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Abstract – 
With the development of the construction 

industry, many problems such as human safety are 
remaining unsolved.  The construction holds the 
worst safety record compared to other industrial 
sectors, approximately 88% of accidents are related 
to workers’ safety.  The high complexity of the 
construction site compare to the ordinary living 
environment is also a major factor that cannot 
effectively protect the safety of workers.  In this 
paper, an integrated sensor network method is 
proposed for the safety management of construction 
workers.  The main signals collected in this paper 
are visual signals and electronic signals. The 
compatibility issues caused by cooperation between 
different types of signals will also be discussed in this 
paper.  At the same time, a multi-signal automatic 
correction method is used to improve the accuracy 
and efficiency of our proposed method. 
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1 Introduction 
“Smart City” concept is widely known by people 

around the world for many years, the main purpose of it 
is using information technology to help to improve city 
service.  Currently, Smart City is applied in 
transportation, citizen management, urban resource 
allocation and so on, they all perform well compare to 
traditional methods.  Along with the rising of Smart 
City, the concept of “Smart Construction” is also 
proposed recently, many well applied methods from 
other fields are poured into construction area.  But due 
to the differences in management mode and 
implementation, those methods perform not so well.  
There is a lot of room for development of Smart 
Construction.  

Speaking of which, construction industry field still 
holds a worst record in safety compare to others.  In 
Japan, death number in construction accidents is twice 

that of Germany and 3 times that of UK from data since 
2003 to 2005 [1], and haven’t improve well during the 
last 20 years [2].  Comparing to other developed 
countries, accident monitoring efficiency is the main 
reason that workers cannot be found and rescue in time. 

The main causes of workers’ injuries and deaths are 
heat stroke, hitting by heavy objects, felling from a 
height and so on.  Some of the injuries are caused by 
accident, some of them happened because of the 
unsupervised unsafe acts of workers’ own due to cost, 
time pressure and other reasons.  Normal monitoring 
system such as web camera requires manual operation, 
it is inefficient because of human neglect, obstacle and 
other factors.  A more efficient and accurate safety 
management and monitoring method is needed. 

Camera-based monitoring method is widely used 
and researched around the world, it has a lot of benefits, 
such as low cost, easy to be assembled, and so on.  Yet 
more disadvantages are unavoidable, such as unable to 
solve occlusion problem, low accuracy in weak light or 
dark environment.  Other methods concentrate on 
changing RGB frame to RGB-D frame by adding depth 
into the picture, such as Kinect and Realsense.  RGB-D 
is more accurate to detect human and object comparing 
to RGB’s pixel crop, it also works well even in weak 
light environment.  However, due to the limit of 
working distance, reflective surfaces and relative 
surface angles, depth maps in RGB-D frame always 
contain significant holes and serve noise, as shown in 
Figure 1, these errors limit the practical usage of RGB-
D frame in real applications, thus depth maps 
restoration in hole filling and noise removing becomes a 
necessary step in depth-camera-based monitoring 
system. 

Monitoring method based on Inertial Measurement 
Unit (IMU) sensors is also a hot topic in recent years, 
because of its undoubtable benefits compare to other 
methods such as visual camera.  IMU sensors are 
nonintrusive, lightweight and portable measuring 
devices, they can overcome the sensor viewpoint and 
occlusion issues, once they were attached on subject, the 
activities can be detected in a non-hindering manner [4], 
[5], [6].  After pre-processing of the motion for activity 
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Figure 1. Depth map (top) and infrared frame 

recognition, discriminative features are then derived 
from time and/or frequency domain representation of 
the motion signals [7] and used for activity 
classification [8].  Although there are a lot of benefits of 
IMU sensors, there are also some disadvantages, first, it 
is not intuitive, not easy for manual recheck, second, 
model complexity is hard to control especially when 
precise motion capture is needed.  

In order to fix injuries problems in construction field, 
we propose a safety management method based on 
multiple sensor network.  This method aims at using 
data of workers from different kinds of sensors to detect 
human motion and movement more accurately, sensors 
such as depth camera and IMU sensor will be used, and 
by cooperating them to decrease the error rate and 
improve efficiency in accident alert and injury rescue. 

The main contributions of this paper are as below: 

1. Improve the accuracy of multi-type sensor fusion 
based motion recognition in specific motions in 
construction site environment; 

2. Multi-type sensor fusion based motion recognition 
correction method. 

The remaining sections are organized as follows. 
Related works are reviewed in Section 2, including 
camera-based, depth camera-based and IMUs-based 
methods. The proposed methodology is introduced in 
Section 3, visual sensor-based human recognition, IMU 
s-based human recognition and sensor fusion method 
will be introduced.  The simulation and experiment 
details and hardware parameters will be introduced in 
Section 4. The conclusion is drawn in Section 5. 

2 Related works 

2.1 Camera-based human modeling  
Commercial camera-based human detection method 

requires subjects wear markers and depend on multiple 
calibrated cameras mounted in the environment. [9], it is 

inconvenient, to overcome these constraints, other 
researchers focus on developing marker-less approaches 
from multiple cameras, yet some of these methods 
require offline processing to achieve high quality results 
[10], [11].  But some other real-time approaches have 
been proposed [12], these approaches typically fit a 
skeletal model to image data.  Other approaches to real-
time performance include combining discriminative and 
generative approaches [13].  However, multi-view 
approaches assume stationary and well calibrated 
cameras, therefore they are not suitable in mobile 
scenarios. 

2.2 Depth camera-based depth map 
restoration and human modeling  

As for regular camera, RGB-based depth prediction 
normally uses large body of literature, training 
exclusively using ground truth metric depth, 
[14,15,16,17,18].  As for depth camera, many methods 
have been proposed for restoring depth maps by Kinect, 
these methods can be classified into two types: filtering-
based and reconstruction-based.  Filtering-based 
methods use different filters to restore captured depth 
maps.  Lai et al. [19] applied a median filter in RGB 
space to fill holes in depth map recursively, however 
this method will blur sharp edges obviously.  To 
preserve sharp edges, Camprani et al. [20] applied a 
joint bilateral filter in depth map iteratively.  Matyunin 
et al. [21] considered using temporal information to 
restore depth map, but this method occurs delay because 
it uses multiple consecutive frames to restore target 
depth map.  Reconstruction-based methods use image 
inpainting techniques to fix missing values in depth 
maps.  Telea [22] proposed FMM (Fast Marching 
Method) for image inpainting.  Miao et al. [23] 
proposed a texture-assisted method in which the texture 
edge information is extracted for assisting depth 
restoration.  These methods can remove noise and fill 
small holes in depth maps, however when it comes to 
large holes exist in depth map, such as holes in Figure 1, 
the results are unsatisfactory. 

About human modeling, Anguelov et al. [24] 
introduced SCAPE, a data-driven method for building a 
human 3D model than spans variation in both shape and 
pose.  It shows that given a high-resolution range image 
from a single view, the SCAPE model can be used to 
observe data.  Based on SCAPE parameterized model, 
Weiss et al. [25] combined multiple views of person and 
several low-resolution scans to obtain an accurate 
human 3D model.  Liao et al. [26] introduced prior of 
human body pose and shape, then proposed a human 3D 
modeling method based on a monocular depth camera. 
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2.3 IMUs-based human modeling  
Roetenberg et al. [27] used 17 IMUs equipped with 

3D accelerometers, gyroscopes and magnetometers, 
fused together using a Kalman Filter.  Assuming the 
measurement are noise-free and contain no drift, the 17 
IMU orientations completely define the full pose of the 
subject (using standard skeletal models).  However, 17 
IMUs are very intrusive for the subject, long setup times 
are required, errors such as placing a sensor on the 
wrong limb are common, which makes it difficult to 
reproduce.  Marcard et al. [28] compute accurate 3D 
poses using only 6 IMUs.  They take a generative 
approach and place synthetic IMUs on Skinned Multi-
Person Linear Model (SMPL) body model [29]. They 
solve for the sequence of SMPL poses that match the 
observed sequence of real measurements by optimizing 
over the entire sequence.  But this method relies on 
computationally expensive offline optimization, which 
is also hard to reproduce.  Therefore, a smaller number 
of IMU sensors and less computation complexity is the 
key of future IMUs-based human modeling and motion 
detection. 

3 Methodology 
In this paper, we propose an integrated sensor 

network method for safety management of construction 
workers.  This method mainly uses depth camera, IMU 
sensor, and environment sensor to collect data from 
workers and construct human model to analyze human 
motion, gesture and some physical index such as 
temperature and air pressure.  This method concentrates 
on multiple sensor cooperation, by using different kinds 
of sensor to decrease the errors caused by sensor defects, 
to increase the accuracy of detecting and improve 
efficiency. 

3.1 Depth camera-based human recognition  
Yin et al. [3] proposed a two-stage stacked hourglass 

network based on Varol et al. [30] to get high-quality 
result of human depth prediction.  Instead of using RGB 
image directly, this method uses RGB image and human 
part-segmentation together to predict human depth.  It 
consists of convolution layer, part-segmentation module, 
and depth prediction module.  First, RGB image input 
goes through the convolution layer and turns into heat 
maps, then enter the part-segmentation module, after 
then, heat maps turn into human part-segmentation 
results, these heat maps are summed as the input of the 
following depth prediction module with previous layers 
features, finally human depth prediction results are 
outputted. 

Algorithm 1 GradientFMM 
1. Procedure GradientFMM (depthmap)  

2.     Known ← all pixels with known values in 
depthmap  

3.     Unknown ← all unknown pixels adjacent to 
Known in depthmap 

4.     insert all pixels in Unknown into min-heap 
5.     while Unknown not empty do 
6.         p ← root of min-heap 
7.         calculate p's value using depth value equation 
8.         add p to Known 
9.         remove p from Unknown 
10.         perform down heap 
11.         for each neighbor q of A do 
12.             if q not in Known and Unknown then 
13.                 add q to Unknown 
14.                 perform up heap 
15.            end if 
16.         end for 
17.     end while 
18.     return Known 
19. end procedure 
 

The algorithm above is called GradientFMM [3], it 
propagates depth from known pixels to unknown pixels.  
After the process, every pixel in depth map in the 
unknown region has a depth value.  In order to mark 
useful pixels in depth maps to predict possible human 
skeleton, we use GradientFMM as our pre-treatment 
method in human depth prediction. 

The resolution of collected image from depth camera 
is 848x480 and 30 frames per second.  In our method, 
firstly we apply GradientFMM algorithm to analyze 
each frame and get data of human depth maps, next, we 
consider frame platform and depth direction as a 3D 
coordinate, and collect all coordinate data of each pixel 
inside depth map.  At the same time, well-trained image 
processing algorithm will be used to identify skeleton 
based on depth map, in this research, we use OpenPose 
or Intel skeleton tracking SDK.  After human skeleton is 
detected, the 3D coordinate changes of specific parts of 
human (head, hand, foot) and required parts (arm, waist) 
will be recorded, and compare with collected database, 
to find out the best match and output.  Frames with 
skeleton will be used as input for further image 
processing to improve accuracy of skeleton mapping. 

3.2 IMUs-based human recognition 
This part introduces IMUs-based human motion 

detection, IMUs can measure triaxial (3D) accelerations 
and triaxial angular velocities.  It is also easy to obtain 
information directly without numerous restrictions.   

In our proposal, we mainly consider the motion 
capture while workers are working, so the upper body 
will be observation focus.  3 IMU sensors will be used 
to detect movement changes, two will be attached on 
outer arms, another one will be attached on front waist.  
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Not only can IMU sensors collect movement data, but 
also, they are able to collect workers’ surrounding 
environmental factors such as temperature, height, air 
pressure and so on, by doing data exchange with 
environment sensors, to ensure that workers are in 
proper working environment. 

IMU motion recognition is based on Dehzangi et al. 
[31], this paper introduced a human activity recognition 
method in normal environment, the activities they 
considered are walking, walking upstairs, walking 
downstairs, sitting, standing and sleeping.  In our 
proposal, due to the difference of subjects, new motions 
are added: uplift (one or two arms up), pick up heavy 
object (the swing amplitude of both arms is reduced and 
stiff), hold up heavy object (the arms are partially 
angled and stiff), arms raised (arms at right angles to 
body), regular cyclical movement (arms turn the 
roulette), bend over (lean forward or backward).  

The framework of IMU-based human activity 
recognition system is: first, collecting relevant data 
through users; then, in the learning phase, relevant 
features are extracted from the time-series raw data.  
Model complexity is reduced by applying Feature 
selection/ Dimension reduction technique.  Recognition 
model is created from the dataset of selected features.  
Then, in the testing phase, this model is used to evaluate 
raw signal and create an activity label.  Finally, raw data 
will be outputted as labeled motion. 

IMU sensors attached in 3 parts will continuously 
record data, and using motion recognition method to 
analyze amplitude changes.  At the same time, when 
there is a dramatic change during the process, the 
differences between triaxial accelerations and angular 
velocities before and after the change will be counted 
and recorded as change graphs.  Finally, the differences 
will be compared with motion database and find out the 
best match. 

3.3 Multi-type sensor fusion and analysis 
Normally, visual signal and IMU electronic signal 

are quite different, it is hard to make a comparison 
between them.  In our proposal, both visual camera-
based method and IMU sensor-based method can 
perform results individually, but when it comes to some 
special occasion such as partly occlusion, using only 
one kind of signal will cause high error and effect the 
whole system.   

In this research, we try to cooperate two kinds of 
signal, by educe the advantages and disadvantages of 
them to further improve accuracy of this method.  We 
consider the whole area as a huge 3D coordinate system, 
as shown in Figure 3, depth camera is placed on one 
side of the system, IMU sensors are also calibrated 
before loading to make sure they are consistent at time 0.   

 
Figure 2. Depth camera and IMU sensors 

As introduced in previous sections, when record starts, 
both camera and IMU sides will generate constant 3D 
coordinate changes.  As for depth camera side, the 
variation and value of specific point can get from the 
coordinate made by depth map and frame platform.  As 
for IMU sensor side, during the movement, three axes 
will change in different accelerations, based on the 
origin set at time 0, the path changes and distance can 
be calculated by double integral: 

𝑆!⃗ = ∫(∫(𝑎!⃗ )dt)dt  (1) 

where 𝑆!⃗  represent directional distance, 𝑎!⃗  represent 
average acceleration during time period 𝑡. 

Although the unit, distance and size are quite 
different between depth map coordinate and IMU sensor 
coordinate, we can describe the change amplitude curve 
between specified coordinate points (in this case, points 
of two arms and waist), by considering the weight of 
each kind of sensor, we can get a more accurate result to 
make comparison with database, and gaining a higher 
reliability on human motion recognition. 

The equation of final degree of change is: 

∆𝑃 = (∆𝑃!/𝑃!" ∙ 𝛼 + ∆𝑃#/𝑃#" ∙ 𝛽)/2  (2) 

where ∆𝑃! is the change of motion from visual side, ∆𝑃# 
is the change of motion from IMU sensor side, 𝑃!" and 
𝑃#" are the initial states of the current time segment, 𝛼 
and 𝛽 are weight coefficients for visual and IMU sides. 

The directional distance of each axes in each sensor 
can be calculated by Equation (1), and the degree of 
change in each sensor can be evaluated by Equation (2). 
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4 Experiment 
This section makes experiment to validate the 

feasibility of our proposal.  It includes the following 
aspects: 
(1) Using depth camera to detect human skeleton and 

motion based on our visual recognition method, and 
record the 3D coordinates of depth maps; 

(2) Using attached IMU sensors to detect human upper 
body skeleton and motion based on our applied 
motion recognition method, and record the 
coordinate differences of each sensor; 

(3) Using our multi-type signal fusion correction 
method based on weight to generate coordinate 
differences from each frame and frequency. And 
output final accuracy. 

In order to get the depth maps of subjects, an Intel 
Realsense D435i camera is settled, and shooting from 
one side of our experiment area.  The picture of camera 
is shown in Figure 2, it can achieve a smooth video 
streaming with 848x480 resolution and 30 frames per 
second.  Possible detecting range is from 0.3 m to 16 m. 

In order to get the 3D motion data of subjects, 3 
Witmotion IMU sensors are attached on subjects’ two 
outer arms, and front waist.  The arm sensor model is 
BWT901CL, the detectable parameters are acceleration, 
angle, velocity, magnitude, temperature.  The waist 
sensor model is WTAHRS2, the detectable parameters 
include above and air pressure, height, which can make 
sure the surrounding environment of workers is stable 
and comfortable.   

The experiment area is settled as Figure 3, depth 
camera is placed in front of the whole area, IMU 
sensors are attached on worker’s outer arms and front 
waist, the worker will continue making different 
gestures in front of the depth camera. 

Before the beginning of experiment, the database of 
actions to be tested which also is the control group will 
be prepared.  In this experiment, several motions will be 
considered, including normal motions such as stand, sit, 
and sleep (lie down), other specific motions in 
construction site such as uplift, pick up heavy object, 
hold up heavy object, arms raised, regular cyclical 
movement and bend over will also be included.  

The experiment process will be introduced as 
follows: 

First, experiment subject (worker) will be attached 
with sensors, and stand in the proper position inside 
experiment area; 

Next, experiment subject will make corresponding 
actions in order, there will be a break between each two 
motions; 

Then, depth camera-based method will generate 
depth map, all pixels’ coordinate information will be 
recorded, human skeleton will be generated based on 
image processing, human parts will be labeled and  

 
Figure 3. experiment area layout 

corresponding to pixels, the coordinate amplitude of 
these parts will be recorded as well; 

Next, IMUs-based method will collect data changes 
from 3 sensors, during the process, a low pass filter will 
be settled to eliminate redundant noise; 

Then, the acceleration changes of each sensors will 
be used to calculate path changes by double integral; 

Next, the changes of points of three human parts 
from visual side and IMUs side will be calculated 
separately to obtain degree of change within a certain 
period of time; 

Then, degree of change from visual and IMUs side 
will be used to calculate the weight average, the result 
will be compared with database to find the best match; 

Meanwhile, origin degree of change from visual and 
IMUs side will be compared with database separately; 

Finally, the similarity from visual side, IMUs side 
and sensor fusion side will be compared, to prove if the 
sensor fusion method shows the best result. 

As for the degree of change for IMUs, we set 
experimental steps as follows: 

1. Calibration procedure: remove the output offset 
component of the acceleration sensor because of 
the presence of static acceleration (gravity).  The 
method is to average the acceleration when there is 
no motion in accelerometer. (the more samples we 
collect, the more accurate the calibration result 
will be) 

2. Low pass filtering: eliminate signal noise in 
accelerometers (both mechanical and electronic), 
to decrease the error while integrating the signal. 

3. Mechanical filtering: when in a stationary state, 
small errors in acceleration will be treated as 
constant speeds, it indicates a continuous 
movement and unstable position, which will affect 
the actual motion detection.  A mechanical 
filtering window will help to distinguish the small 
errors. 

4. Positioning: the acceleration of each time period is 
known, we use double integral to obtain distance 
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information.  The first integral gains speed and the 
second gains position. 

In our simulation, we suppose 9 motions have their 
own perfect degree of change, includes vector changes 
from left arm, right arm and front waist:  

𝑀! = &	
𝐿!!!!!⃗
𝑅!!!!!⃗
𝑊𝑛!!!!!⃗

	' , 𝑛	 ∈ [1,9] (3) 

𝐿𝑛!!!⃗ = +∆𝑥!" , ∆𝑦!
" , ∆𝑧!"- (4) 

𝑅𝑛!!!!⃗ = (∆𝑥!# , ∆𝑦!
# , ∆𝑧!#) (5) 

𝑊!!!!!!⃗ = (∆𝑥!$ , ∆𝑦!
$ , ∆𝑧!$) (6) 

where 𝐿=⃗ ,	𝑅=⃗ ,	𝑊===⃗  represent the change of motion from left 
arm, right arm and front waist. 

Generated data are divided into 2 groups, on visual 
side, the vector changes will be found by pixels and 
depth, on IMUs side, through the acceleration of three 
axes and time, Equation (1) will be used to obtain the 
distance in all directions, thereby obtaining the vector 
change.  Then, assign a weighting coefficient to vision 
and IMU part through standard normal distribution, next, 
we will use Equation (2) to calculate the integrated 
vector change:  

𝐹 = [	
(𝐿!/𝐿!" ∙ 𝛼 + 𝐿#/𝐿#" ∙ 𝛽)/2	
(𝑅!/𝑅!" ∙ 𝛼 + 𝑅#/𝑅#" ∙ 𝛽)/2	
(𝑊!/𝑊!" ∙ 𝛼 +𝑊#/𝑊#

" ∙ 𝛽)/2	
	]  

 
(7) 

where 𝐿! is the left arm vector change on visual side, 𝐿# 
is the left arm vector change on IMU side.  𝐹 will be 
compared with 𝑀1  to 𝑀9  in Equation (3) to find out 
the best match. 

100 pairs of sample data for each motion are 
generated based on our database by adding random 
interferences and white noise, to simulate deviations 
caused by the effects of real data collection.  Weight 
coefficients obey standard normal distribution.  By 
comparing our modified data with real motion data, the 
result of accuracy is shown on Figure 4.  We can see 
that some similar motions such as standing and pick up 
heavy object, hold up heavy object and arm raised, 
sometimes are indistinguishable, this may become a 
more serious problem in real world sampling.  Our 
simulation on 900 pairs of motion samples in total 
shows that averagely the accuracy of motion recognition 
by multi-type sensor fusion is about 97%, although the 
number of samples is not large, but this result shows 
that multi-type sensor fusion is possible to improve the 
accuracy of specific motion recognition in construction 
site condition.  In real world experiment, due to other 
unexpected interferences and noises, the result may  

 
Figure 4. simulation result. 

change a bit, but due to the large number of samples, we 
expect the result to be as good as our simulation result. 

5 Conclusion 
In this paper, a new method is proposed for motion 

recognition and safety management of construction 
workers by using integrated sensor network, in order to 
effectively ensure the safety of workers in complex 
environment of construction site.  We improve the 
motion recognition with depth maps, we also proposed 
several new motions that are usually shown in 
construction site and generate the database of each new 
motions’ degree of change in relative 3D coordinate 
system.  We proved that using multi-type sensor fusion 
to recognize human motion is possible, and our 
simulation shows that the accuracy is quite high 
compare to some related works.   

We also noticed several problems during our 
research, such as distinction of similar motions.  In the 
future, we will consider to add more special motions to 
expand recognition range, we will also improve the 
accuracy of skeleton interest point movement to 
decrease detection error from similar motions.  IMUs-
based motion recognition method is considered to be 
improved as well, meanwhile, a remote VR-based 
motion recognition system is included in our 
consideration. 
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