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Abstract –  

An optimization system of a lifting plan must 

have generality to manage different design 

conditions and real-time changes at a construction 

site. Furthermore, it must optimize the construction 

planning and scheduling. In a previous study, we 

trained a two-point locomotion model for crane hook 

movement using deep reinforcement learning to 

generate and optimize lifting plans automatically. 

However, we did not test the accuracy and generality 

of the model. In this study, we test (1) the accuracy 

and (2) the generality of the trained model using a 

new environment. To evaluate the accuracy of the 

optimal solution, we examined the locus of the 

movement of each frame between two points. To 

verify the generality of the trained model, we solved 

an optimization problem of the crane hook 

movement under different conditions of the crane’s 

learning environment using the trained model. From 

the results, we found that the movement path was 3.6 

times the shortest path and the crane hook initially 

moved vertical. Furthermore, the agent solved the 

optimization problem of the crane hook movement 

when the size of the crane changed. Therefore, the 

corresponding range increased with increasing size 

of the crane. However, the agent did not solve the 

problem when the slewing angle in the target 

position was larger than the slewing angle in training. 

Based on these results, we believe that the limited 

vertical movement range and rotation range of the 

crane reduces the accuracy and generality of the 

trained model.  
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1 Introduction 

Improving efficiency in building construction is a 

principal research topic in the construction field, where 

the shortage of skilled workers is increasing. Therefore, 

optimization and automation of construction planning 

and scheduling is important to improve construction [1]. 

However, optimization of construction planning and 

scheduling is a complicated task. Therefore, it is 

generally prudent to optimize each task [2]. 

The following two aspects are considered necessary 

to optimize construction planning and scheduling: (1) 

solving complex combinatorial optimization problems 

and (2) providing general versatility to manage design 

and real-time situation changes during construction. 

Considering (1), problems such as those concerning 

work interference, route planning, placement planning, 

and quantity planning can be replaced with typical 

problems, and optimization research has been conducted 

[2]. In case of (2), solving problems can be difficult or 

impossible when changes not existing in the 

optimization simulation, such as work delay and 

obstacle interference, occur in the real space. 

Furthermore, adding all necessary factors in the 

optimization simulation to provide generality is 

challenging. 

Therefore, we focused on using deep reinforcement 

learning (RL) to ensure generality. In a previous study, 

we developed a crane lifting plan using deep RL. 

Reasons for optimizing lifting tasks are as follows: 

1. lifting task is a cooperative task involving several 

sub-tasks, and 

2. lifting task is a complex optimization problem 

because it includes factors such as the lifting route, 

layout, model, quantity, and building order.  

In Section 2, we review some related work on lifting 

planning and deep RL. 
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In Section 3, we first explain the trained model for 

two-point movement developed in the previous study, 

and then we present the methods to test the accuracy 

and generality of the trained model of the previous 

study.  

In Section 4, we discuss the results of the 

verifications, and in Section 5, we propose a method for 

creating the environment. 

2 Related Work 

2.1 Previous Research on the Construction 

Planning Optimization Problem  

In general, construction planning and scheduling can 

be considered as an optimization problem. Therefore, 

research is conducted from optimization perspectives in 

work interference, construction equipment arrangements, 

and route planning. The construction planning 

optimization problem considers factors, such as safety, 

environment, cost, time, and work cooperation. 

Wo et al. indicated that a lifting plan requires a 

planning scheme that considers the numbers, layouts, 

models, and operating times of cranes. They established 

a mathematical model for the spatio-temporal planning 

of tower cranes that reduces the total cost compared to 

the initial solution, indicating that it provided the 

optimal solution for all construction projects [2]. 

2.2 Previous Research on Deep RL 

We focused on RL to ensure the generality of the 

optimization and/or automation system. RL is a machine 

learning method; it is different from supervised learning 

because it acts by itself and collects environmental 

information regardless of the existence of accurate or 

ground truth data. Therefore, it responds to unknown 

events for which the correct answer is unknown. 

RL is mainly used for autonomous control of 

machines and problems with no accumulated data. 

When creating an autonomous control system for a 

robot, it is difficult to establish rules for sensor systems, 

control values, etc. Therefore, the robot learns the 

surrounding situation through RL and controls itself [3]. 

In addition, RL is used to generate data when there is no 

accumulated training data, such as building vibration 

control, to derive optimal vibration control values [4]. 

There are several phenomena where the correct 

answers are unknown because data are not accumulated. 

Construction planning and scheduling are among them. 

Moreover, we can perform complex information 

processing by combining deep learning and RL (called 

deep RL). This combination aids in generating an 

optimal solution. The solution is used to generate long-

term strategies, such as artificial intelligence for gaming. 

This study combines the aforementioned features to 

develop a crane lifting plan. 

The crane lifting plan optimization problem (based 

on the features of deep RL) is classified as follows. 

1. A path creation function for lifting a target object 

by controlling movements such as slewing, 

derricking, and lifting and lowering. 

2. A function to provide a strategy for deciding the 

order of construction that is the most efficient. 

By developing a model with these functions, we aim 

to automatically develop a lifting plan for an unknown 

condition in a simulation. We partially performed this 

task in a previous study and developed a trained model. 

This outline is presented in Section 3. 

In addition, research is being conducted to 

investigate methods to generalize trained models 

developed using RL. According to Miyashita et al., a 

trained model for car collision prevention using deep 

RL prevented collisions with cars not learned during 

training [4]. 

 When training a lifting task, a construction site with 

several factors, is difficult to reproduce. However, if the 

inference model can be provided with a general 

versatility as described earlier, the need to describe each 

element in the field can be minimized. In this study, the 

versatility is verified using a trained model [5] for 

moving a crane hook between two points, as developed 

in the previous study. Furthermore, we propose a 

method for creating a learning environment for general 

purposes based on the inference result. 

3 Method 

3.1 Research Aim 

In this study, we perform a simulation to investigate 

the following. 

• Accuracy of the trained model. 

• Generality of the trained model. 

• Creation of a learning environment to improve the 

accuracy and versatility of the trained model at the 

learning stage. 

3.2 Outline of the Research Method 

In this section, we present the development 

environment for deep RL and the structure of the study 

using deep RL. 

We use Unity ML-Agents [6] for deep RL. Unity 

ML-Agents is a framework for building "environment" 

for RL on Unity and for "training" and "inference" 

agents. The proximal policy optimization algorithm [7] 

is used for the RL algorithm. 

As shown in Figure 1, deep RL is categorized into 
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two processes: learning and inference. In the learning 

stage, an agent learns an action to maximize the 

cumulative reward in some environment (learning 

environment). A model (a formula/method of 

calculation) developed by this process is called a trained 

model. In inference, a trained model is applied to an 

unknown data to provide an answer. At the inference 

stage, we create an unknown environment for 4D 

construction simulation and scheduling with several 

changes.  

In Section 3.3, we first explain the trained model 

developed in the previous study. In Section 3.4, we 

describe the methods to test the accuracy and generality 

of the trained model developed in the previous study. 

 

Figure 1. Verification of inference results with 

changed simulation environment 

3.3 Training Environment 

3.3.1 Simplification of Learning Content 

The optimization problem of the crane lifting plan 

using deep RL based on the features of deep RL is 

categorized into the following problems. 

• Optimizing hook route: lifting a target object by 

controlling movements such as slewing, derricking, 

and lifting and lowering.  

• Optimizing assembly order: providing efficiency 

order to assemble building components.  

By developing a model with these functions, we aim 

to automatically create a lifting plan for an unknown 

site in a simulation. To learn these functions, we divide 

the route creation function into moving between two 

points and collision prevention, as shown in Figure 2. 

This approach simplifies the environmental information 

and aims to converge learning. 

 

 

Figure 2. Simplification of learning content 

3.3.2 Environment  

This section presents an overview of RL, the 

environment, and inference results under the same 

conditions as during training. 

RL is a machine learning algorithm that learns from 

the interaction between agents and the environment. 

Agents are learners and decision-makers. The 

environment is a non-agent factor on which the agent 

operates. As shown in Figure 3, the agent refers to the 

crane; the environment refers to the target, floor, 

coordinate space, reward, status, and other information. 

The agent (crane) operates on the environment and 

receives information such as coordinates, vector, and 

speed from the environment to determine new actions. 

 

 

Figure 3. Interaction between agent and 

environment in reinforcement learning 

Figure 4 (a) shows the start and end points when the 

crane moves between two points. Figure 4 (b) depicts 

the installation range of the target (box). The center 

coordinate of this box is the end point. During training, 

a target (end point) randomly appears in this range (on 

the horizontal plane). Figure 5 presents the inference 

result from the trained model for movement between the 

two points. The crane instantly moves between the two 

points, and when the end point is reached, the end-point 

position is initialized. 
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Figure 4. Start and end points (a); target (end 

point) installation range (b) 

 

Figure 5. Trained model for moving between two 

points 

3.3.3 Agent Action and Crane Models 

In this section, we explain the operations of agents 

(crane) on environments in deep RL. 

As shown in Figure 6, we developed a crane with three 

operations: slewing the boom, derricking the boom, and 

lifting and lowering the crane hook. The agent learns 

these control values by training, without limiting the 

rotation angle of the slewing and derricking. When 

lifting the crane hook, the vertical direction is restricted 

such that it does not exceed the boom tip. By 

simplifying the model in the initial stages of training, 

unnecessary information is deleted from the search, and 

the search converges easily, as shown in Figure 7. 

 

Figure 6. Movement of the crane 

 

Figure 7. Simplified crane model 

 

3.3.4 Training Method 

Figure 8 shows the situation during training. The 

model training time was reduced by 87% by 

parallelizing and training nine models simultaneously. 

The number of iterations was 500,000. 

 

Figure 8. Parallel training of nine models 

3.3.5 State and Reward 

In this section, we detail a remarkable method to 

develop a route for a crane hook to move between two 

points. In deep RL, the environment rewards agents 

based on their behavior; agents learn behaviors that 

maximize their cumulative rewards. We created an 

environment to reward the agents as follows. 

• Reward when the crane hook reaches the end point. 

• Reward the movement of the crane hook towards 

the end point. 

For a route search between two points in the 

horizontal direction, we can create a movement route 

between two points by only giving a reward when the 

crane hook reaches the end point. However, the 

optimization of the crane hook route is a path search in 

a three-dimensional space; hence, we created an 

environment to reward the operation of the crane hook 

approaching the end point. We used the inner product to 

reward the action of the crane hook approaching the end 

point. We multiply the inner product of the two vectors 

by the reward and assign it as the reward. As shown in 

Figure 9, the two vectors are crane hook to target 

direction vector and crane hook speed vector. If the 

angle between these two vectors is small (i.e., the inner 

product is close to 1), the reward is close to 1×reward. 
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Figure 9. Simplification of rewards 

3.4 Method of Verification 

3.4.1 Verification of the Optimal Solution 

This section presents a method investigate the 

accuracy of the optimal solution of the trained model. 

We verify the accuracy of the optimization of the 

movement between two points by comparing "the length 

of the trajectory of the crane hook" and "the length of 

the shortest path between the two points." 

To obtain the length of the crane hook trajectory and 

the shortest path between the two points, we record the 

coordinates of the crane hook and the start point for 

each frame, as listed in Table 1, and track the length and 

the shortest distance between the two points.  

Furthermore, to visualize the crane hook's trajectory, 

we draw the trajectory of the crane hook, as shown in 

Figure 10. 

Table 1. Recorded coordinates for each frame 

start   end   now   last   len 

0.00 -6.17 0.00 -1.50 0.50 -2.70 -1.90E-7 -6.54 7.19E-9 0.00 -6.17 0.00 0.00 

0.00 -6.17 0.00 -1.50 0.50 -2.70 6.85E-7 -7.66 1.55E-8 -1.90E-7 -6.54 7.19E-9 0.36 

0.00 -6.17 0.00 -1.50 0.50 -2.70 1.59E-6 -9.26 1.35E-8 6.85E-7 -7.66 1.55E-8 1.49 

0.00 -6.17 0.00 -1.50 0.50 -2.70 1.29E-6 -10.9 1.06E-8 1.59E-6 -9.26 1.35E-8 3.08 

0.00 -6.17 0.00 -1.50 0.50 -2.70 2.35E-6 -12.2 -2.91E-8 1.29E-6 -10.9 1.06E-8 4.70 

0.00 -6.17 0.00 -1.50 0.50 -2.70 3.22E-6 -13.7 -1.12E-7 2.35E-6 -12.2 -2.91E-8 6.02 

0.00 -6.17 0.00 -1.50 0.50 -2.70 3.40E-6 -14.8 -2.01E-7 3.22E-6 -13.7 -1.12E-7 7.52 

0.00 -6.17 0.00 -1.50 0.50 -2.70 4.40E-6 -16.2 -2.22E-7 3.40E-6 -14.8 -2.01E-7 8.64 

0.00 -6.17 0.00 -1.50 0.50 -2.70 5.35E-6 -17.2 -2.57E-7 4.40E-6 -16.2 -2.22E-7 10.07 

0.00 -6.17 0.00 -1.50 0.50 -2.70 4.74E-6 -18.4 -2.62E-7 5.35E-6 -17.2 -2.57E-7 10.98 

 

 

Figure 10. Visualization of the crane trajectory 

3.4.2 Verification of the Generality of the Trained 

Model  

This section presents methods to investigate the 

generality when altering the environment in which the 

trained model is adapted. 

As discussed in Section 2.2, the models trained by 

deep RL can perform in situations different from the 

learning environment. However, its adaptability is 

unknown. Therefore, we make the following changes to 

the simulation environment during inference. 

• Placement: Change the positional relationship 

between the crane and the end point. We set the 

end points inside and outside the "installation 

range of the end point during training." As shown 

in Figure 11, we examine the inference results 

while installing the end points in sequence on the 

horizontal plane. We do not change the position of 

the crane and the position of the start point. 

• Type: We use a default crane for training and a 

large crane with a different boom length and 

vertical height (Figure 12). 

From the inference results, we examine the 

generality of the inference model and propose a method 

to create a learning environment to improve generality. 

 

Figure 11. Change in the installation position of 

the end point 

 

Figure 12. Change in crane type 
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4 Results and Discussion 

4.1 Verification of the Accuracy of the 

Trained Model 

In this section, we present the results of the accuracy 

verification of movement between two points using 

deep RL and propose a method for creating an 

environment to improve the accuracy of this movement. 

Based on the coordinates of the start and end points, 

trajectory length, and the visualization of the crane hook 

trajectory, the following were observed.  

• The movement path was 3.6 times the shortest 

path 

• The trajectory length was almost constant, 

regardless of the change in the distance between 

the two points. 

• Vertical movement was rapid, whereas horizontal 

movement was slow. 

Figure 13 shows the transition of the locus length for 

each frame, i.e., the locus of movement between the two 

points for six iterations, with different lengths between 

the two points. In addition, as shown in Figures 13 and 

14, the length of the trajectory is constant regardless of 

the distance between the two points. Figure 14 

compares the shortest distance between the two points 

and the actual trajectory length. The length of the 

trajectory is approximately 3.6 times longer.  

 

Figure 13. Change in the crane hook trail length 

for each frame 

 

Figure 14. Comparison of shortest path length 

and crane hook movement path length 

As shown in Figure 15, the crane hooks initially 

moves in the vertical direction and then in the x and z 

horizontal directions. This occurs because although the 

position of the end point is rearranged in the horizontal 

direction during training, it does not move in the vertical 

direction. Therefore, it is essential to lower the crane 

hook, and a reward can be obtained based on the 

movement toward the target direction. Therefore, when 

the end point is set on the plane, as shown in Figure 16 

(a), the agent learns to move the crane hook and then 

move in the horizontal direction.  

To prevent the agent from moving excessively by 

prioritizing the movement of the lowering of the crane 

hook, we propose to create an environment, as shown in 

Figure 16 (b). We randomly set the installation position 

of the end point in the vertical direction such that the 

crane hook lifts in the vertical direction above the start 

point. 

 

Figure 15. Trail of movement between the two 

points of the crane hook 
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Figure 16. Environment that causes wasted 

movement of lowering the crane hook (a); 

environment for preventing wasted movement 

(b) 

4.2 Verification of the Generality of the 

Trained Model 

In this section, we describe the inference results that 

were examined based on the method discussed in 

Section 3.4.2 and propose a method to create an 

environment that improves the generality from inference 

results. 

 For the simulation environment, in inference, we set 

the end points inside and outside the "installation range 

of the end point during training" and let the agent infer. 

Consequently, as shown in Figure 17, the inference 

result is classified into three cases: reaching the end 

point, reaching the end point and performing 

unnecessary movements, and not reaching the end point. 

Figures 18 (a) and 19 (a) show the inference results 

corresponding to the location of the end point. Figures 

18 (b) and 19 (b) depict the list of images of each 

inference result with the end-point position changed. 

Figure 18 shows the inference results using the default 

size crane. The inference result of installing the end 

point on the front of the crane includes the result that 

the boom is not sufficiently long. Figure 19 illustrates 

the inference result from the movement between two 

points using the larger crane with different boom 

lengths and crane heights.  

These results show that changing the crane size does 

not affect the agent performance. When the size of the 

crane is changed, the positional relationship with the 

end point changes vertically. However, we confirmed 

that the agent can perform the movement between two 

points even if the positional relationship between the 

crane and the end point is changed. In addition, the 

range of movement between two points is expanded 

according to the size of the crane. 

 

Figure 17. Three types of inference results 

 

Figure 18. Result of reaching the end point by 

the default size crane (a); simulation of 

movement between two points with the end point 

placed at each point (b) 

 

Figure 19. Result of reaching the end point by 

the big size crane (a); simulation of movement 

between two points with the end point placed at 

each point (b) 

Based on Figures 18 (a) and 19 (a), we hypothesized 

that the range of end-point positions where the agent 

can perform a movement between two points is 

proportional to the size of the crane. Therefore, we 

expanded the mapping of the default size crane (Figure 

18 (a)) and verified the similarity of the range of 

movement between two points by superimposing it on 

the mapping of the big crane (Figure 19 (a)), as shown 

in Figure 20 (a). Consequently, the range of movement 

between the two points was the same. 

Furthermore, as shown in Figure 20 (b), the agent 

did not perform the movement between two points when 

the slewing angle of the crane increased. The slewing 
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angle remains within the range to reach the installation 

position of the end point during learning. This is 

probably because the slewing angle of the crane is 

narrow with respect to the installation range at the end 

point during training. Therefore, to obtain a trained 

model that moves in a wide range in the horizontal 

direction, we propose setting the end-point position such 

that the slewing angle becomes large, as shown in 

Figure 21. Additionally, when training with a small 

crane in a small range during training, the process can 

be adapted to a large crane by inference. 

 

Figure 20. Similarity of the two ranges (a); limit 

of slewing angle for trained model (b) 

 

Figure 21. Environment that improves model 

slewing 

5 Conclusion 

In this study, we evaluated the accuracy of the 

trained model and the generality of an environment 

using a trained model that learned the route creation for 

a crane hook in a lifting task using deep RL. 

We observed the following. 

• The trained model’s movement between two 

points did not traverse the shortest path. Although, 

it was not the optimum solution, it was inferred 

that the accuracy of movement between two points 

can be improved by creating an environment in 

which the crane hook is vertically lifted and 

lowered. 

• Changing the crane size does not affect the model 

performance. 

• The agent did not perform the movement between 

two points when the turning angle of the crane 

increased. To obtain a trained model that traverses 

a wide range in the horizontal direction, it is 

necessary to position the end points for large 

slewing angles. 

 Therefore, we conclude that the method for 

improving the accuracy and generality of the model for 

moving the crane hook between two points involves the 

creation of an environment that moves the crane hook 

vertically and horizontally (Figure 22). 

 

Figure 22. Environment that improves model 

accuracy and generality 
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