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Abstract – Recently, it began the spread of bulldozers 

using information technology during controlling the 

machine to increase the efficiency of the entire 

execution of work, including avoiding the usually 

necessary final surface treatment. Blade control 

mechatronic system for leveling work of bulldozer 

blade enables the bulldozer to effectively perform a 

ground leveling work or a grading work with high 

accuracy in a minimum amount of time. The system 

compensates for pitching of a tractor portion of the 

bulldozer, and for variations in the amount of earth 

to be moved by a blade of the bulldozer.  

The biggest feature of this mechatronic system is 

automation of digging and soil carrying work by 

optimally controlling a load applied to the work 

equipment even if there is digging depth to some 

extent up to the finishing surface, while the work 

application range of conventional bulldozers was 

limited mainly to finishing leveling work under light 

load. Seamless automatic execution without concern 

for damage to a finishing surface has been enabled by 

automatically switching from digging control to 

leveling control as the work progresses and 

approaches the finishing surface. 

This will reduce operator fatigue during operation, 

and will also allow even an inexperienced operator to 

perform work equivalent to the work of a qualified 

operator. 

Keywords – Mechatronic system; Bulldozer blade; 

Leveling control; Design surface 

1 Introduction 

Industries such as mining and construction in which 

earthmoving plays a fundamental role are constantly 

under pressure to improve productivity (amount of work 

done), efficiency (cost of work done in terms of labor and 

machinery), and, safety (injury sustained by workers). 

Mechatronics and robotics offers the possibility of 

contributing to each metric but has been slow in being 

accepted. Until recently, it has been possible to make 

gains using traditional means— over the last four decades 

earthmovers have become progressively larger and their 

mechanisms more efficient. Also, automation of 

fieldworthy earthmovers is a difficult problem. 

These machines must operate in unstructured, 

dynamic, outdoor environments, often in poor visibility 

conditions and inclement weather. However, after 

decades of increases in size and power, practical limits 

have been reached and now automation is being sought 

for further improvements. At about the same time, 

several enabling technologies relevant to earthmovers, 

particularly in the area of environmental perception, are 

becoming reliable and affordable. Computing technology 

has also reached the stage where fast, compact and 

rugged components can match the bandwidth of sensory 

data. 

The cycle of operation for a mechatronics machine is: 

sense, plan, and execute. First, a machine must sense its 

own state and the world around it. Next it must use this 

information along with a description of a goal to be 

achieved to plan the next action to be taken. In some 

cases the mapping from sensing to action is direct, and, 

can take the form of a pre-determined control law. In 

other cases, deliberation, or the use of models (sensors, 

mechanisms, and, actions) is necessary. Finally, the 

action must be executed via the mechanism. Since, 

relatively few systems are fully autonomous, depending 

on human input or control to achieve some of their 

function, this article examines various aspects of the 

enabling technologies used by partially automated 

systems [1]. 

The cycle of operation for a fully autonomous 

machine is: sense, plan, and execute. First, an automated 

machine must sense its own state and the world around it. 

Next it must use this information along with a description 

of a goal to be achieved to plan the next action to be taken. 

In some cases the mapping from sensing to action is 

direct, and, can take the form of a pre-determined control 

law. In other cases, deliberation, or the use of models 

(sensors, mechanisms, and, actions) is necessary. Finally, 

the action must be executed via the mechanism [2]. 

Bulldozers equipped with modern navigation and 

information systems are mobile mechatronic objects, and 

they can be integrated into general process of intellectual 

construction [3]. The integration will provide optimal 

efficiency of the construction cycle and will ensure lean 
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production process [4,5]. 

Application of regulators based on classical control 

theory is difficult due to the frequent changes in 

workflow conditions. Thus, it is necessary to develop 

adapted control systems to eliminate the difficulties 

described. The system includes both the bulldozer’s 

dynamics modeling and bulldozer’s workflow control 

method to take into consideration the complex non-linear 

dependencies between workflow parameters and 

incomplete information on its working conditions 

changes. 

Having reviewed adaptive and intellectual control 

methods [6, 7], we propose to create an adaptive control 

system for technological processes to increase efficiency 

of bulldozer’s control in comparison with traditional 

control methods. 

2 Bulldozer - mathematical description as 

mobile mechatronic object  

When researching a dozer’s working process usually 

a number of design schemes are considered – straight line, 

thread milling, wedge and exponential cutting. 

Meanwhile, a dozer moves along the surface that is 

formed by its blade. Therefore, when driving onto any 

surface roughness resulting from the dozer blade control 

or the change in its position due to any reason, causes 

position changes of the machine frame and along with the 

cutting edge that is any face deviation from a straight line 

in some extent is copied by the dozer. 

Observations [8] show that quite often while 

designing a face its roughness is progressing, reaching a 

size at which the control over the workflow is lost. In this 

case, the operator has to align the face deliberately, trying 

to ensure its "tranquil" profile that allows doing 

excavation works smoothly, without frequent control 

system switching and reducing the dozer’s operating 

speed that causes a slowdown and shows inferiorities of 

the blade control system. Obviously, if the control system 

operates in the antiphase towards deviations of the tractor 

frame with sufficient accuracy, the initial face roughness 

will not evolve and will be gradually cut. One of the most 

likely causes of the opposite phenomenon observed in 

practice, is the disparity between the velocity of the dozer 

Vp and actual conveying speed of the working body Vot 
required in certain areas Si of the digging operating cycle, 
where i – is the number of the speed change Vot. Speed 
ratio depends on the dozer’s geometrical dimensions 

(Figure 1) and its control system. 

Mathematical model of the dozer’s movement on a 

straight line tracking (frame alignment) is built using the 

Lagrange equations of the 2nd kind, under the 

assumption that the contribution to the dynamics of the 

Figure 1. Dozer’s geometrical dimensions 

drive gears and a track is small, compared with the 

contribution of the remaining parts of the dozer. 
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generalized forces acting on a dozer: 

 Qx = −σhgl2sinφ + Fт − Fs ,

Qφ = −(m2lc2 + σxh)gl2cosφ + M.      (3) 

m1  – tractor mass; m2  – blade frame mass; σ  – soil

surface density;  Fт  machine pulling power; Fs  ground

cutting resistance; h – depth of the soil cutting;  lc2  –

center of the blade mass; iгz  - gyration radius of the

dumping soil. 
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2 φ̈ + m2ẍl2lc2sinφ + m2ẋl2lc2cosφφ̇ + Jc2φ̈ +
σhẋl2
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The system (1)  solution allows getting the 

differential equations (4) and (5) that describe the dozer’s 

movement on a straight line track, and determining 

control actions through the parameters of the machine in 

areas Si of the digging operating cycle as the coefficients

ai in the dependence Vot = ai Vp. Such a dependence is

typical for dozers with a single-motor drive with a hard 

pump hydraulic drive connection to the motor shaft. 

Figure 2. The movement of the tractor frame the 

beginning of digging. 

At the beginning of digging (Figure 2), the frame of 

the tractor makes a strictly forward movement over a 

distance of  S1+S2 without hesitation relatively its mass

center. The blade cutting edge in the area S1 dives into 

the soil to a depth equal to a predetermined cutting 

thickness h. Thus, the control action a1  may be 

determined by the formula:  

a1=
30itrm l2

πrkFziprC5n
,  (6) 

where itr , ipr  - tractor transmission and hydraulic pump 

ratios; n - number of hydraulic cylinders; m - fluid mass 

in the hydraulic cylinders; 

In the area S2 the movement is made with a2=0 until

the mass center of the tractor won’t move to the 

buttonhole edge. 

On further movement the dozer "dives" in the drawn 

buttonhole (Figure 3), so in the area S3  it is necessary to

lift the blade at a rate of Vot, determined by the coefficient

a3:

Figure 3. The movement the dozer "dives" in the 

drawn buttonhole 

a3 = tg β [e
aVпt

C1+Vпt (1 +
aC1

C1+Vпt
) − 1]. (7) 

The area S3 ends after the dozer’s back gear hits the

edge of the face and reverse alignment of tractor frame 

starts. Length of the alignment area is S4≈ S1. Obviously,

during this period it is necessary to start dropping the 

blade. The a4 determines the rate of dropping the blade 

in the given area: 

a4 =
С3S1

(C4+S3+Vпt)2. (8) 

To implement control actions ai = f (Si, t, h) the dozer

must be equipped with a vertical blade control system. 

3 Adaptive control principles for a 

mechatronic bulldozer blade control 

system  

The article proposes the bulldozer workflow neural 

network model adaptive learning algorithm based on the 

recurrent least square method (exponential forgetfulness 

method) and on the algorithm of Forward Perturbation or 

dynamic back propagation. 

The autoregressive model structure with external 

inputs (Figure 4) is a dynamic two-layer recurrent neural 

network. It is found from the autocorrelation signal 

functions that the autocorrelation coefficient is greater 

than 0.8 in the time interval 0.1 sec. for speed 𝜗(𝑡) of 0.5 

sec. for digging depth ℎ(𝑡) and 0.2 sec for the resistance 

force 𝑃(𝑡) . Length of delay lines TDL taking into 

account the sampling frequency of 10 Hz are up to 1, 5 

and 2 accordingly (Figure 4). 
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Figure 4. Autoregressive model structure 

In the process of learning the neural network 

accumulates information on workflow dynamics, new 

tendencies of process development prevail on the earlier 

ones at that. 

It is a method of random search with elements of 

adaptation, which is based on principles similar to the 

Darwin’s evolution process of biological organisms. In 

this case, three types of operations are performed: 

crossing, mutation, selection. The fitness degree (how the 

population corresponds to the given task) is defined 

through the fitness function that can also include penalty 

functions for violation of additional restrictions on 

variable variables. There are various forms of crossing 

[8]. They make a selection of the fittest specimen, which 

constitute a parental pair and the crisscrossing of the 

chromosomal chains takes place, i.e. the descendant line 

code inherits fragments of codes of parental 

chromosomes. The mutation operator produces a local 

change in the line code of chromosomes with a given 

probability, which is one of the configurable parameters 

of the genetic algorithm [9, 10]. 

The selection operator allows creating a new 

population from a set of specimen, generated and 

modified descendants of specimen after mutation. The 

genetic algorithm is used to adjust the membership 

functions that are defined within the accuracy of a few 

changeable parameters, such as triangular, trapezoidal, 

radial functions. When simultaneously configuring 

several membership functions, the parameters of each of 

them are coded by their own segment of the chromosome, 

so that during the process of crossing the code sharing 

occurs only between chromosome segments of the same 

type. To configure a rule base to a specific chromosome 

fragment, some variant of the rule base is corresponded 

and in accordance with the accepted coding the choice of 

the genetic operators’ type is performed. 

Conclusions and Results 

Adaptive neural network model of digging allows you 

to simulate and predict the dependence of the resistance 

strain of gauge bogie displacement depending on the dig 

depth and trolley speed in dynamics. The accuracy of the 

prediction  𝑃(𝑡)  being estimated, the average relative 

error after learning the network is 4.5 %[11-13]. 

A neural network model of bulldozer workflow has 

been developed, allowing modeling the dependence of 

pulling power from the blade penetration. 

Input model signal, used for training, simulation and 

verification is presented in Figure 5a. Adaptive learning 

for the model is stopped at time t = 9,5 sec.  Receiving 

at this moment a neural network model parameter values, 

modeled digging resistance force and speed of the 

machine (Figure 5b, 5d) are accomplished, as well as the 

forecast for another 0.5 seconds is developed. 

Figure 5c shows the output of neural network models- 

pulling power of the bulldozer. In modeling and 

prediction of the neural network output is close to the 

experimental data only in the time interval of 7-10 sec. 

This is due to a change in unmeasurable chip thickness, 

as well as the rapidly changing conditions of the mover 

clutch with the ground. Therefore, the parameters of the 

adaptive neural network model must be adjusted in real 

time. The accuracy of prediction of pulling power 𝑁(𝑡) 

has been estimated; the average relative error being 14.7 % 

on an interval from 7 to 10 s [14]. Identification 

Technique of bulldozer workflows and models obtained 

on its basis, are designed for use in the development of 

adaptive systems of automatic workflow management of 

bulldozer [15-16]. 

The development methodology of the adaptive 

control systems of bulldozer workflows is based on the 

application of neural network technology [17]. 
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Figure 5. Comparison of Bulldozer operational parameters obtained with the Model and actual operational parameters: 

A) Deepening Dozer Blade; B) Digging Resistance Force; D) Bulldozer Current Velocity; C) Bulldozer Pulling Power.
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For the formation of the control actions influencing the 

bulldozer, particularly electrical signals actuating control 

valves of hydraulic cylinders lifting and lowering the 

working organ, the structure and algorithms of adaptive 

neural network controller have been designed. Based on 

the obtained results of practical measurements and the 

simulation carried out on their basis, the team set the 

following goal as the practical testing of the machine in 

real working conditions. 
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