled as
shown in Figure 1 below. In the 3D model, a CTP is
represented by a red line, a CTI is represented by a blue
line, and the “All” type is represented with an orange line.
The total number of edges is 9,711.

Figure 1. Network Model

411

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Given equal lengths, different types of trays/edges
differently impact the final cost. Thus, the type of each
edge must be considered when finding the optimal path.
This is achieved by factoring a cost-related weight into
the total weight. Accordingly, for each tray type, a weight
multiplier is computed to reflect its cost. This multiplier
is used to adjust the distances between the nodes
reflecting cost considerations for each edge type.
Different edge types and their corresponding multipliers
are summarized in Table 1 below.

Table 1. Weight Multipliers for Weight Groups

Weight Group Multi
-plier Weight Group Multi-

plier
Cable Tray 1 Field Run to Tag 25
Cable Tray

Angled 3D or
Rotated

1.5 Ignore 1000

Cable Tray
Angled East

Vertical
1.5 Jumper Manual 15

Cable Tray
Angled

Horizontal
1.5 Steel Jumper 15

Cable Tray
Angled North

Vertical
1.5 Steel Tray

Connect 1.1

Cable Tray
East 1 Structural Steel 10

Cable Tray
Elbow 1.5

Structural Steel
Angled East

Vertical
15

Cable Tray
North 1

Structural Steel
Angled North

Vertical
15

Cable Tray
Vertical 2 Structural Steel

East 10

Cable Tray
Jumper 1.5 Structural Steel

North 10

Cable Tray
Steel Jumper 1.5 Structural Steel

Vertical 20

4 Methodology
The study presents a structured methodology that
integrates multiple software to help decision makers find
optimal network solutions quickly and efficiently. The
methodology has been devised based on the following
steps:
1. Build a 3D model of the cable network under study.
2. Design a database to store relevant data and identify

the properties of nodes and edges. Microsoft Access
database is used in this study. The database
comprises five different tables as summarized in

Table 2.

Table 2. Access Tables and Attributes

Table Attributes
Nodes ID, x, y, and z coordinates

Edges ID, start node, end node, edge
length (i.e. distance between

nodes), edge type, edge category
Weight
Groups

Edge type, weight multiplier

End Points Source node, destination node
Shortest Paths Tag (i.e. cable), start node, end

node, sequence number (i.e. the
position of the connection edge

(node1, node2) in the path)
2.1 Extract the (x, y, z) coordinates of nodes from the

3D model of the facility and import them into the
database.

2.2 Compile data on the edges which are represented
by the nodes they connect. Identify and record the
types of different edges as well as their lengths.
The lengths of edges are computed using the
Euclidean distance (Equation 1). Note that this
distance is to be multiplied by the weight
multiplier to obtain the total weight used for path
optimization.

𝑑 = #(𝑥! − 𝑥")! + (𝑦! − 𝑦")! + (𝑧! − 𝑧")! (1)

2.3 Identify the source node and destination node for
each cable of the seven cables.

3. Develop a program that retrieves data from the
database, identifies the shortest path, and exports
the optimal path back into the database. Python
programming language is used in this study; Python
is widely used in numeric computation and includes
libraries that help in data analysis and modelling of
data [27]. The problem presented in this paper
benefits from the built-in libraries, mainly
NetworkX and pyodbc. NetworkX is a package
used for the creation and the study of complex
networks and includes standard shortest path
algorithms [28]. pyodbc is an open-source Python
module that allows accessing ODBC databases [29]
and is used to establish a direct connection to the
Access database. For each cable, the developed
program performs the following tasks:

3.1 Retrieve relevant information from the database
using SQL queries. Based on the cable type
(power vs. instrument), the queries select the
edges belonging to the categories that are
compatible with the cable type. They also select a
total weight column calculated by multiplying the
distance by the weight multiplier.

3.2 Build a weighted graph from the nodes and the

412

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

available weighted edges.
3.3 Identify the shortest path using Dijkstra, A*1, and

Bellman-Ford algorithms from Networkx library.
3.4 Compute the total weight of the identified paths

using the three algorithms.
3.5 Compute the time taken by each algorithm to

identify the shortest path (i.e. runtime). The
runtime is computed to compare the performance
of the algorithms.

3.6 Select the path with the lower total weight if there
is a difference between the weights.

4. Store the nodes of the identified shortest path back
into the database.

5. Store the shortest path nodes in XML structure
format that is readable by NavisWorks to visualize
and verify the shortest path.

The presented methodology is illustrated in Figure 2.

5 Results and Comparison
The three algorithms found the same shortest paths

for six sets of source and destination nodes out of the
seven sets. Nevertheless, the shortest path identified for
one set using Bellman-Ford passes through 100 nodes
while those found using Dijkstra and A* require 101
nodes. However, the three of the identified paths have the
same total weight indicating that both solutions are
equally favourable given the imposed optimization
criterion (i.e. minimal total weight).

The identified shortest path nodes for each set were
imported into NavisWorks and highlighted. Figure 3
illustrates the shortest paths for three of the cables. The
paths are highlighted in blue. It could be noted that the
optimum path between the source and destination nodes
is not necessarily the path with the shortest distance
between them. As illustrated, the first path bypasses the
location of the destination point before it returns back to
it. This is a result of factoring costs of different types of
edges in the total weight of edges.

The results of the three algorithms for each set are
summarized in Table 3. Dijkstra and A* algorithms
generally showed close performances with respect to
runtime. Meanwhile, Bellman-Ford exhibited a lower
performance in terms of computation speed as compared
to the other two algorithms. The percentage difference
between Dijkstra and Bellman-Ford’s runtimes for the
first cable reached 4,800% as it took 0.0980 and 0.00200
seconds to identify the optimal path using Bellman-Ford
and Dijkstra, respectively.

1 The Euclidean distance is used as the heuristic function
for A* algorithm

Figure 2. Methodology

413

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Figure 3. Shortest Paths in NavisWorks

The obtained results have shown that there is no
significant difference between Dijkstra and A*
algorithms. This could be attributed to the fact that the
heuristic estimates (the Euclidean distance) of the A*
algorithm are lower than the actual cost (the weighted
distance) of moving from the nodes to the destination
nodes. Consequently, the algorithm expands more nodes
and, hence, takes a longer computation time. On the other
hand, Bellman-Ford’s underperformance in terms of
speed was anticipated as a result of its looping behaviour.
Although the difference between their performances is in
the order of milliseconds, it becomes more significant as
the size of the problem increases (i.e. as the number of
nodes and edges increase). As the algorithm runtime is
considered a major determinant in selecting the most
convenient algorithm for a specific application [30], it
could be concluded that Dijkstra and A* algorithms are
deemed more suitable for solving a similar type of
problems.

Table 3. Shortest Paths Results

Dijkstra
Cable Number of Nodes Runtime Weight
Test 1 45 0.00200 611.929
Test 2 78 0.0150 467.658
Test 3 101 0.0240 654.499
Test 4 41 0.00400 317.676
Test 5 55 0.00800 564.203
Test 6 84 0.0220 435.403
Test 7 78 0.0220 502.488

A*
Cable Number of Nodes Runtime Weight
Test 1 45 0.00400 611.929
Test 2 78 0.0300 467.658
Test 3 101 0.0480 654.499
Test 4 41 0.00400 317.676
Test 5 55 0.00900 564.203
Test 6 84 0.0270 435.403
Test 7 78 0.0350 502.488

Bellman-Ford
Cable Number of Nodes Runtime Weight
Test 1 45 0.0980 611.929
Test 2 78 0.0510 467.658
Test 3 100 0.114 654.499
Test 4 41 0.0620 317.676
Test 5 55 0.0670 564.203
Test 6 84 0.0720 435.403
Test 7 78 0.0480 502.488

6 Conclusion
Shortest path algorithms have been proven effective

in providing support for decision makers when solving
complex path-defining problems. On construction
projects, these algorithms were used for diverse problems
to attain optimal solutions. This paper considers the
problem of selecting the shortest path for power and
instruments cables in an industrial facility. The Dijkstra,
Bellman-Ford, and A* algorithms were adopted to find
the shortest path while considering the total weight of the
edges. The total weight for this problem is dependent on
both the distance and the cost subject to the type of each
edge/tray.

Using the developed Python program to identify the
shortest paths, results showed that all algorithms gave the
same paths for six cables out of the seven cables.
Additionally, the total weight is found to be the same
across all tests indicating that these methods were equally
efficient in finding the optimal solution given the
optimization criteria. However, the results showed that
the Dijkstra and A* algorithms had a better performance
than that of Bellman-Ford with respect to runtime in all
of the cases. Specifically, the difference between

414

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Dijkstra’s and Bellman-Ford’s runtime reached 1,524%
in one of the cases. Although for this case the difference
is only in milliseconds, the difference between their
performance becomes more significant in larger scale
problems.

The paper also presented an integrated approach that
combined different software platforms to automate the
process of inputting data, computing the shortest path and
then plotting this path in 3D format for visualization. The
problem represented a case on the importance of using
the shortest path method when dealing with decisions that
are complicated by nature. Construction projects could
benefit from using such algorithms and integrated
approach for helping in various decision-making
processes.

The methodology presented in this study could be
extended to address the previously mentioned
applications of shortest-path algorithms in construction.
Today, with the continuously increasing level of
automation in construction, the problem of finding the
collision-free shortest paths for mobile robots on
construction sites is of a particular importance. Hence, a
case study on mobile construction robots shall be
addressed in a future study. Efforts shall be devoted to
select a case study of a larger size to demonstrate the
impact of the performance of the different algorithms on
the efficiency of solving the problem.

7 Acknowledgement
The authors wish to acknowledge the technical support
and assistance of Nehme Roumani in this study.

8 References
[1] Al-Tabtabai H. and Alex AP. Using genetic

algorithms to solve optimization problems in
construction. Engineering Construction and
Architectural Management, 6(2):121-32, 1999.

[2] Hegazy T. Optimization of construction time-cost
trade-off analysis using genetic algorithms.
Canadian Journal of Civil Engineering; 26(6):685-
97, 1999.

[3] Damci A., Arditi D. and Polat G. Multiresource
leveling in line-of-balance scheduling. Journal of
Construction Engineering and Management,
139(9):1108-16, 2013.

[4] Lien LC. and Cheng MY. A hybrid swarm
intelligence based particle-bee algorithm for
construction site layout optimization. Expert
Systems with Applications, 39(10):9642-50, 2012.

[5] Wong CK., Fung IW. and Tam CM. Comparison of
using mixed-integer programming and genetic
algorithms for construction site facility layout
planning. Journal of construction engineering and

management, 136(10):1116-28, 2010.
[6] Al Hattab M., Zankoul E. and Hamzeh FR. Near-

real-time optimization of overlapping tower crane
operations: a model and case study. Journal of
Computing in Civil Engineering, 31(4):05017001,
2017.

[7] Yin C. and Wang H. Developed Dijkstra shortest
path search algorithm and simulation. In
Proceedings of the 2010 International Conference
on Computer Design and Applications, pages V1-
116, Qinhuangdao, China, 2010.

[8] Soltani AR., Tawfik H., Goulermas JY. and
Fernando T. Path planning in construction sites:
performance evaluation of the Dijkstra, A∗, and GA
search algorithms. Advanced engineering
informatics, 16(4):291-303, 2002.

[9] Magzhan K. and Jani HM. A review and evaluations
of shortest path algorithms. International journal of
scientific & technology research, 2(6):99-104, 2013.

[10] Zhang Z. and Zhao Z. A multiple mobile robots path
planning algorithm based on A-star and Dijkstra
algorithm. International Journal of Smart Home,
8(3):75-86, 2014.

[11] Chen JC. Dijkstra’s shortest path algorithm. Journal
of Formalized Mathematics, 15(9):237-47, 2003.

[12] Goyal A., Mogha P., Luthra R. and Sangwan N. Path
finding: A* or Dijkstra's?. International Journal in
IT & Engineering, 2(1):1-5, 2014.

[13] Ramadani E., Halili F. and Idrizi F. Tailored Dijkstra
and Astar Algorithms for Shortest Path Softbot
Roadmap in 2D Grid in a Sequence of Tuples.
International Journal of Science and Engineering
Investigations, 8(92), 2019.

[14] Gogoncea V., Murariu G. and Georgescu L. The use
of Dijkstra's algorithm in waste management
problem. The Journal The Annals of “Dunarea de
Jos” University of Galati, Fascicle IX. Metallurgy
and Materials Science, 28(2):125-127, 2010.

[15] Singh G. and Chopra V. An analysis of various
techniques to solve travelling salesman problem: A
Review. International Journal of Advanced
Research in Computer Science, 3(5), 2012.

[16] Goldberg A. and Radzik T. A heuristic improvement
of the Bellman-Ford algorithm. Computer Science
Department, Stanford University, Stanford, CA
94305, 1993.

[17] Zou B., Hu J., Wang Q. and Ke G. A distributed
shortest-path routing algorithm for transportation
systems. In Proceedings of the Seventh
International Conference on Traffic and
Transportation Studies, pages 494-500, Kunming,
China, 2010.

[18] Humblet PA. Another adaptive distributed shortest
path algorithm. IEEE transactions on
communications, 39(6):995-1003, 1991.

415

37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

[19] Busato F. and Bombieri N. An efficient
implementation of the Bellman-Ford algorithm for
Kepler GPU architectures. IEEE Transactions on
Parallel and Distributed Systems, 27(8):2222-33,
2015.

[20] Weber A., Kreuzer M. and Knoll A. A generalized
Bellman-Ford algorithm for application in symbolic
optimal control. In Proceedings of the European
Control Conference, 2001.06231, Saint Petersburg,
Russia, 2020.

[21] Bannister, M.J. and Eppstein, D. Randomized
speedup of the Bellman–Ford algorithm. In
Proceedings of the Ninth Workshop on Analytic
Algorithmics and Combinatorics (ANALCO), pages
41–47, Kyoto, Japan, 2012.

[22] Dinitz, Y. and Itzhak, R. Hybrid Bellman–Ford–
Dijkstra algorithm. Journal of Discrete Algorithms,
42:35–44, 2017.

[23] Cavendish, D. and Gerla, M. Internet QoS routing
using the Bellman-Ford algorithm. In Proceedings of
the International Conference on High Performance
Networking, pages 627–646, 1998.

[24] Fu, L., Sun, D. and Rilett, L.R. Heuristic shortest
path algorithms for transportation applications: state
of the art. Computer and Operations Research,
33(11): 3324–3343, 2006.

[25] Kim, S.K., Russell, J.S. and Koo, K.J. Construction
robot path-planning for earthwork operations.
Journal of Computing in Civil Engineering,
17(2):97–104, 2003.

[26] Lei, Z., Han, S., Bouferguène, A., Taghaddos, H.,
Hermann, U. and Al-Hussein, M. Algorithm for
mobile crane walking path planning in congested
industrial plants. Journal of Construction
Engineering and Management, 141(2):5014016,
2015.

[27] Python.org. Applications for Python. On-line:
https://www.python.org/about/apps/, Accessed:
03/06/2020.

[28] PyPI.org. Network X. On-line:
https://pypi.org/project/networkx/, Accessed:
03/06/2020.

[29] PyPI.org. pyodbc. On-line:
https://pypi.org/project/pyodbc/, Accessed:
03/06/2020.

[30] Zhan, F.B. and Noon, C.E. Shortest path algorithms:
an evaluation using real road networks.
Transportation Science, 32(1): 65–73, 1998.

416

