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Abstract -
We have been researching a mobile robot that pull a cart

with equipment to improve productivity at construction sites.
In this field of research, a cart having front wheels as swivel
wheels and rear wheels as rigid wheels have been used. How-
ever, at the construction site, in many cases, wheels of a cart
have only swivel wheels in order to easily transport them in a
narrow space. We aimed to be able to transport a minimum
width of 1200 mm by pulling this cart by a robot. However,
when this cart is pulled using a simple 1-axis connection,
there is no guarantee that a cart will follow the same trajec-
tory as a robot. For example, a cart will move significantly
out of the trajectory of a robot as it turns a curve. At this
time, it is expected that a cart will collide with the building
under construction or the materials placed on the site. This
paper describes the results of a theoretical and experimental
confirmation of the features of a cart and examination of its
solution.
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1 Introduction

In Japan, the workers involved in the construction in-
dustry are aging. It is expected that many workers will
retire in 10 years and there will be a shortage of workers.
Therefore, in this research, we decided to aim at improving
the productivity of the construction site by automating the
transfer work by pulling a cart with a mobile robot. We
assumed that we would transport the aisles of Japanese
buildings, and targeted aisles of 1200 mm or more. There-
fore, the robot needs to use a small size.

There are several methods for transporting materials
by a robot. For example, there is a method in which a
robot pulls a cart with materials[1][2][3]. In this case, the
robot can be made smaller and lighter than the material.
Therefore, there is a possibility of traveling on the target
passageway. On the other hand, it is necessary to control
the traveling of a robot in consideration of the movement
of a cart. There is a method to put materials on a robot[4].
In this case, controlling the running of a robot is simple.
However, in order to realize stable running, the weight
of the robot needs to be larger than the weight of the
material, and a robot tends to be large. Therefore, it may
not be possible to travel on the target passage. For the
above reasons, the method of pulling a cart was selected
in this research.

Figure 1. A mobile robot.

In order to control the traveling of a robot, it is nec-
essary to theoretically verify the motion characteristics
of a cart. There are theoretical researches about a cart
with front wheels as swivel wheels and rear wheels as
rigid wheels[5][6][7][8][9]. On the other hand, an omni-
directional cart which is a slewing wheel for all the wheels
is used in a construction site. The reason is that the materi-
als are manually transported even in a narrow way. There
are few theoretical researches on this cart. In this research,
this omni-directional cart is connected to a robot to im-
prove the convenience. However, when this cart is pulled
using a simple 1-axis connection, a cart deviates from
the trajectory of a robot. Therefore, it is expected that a
cart will collide with surrounding buildings and materials.
In order to reduce such a risk, this research theoretically
examined the movement of a cart during a curve. In ad-
dition, in order to confirm that this theoretically result is
useful, we conducted a traction experiment and compared
the results.

2 A mobile robot
This chapter describes a robot. A robot used in this

research are shown in the Figure 1 and the specifications
are shown in the Table 1. This robot is jointly developed
by Tokyu Construction Co.,Ltd. and THK Co.,Ltd. A
bumper and an LRF（Laser Range Finder） are installed
in front of the robot to automatically stop working when
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(a) A cart (b) An omni-directional cart

Figure 2. The motion characteristics of a cart.

Figure 3. Behavior of an omni-directional cart on
curve.

an operator or an obstacle approaches. A cart connects to
the back of this robot.

3 An omni-directional cart
A cart with only swivel wheels has the characteristics

of being able to move in all direction. Therefore it is
hereinafter referred to as an omni-directional cart. On the
other hand, a cart with front wheels as swivel wheels and
rear wheels as rigid wheels is hereinafter referred to as cart.
First, the motion of characteristics of an omni-directional
cart are described in this chapter. Second, the results of
theoretically examining the motion of a cart when traveling
on a curve are described.

3.1 Characteristics of an omni-directional cart

The motion characteristics of a cart are shown in the
Figure 2-(a), and the motion characteristics of an omni-
directional cart are shown in the Figure 2-(b). From a

Table 1. Specification of a robot.
Size W600mm × D800mm × H400mm

Weight 120 kg
Speed(MAX) 0.5 m/s
Running time 8 hours

Figure 2-(a), a cart can move in a front-back direction,
but cannot move in a lateral direction unless wheels skid.
When moving diagonally, there is a characteristic that a
curve is drawn. However, as shown in a Figure 2-(b), an
omni-directional cart can move in the lateral direction in
addition to the front-back direction. These features of an
omni-directional cart benefit when traveling in a narrow
space on a construction site. When this cart is pulled using
a simple 1-axis connection, a cart moves in all directions.
It means that a cart will move significantly out of the
trajectory of a robot as it turns a curve. For example,
when connecting a cart as shown in a Figure 2-(a), a cart
can move in the same trajectory as a robot. This is because
the inertial force acting on a cart during the curve balances
the frictional force generated on a rigid wheel and the road
surface. On the other hand, when using a cart shown in
the Figure 2-(b), the direction of the wheel changes, so the
frictional force with the road surface becomes very small.
Therefore, it is expected that a cart will swing outward due
to inertial force as shown in Figure 3. At this time, it is
expected that a cart will collide with the building under
construction or the materials placed on the site.

3.2 Motion model of a cart

The motion of an omni-directional cart on the curve
was theoretically examined. In this research, it is assumed
that a robot travels at a constant velocity Ûϕ on a curve
with radius r at coordinate x-y. A omni-directional cart
is towed using a simple 1-axis connection. The model of
this system is shown in Figure 4.

The force balance for a robot is expressed by the follow-
ing equation.

M1 Üx = Fx − Tx (1)

M1 Üy = Fy − Ty (2)

The force balance for a cart is expressed by the following
equation.

M2
d2

dt2 (x + l2 sin θ) = Tx (3)

M2
d2

dt2 (y + l2 cos θ) = Ty (4)

I2 Üθ = Ty l2 sin θ − Tx l2 cos θ (5)

Transform Equation (1) and (2).

Tx = −M1 Üx + Fx (6)

Ty = −M1 Üy + Fy (7)
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Figure 4. A Model of the system.

Figure 5. Direction of an omni-directional cart on
the curve (Calculated value).

Table 2. Specification of the calculation.
M2 150 kg
I2 142 kg·m2

l2 0.90 m
r 2.00 m
Ûϕ 0.25 rad/s

Figure 6. Direction of an omni-directional cart on
the curve (Calculated value vs Real value).

From Equation (3) and (4), the following Equation can
be obtained.

M2( Üx − l2 sin θ Ûθ2 + l2 cos θ Üθ) = Tx (8)

M2( Üy − l2 cos θ Ûθ2 + l2 sin θ Üθ) = Ty (9)

Substitute Equation (8) and (9) into Equation (5).

M2l2 cos θ Üx − M2l2 sin θ Üy + (I2 + M2l22) Üθ = 0 (10)

Transform Equation (10) with respect to Üθ.

Üθ = − M2l2
I2 + M2l22 ( Üx cos θ − Üy sin θ) (11)

To analyze the motion of a cart, we should solve Equa-
tion(11) for θ. However, it is difficult to get analytical
solution because this equation is non-linear. Therefore,
we analyze it numerically by the Euler method. The pitch
width is

∆t = tn+1 − tn (12)

and we can get numerical solution as follows.

Ûθ2(tn+1) = Ûθ2(tn) + Üθ2(tn)(tn+1 − tn) (13)

θ2(tn+1) = θ2(tn) + Ûθ2(tn)(tn+1 − tn) (14)

When initial conditions are following Equations.

Ûθ2(t0) = Ûθ2(0) = 0 (15)

θ2(t0) = θ2(0) = 0 (16)

The motion of the robot is expressed by following equa-
tions.
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(a) t=8[s] (e) t=16[s]

(b) t=10[s] (f) t=18[s]

(c) t=12[s] (g) t=20[s]

(d) t=14[s] (h) t=22[s]

Figure 7. Behavior of a cart during experiment.
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x = r cos ϕ (17)

y = r sin ϕ (18)

The second derivative of Equation (17) and (18) is as
follows.

Üx = −r Ûϕ2 cos ϕ (19)

Üy = −r Ûϕ2 sin ϕ (20)

Robot turns at a constant speed.

Üϕ = 0 (21)

A cart direction ζ is expressed by the following Equa-
tion.

ζ = ϕ − θ (22)

We performed a simulation as shown in Figure 3, and
assuming first a straight(0s∼12s), next a curved at 90deg
(12s∼18s), and finally a straight(18s∼22s). The parame-
ters used the conditions in the table 2. The result of the
simulation is shown in the figure 5. It was theoretically
found that the direction of a cart gradually increased as the
curve started, and a cart sways over 90 deg at t=17s.

4 Comparison of a pulling experiment and
a simulation result

An omni-directional cart was connected to the robot
and the behavior of a cart on the curve was observed.
In this chapter, the conditions of the experiment and the
experimental results are explained.

4.1 Experimental conditions

In this experiment, a robot and an omni-directional cart
were connected by a simple 1-axis connector. The exper-
imental conditions were the same run as the simulation
under the table 2. An IMU(Inertial Measurement Unit)
was attached to the back of a cart. This sensor is equipped
with geomagnetic sensor and can measure the direction ζ
of the cart.

4.2 Experimental results and consideration

The experimental results are shown in Figure 6. Fur-
thermore, the state of the experiment is shown in Figure 7.
For comparison, Figure 5 is overlaid on Figure 6. In Figure
6, we divided into 4 sections and compared a experimental
result with a simulation result. That is, Section A (0s∼9s):
Straight, Section B (9s∼12s): Transition from straight to

curve, Section C(12s∼18s): Curve, Section D(18s∼22s):
Transition from curve to straight.

At first, the experimental value and the calculated value
were almost the same in the section A(Figure 7-(a)). Next,
there was a difference between the experimental and cal-
culated values in the section B(Figure 7-(b)). Since the
connecting point between a cart and a robot (Figure 4 -
point P) is away from the robot’s reference point (Figure
4 - point G1), it is considered that the turning of a robot
moved the connecting point to the outside and the direction
of a cart changed. The experimental value and the calcu-
lated value were almost the same in the section C(Figure
7-(c)∼(f)). Finally, there was a difference between the ex-
perimental and calculated values in the section D(Figure
7-(g)∼(h)). As a result of confirming the actual operation
of a robot and a cart, it was found that the cause was that
a robot and a cart mechanically contacted with each other
and the movement of a cart was suppressed. Such a phe-
nomenon may damage a robot or cause a cart to collide
with surrounding materials and buildings.

We considered that there are three ways to solve this
problem. The first is a method of attaching a rigid wheel to
an omni-directional cart. However, this method may lose
convenience at a construction site. Moreover, an accident
may occur due to forgetting to attach the parts. The second
method is to add a spring/damper to the connecting device.
By this method, there is a possibility that the behavior of
a cart swinging outward can be suppressed. The third
is a method of devising the traveling control of a robot.
For example, it is conceivable that the inertial force can
be reduced by decelerating as much as possible during a
curve, and the swing of a cart can be suppressed.

5 Conclusion
In this research, we aimed to improve the productivity

of a construction site by automating by pulling a cart with
a robot. When pulling a cart by a robot, it was important
to develop it in consideration of the motion of a cart. For
this reason, first, we theoretically examined the motion
characteristics of an omni-directional cart when traveling
on a curve. As a result, it was found that the direction of
a cart gradually increased as it began to curve and swayed
outward. Next, we conducted the pulling experiment and
observed the behavior of a cart. As a result, it was found
that the same tendency as the theory was shown in the
curve section. On the other hand, after the end of the curve,
there was a discrepancy between the calculated value and
the experimental value due to the touch of a cart. In order
to solve the problem of an omni-directional cart that a
robot greatly deviates from the trajectory of a robot in the
curve, a method of attaching a swivel wheel to an omni-
directional cart, a method of adding a spring/damper to
the connecting device, and a method of driving control
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of a robot was considered. In the future, we will set the
target trajectory of a cart based on this calculated value
and examine these methods.
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