
37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Training of YOLO Neural Network for the Detection of Fire
Emergency Assets

A. Cornelia∗, B. Naticchiaa, M. Vaccarinia, F. Boschéb and A. Carbonaria
aPolytechnic University of Marche, DICEA, Ancona, Italy

bInstitute for Infrastructure and Environment, University of Edinburgh, Edinburgh, UK

a.corneli@staff.univpm.it, b.naticchia@univpm.it, m.vaccarini@staff.univpm.it,
f.bosche@ed.ac.uk,a.carbonari@staff.univpm.it.

Abstract -
Building assets surveys are cost and time demanding and

the majority of current methods still rely on manual proce-
dures. New technologies could be used to support this task.
The exploitation of Artificial Intelligence (AI) for the auto-
matic interpretation of data is spreading throughout various
application fields. However, a challenge with AI is the very
large number of training images required for robustly detect
and classify each object class.
This paper details the procedure and parameters used for the
training of a custom YOLO neural network for the recogni-
tion of fire emergency assets.
The minimum number of pictures for obtaining good recog-
nition performances and the image augmentation process
have been investigated. In the end, it was found that fire
extinguishers and emergency signs are reasonably detected
and their position inside the pictures accurately evaluated.
The use case proposed in this paper for the use of custom
YOLO is the retrieval of as-is information for existing build-
ings. The trained neural networks are part of a system that
makes use of Augmented Reality devices for capturing pic-
tures and for visualizing the results directly on site.

Keywords -
YOLO; Neural Network; Asset inventory

1 Introduction

Facility Management (FM) is the most costly phase of
the building lifecycle, accounting for up to 80/90% of total
costs [1]. For this reason, improving efficiency of FM pro-
cesses can lead to significant savings. To establish an asset
management system, component inventory has first to be
conducted [2][3]. But, this process still relies on man-
ual procedures that make it time-consuming, expensive
and prone to errors and omissions. Construction industry
is increasingly moving through digitization, consequently
is growing the awareness about the value of integration
of new technologies such as AI, in process automation.
Component inventory is an area that could certainly bene-

fit from this. The automatic acquisition of geometric and
semantic data of built assets has been pursued, principally
through point cloud collecting technologies, photogram-
metry and image processing. But computer vision, espe-
cially object detection using artificial intelligence (AI) has
seen limited exploitation in that field, despite being ag-
gressively pursued in others engineering fields: from au-
tonomous driving to automated fruit picking. AI systems,
and more specifically Deep Learning frameworks, gener-
ally require large datasets for training [4][5]. A challenge
about this is that it is never obvious what the minimum
number of pictures is for developing a well-performing
neural network. You Only Look Once (YOLO) networks
[6][7][8] are state-of-the-art real-time object detection and
classification systems, demonstrating to be fast and accu-
rate. The aim of this research is to investigate and detail
the training process for customized YOLO Convolutional
Neural Networks (CNNs).
This first development of a customizedNN is part of an on-
site application project which allows to automate surveys
using mixed reality. NNs are exploited for automation of
object detection while localization is performed by means
of sensors and algorithms embedded in the augmented re-
ality device. On site collected data can be immediately
verified through the use MR device that shows informa-
tion overlapped to real world and the possibility of adding
semantic data directly on site avoiding long post processes
phases.

2 Scientific Background
There is an increasing need to have structured and

semantically enriched "as-is" 3D digital models of build-
ings in order to handle, more efficiently, maintenance,
restoration, conservation or modification. Especially, as
far as existing buildings are concerned, it is necessary to
develop an efficient approach to generate a semantically
enriched digital model. Various digital tools for building
capture and auditing are available, such as 2D/3D
geometrical drawings, tachometry, laser scanning or
photogrammetry, but they need increased modelling and
planning efforts of skilful personnel. Approaches that

836

a.corneli@staff.univpm.it
b.naticchia@univpm.it
m.vaccarini@staff.univpm.it
f.bosche@ed.ac.uk
a.carbonari@staff.univpm.it


37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

process point clouds are beginning to appear for the
semi-automatic identification of objects [3][9].
There are also systems like the one by [10] that exploit
images rather than point clouds. However, these methods
consist of complex processing operations that not only
require long processing time and therefore high costs, but
they are also pursued not on site with major difficulties
in comparing collected data and real conditions. This
leads to an error prone process and difficulties in the
interpretation of gathered data.
Machine learning techniques have been widely applied
in a variety of areas such as pattern recognition, natural
language processing and computational learning [11].
Particularly, the field of image recognition, and object
detection especially, has seen an increase in development
in the recent years. In the automotive industry, for
example, the use of deep learning algorithms has allowed
self-driving cars to recognize lanes and obstacles without
the need for more expensive and complex tools [12].
Object detection is a problem of importance in computer
vision. Similarly to image classification tasks, deeper
networks have shown better performance in detection.
At present, the accuracy of these techniques is excellent.
Hence, they are used in many, diverse applications, touch-
ing all engineering fields [13]. [14] studied an application
of machine learning for the construction industry to
categorize images of building designs. [15] proposed
a similar approach towards the recognition of 3D BIM
environments. [16] used NN for the automatic recognition
of house spaces. Some interesting applications of ML
regard diagnostic issues such as in [17] where semantic
segmentation networks are used to recognize wall cracks
on both stone and plastered walls. [18] proposed a system
for the automatic detection of formworks in construction
site images acquired with a Unmanned Aerial Vehicle
(UAV).
Despite their huge potential NNs have not been wholly
exploited in the AECO sector, partly due to the challenge
of developing specific domain labelled datasets. In this
paper the use of YOLO CNN for is considered along
with the creation of a dataset for fire protection system
components. In particular, an investigation is reported on
the sufficient number of images for YOLO customization.
Two objects classes have been implemented: fire extin-
guishers and emergency signs. This research work starts
from the retrieval of specific images for the creation of
multiple datasets with different number of pictures, then
the setup of the whole training system has been specified.
Finally, the trainings results are exposed and commented.

3 Methods
3.1 Training environment settings

In order to train the network, it is necessary to have a
training environment. Since this project involves the use
of YOLO neural network it has been decided to use the
training platform advised by the developer of the network
itself: Darknet-19 [13]. Darknet is an open source neural
network framework written in C and CUDA. It supports
CPU and GPU computation [8]. In order to install Dark-
net it is necessary to set the proper environment. The
following ones are all the necessary requirements [7][19]:

• Windows or Linux;
• CMake >= 3.8 for modern CUDA support;
• CUDA;
• OpenCV >= 2.4;
• cuDNN >= 7.0;
• GPU with CC >= 3.0;
• on Linux GCC or Clang, on Windows MSVC
2015/2017/2019.

The development system is Visual Studio installed with
its default options. The dependencies are CUDA, cuDNN
and OpenCV. Starting from CUDA, the version installed
is the 9.1. This installation requires also the installation
of the NVIDIA Graphics Drivers if not yet on the pc.
The second installation to be done is cuDNN version 7.0.
Finally, it follows the installation of OpenCV 3.4.0. After
having done all these installations, Darknet needs to be
compiled with the following procedure:

1. Start Microsoft Visual Studio
2. Open the darknet.sln
3. set x64 and Release
4. Include cudnn.lib in your Visual Studio project
5. Build > Build darknet.

At this moment the darknet.exe is generated inside the
folder. Finally, darknet needs to be prepared for using
OpenCV, CUDA and cuDNN. The bin file has to be placed
in the same folder of darknet.exe. Bin and include folders
have to be inserted also in CUDA folder if they are not
already there. Finally, a new Windows variable cudnn has
to be created.

3.2 Dataset creation

The dataset to train the network to recognize a specific
object must have specific features. Shape of the object,
lighting conditions and varying viewpoints are aspects to
take into consideration when gathering the images. Ac-
cording to the COCO dataset approach, choosing images
with the object in context improves the recognition of it
in real scenarios [20]. The presence of multiple objects in
the same pictures is another parameter that improves the

837



37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

performance of the network. For this reason, pictures with
the objects in their common context have been preferred
in this research.
The network capability of recognizing the object at first
sight and with a high level of confidence depends, among
other factors, upon the quantity of pictures in the dataset,
although a minimum number is not suggested in the liter-
ature.
Collecting original images is always a time consuming
task. Pictures can be gathered using various methods,
including:

1. crowdsourcing;
2. web scraping.

Generally speaking, crowdsourcing regards all the possi-
ble processes to obtain information or input into a par-
ticular task or project by enlisting the services of a large
number of people, either paid or unpaid, typically via
the Internet. Unlike datasets shot in controlled environ-
ments crowdsourcing brings in diversity which is essen-
tial for generalization [21]. In this case, the task was not
conducted using internet sources, but was spread among
people in the department and acquaintances outside the
university. In the case of web scraping three popular sites
have been exploited: 1. Google; 2. Flickr (already used
in other research like [22]); 3. Instagram. In this research,
the three sources were exploited. Using keywords, images
were manually searched and downloaded from Flickr and
Instagram. For Google, a python script has been used for
web scraping images through keywords as well [23]. To
further increase the size of the dataset at low cost, a com-
mon technique consists in the usage of both original pic-
tures, from real buildings in this case, and graphically re-
edited photos; a process called Data Augmentation. Data
augmentation introduces additional variety during train-
ing, producing robustness in the model to various inputs.
The percentage of original images and modified images
has been studied in order to obtain a trained network with
good performances [24]. In this work the augmentation
involves the modification of pictures with the help of a
custom MatLab script, to automatically modify the pho-
tos, choosingwhat transformationsmust be performed, the
starting dataset and the number of images to be created.
The custom script applies the following transformations:
resize, shifting, additive noise, rotate, zoom, crop. The
creation of the dataset involves also labelling all the im-
ages. Creating the label involves both the design of the
bounding box around the object to recognize and attaching
the correct label to it. This operation is performed in this
thesis using VoTT, a tool that supports the manual drawing
of the bounding box [25]. This tool gives the possibility
to choose the right output format according to the kind of
network chosen. The output for the YOLO network is a
.txt file, with the coordinates of the boxes and the label

attached to them. The final task to complete the dataset is
the definition of the training and testing sets of images. We
allocate 80% of the images to training, and 20% to testing.
Anyway in this study the same testing dataset has been
used so as to can better compare the data. Specifications
about the testing process can be find in Section 5.

3.3 Training process settings

After having created the dataset there are some files to
set before starting the training: the .cfg file of the network
chosen; the .data file; the .names file; the .weights file. The
parameters to customize in the cfg file are: batch = 64, this
means we will be using 64 images for every training step;
subdivision = 8, the batch will be divided by 8 to decrease
GPU VRAM requirements. If one has a powerful GPU
with loads of VRAM, this number can be decreased, or
batch could be increased. The other parameters to change
are classes = 1, the number of categories wewant to detect;
filters = (classes + 5)*5 [19][26].
The .data contains all the paths to the other necessary
files for the training process. The .names file is the file
that contains the name of the tag inside the images of the
dataset.
The weights have to been chosen according to the network
that onewants to train. Choosing theweight filemeans that
the network used is a pre-trained network with a general
dataset (CoCo, PascalVoc or others). It would be possible
also not to choose any weights file and in that case the
network will be trained from scratch and it will not profit
from transfer learning, which is valuable particularly for
low level feature learning.
The output of the training process is:

• the chart with the Mean Average Precision (mAP)
progress and the Aerage loss progress;

• the log file with all the operations executed to train
the network. It contains the report of all the epoch,
with the avg and mAP values;

• the backup folder which contains the weights of the
trained network saved at predefined stages.

The question “when the average loss is low enough?”
does not find its answer in existing literature. As a rule of
thumb, according to what is stated in other customizing
network processes, when the first decimal digit reaches 0
it is low enough (e.g. 0.02).

3.4 Validation metrics

To compute the mAP, the Precision and Recall are
required. Precision is the ratio of correctly predicted
positive observations to the total predicted positive
observations. Recall is the ratio of correctly predicted

838



37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

positive observations to all the observations in actual
class. (Equation 2) [27][28][29][30][22].

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

Figure 1. From left to right: emergency sign door,
emergency sign man, emergency sign.

True Positives (TP) and False Positives (FP) are the
number of objects correctly and incorrectly predicted,
respectively, as the object of interest. Similarly, True
Negatives (TN) and False Negatives (FN) are the number
of objects correctly and incorrectly recognized as back-
ground. Because the precision and recall rates cannot
be reported for scenes without any actual positives, the
images taken into consideration contain at least one
instance of the objects of interest [28].
For each class, a Precision/Recall curve is obtained by
varying the threshold parameter from 0 to 1. The average
precision is defined as the area under the curve. The mAP
is computed by averaging the AP value for all classes.
This process is applied to obtain the AP for each class
[24]. Besides the calculation of Precision and Recall
also the F1 parameter has been measured. This metrics
is frequently used in pattern recognition performance
assessment [30]. F1-measure is a measure that combines
Precision and Recall, using a sort of weighted average
(Equation 3).

F1 = 2 ∗ ((Precision ∗ Recall)/(Precision + Recall))
(3)

4 YOLO trainings
Training a customized neural network starts from the

creation of the dataset which has been achieved through
the method explain in 3.2. In this research two objects
have been introduced into the datasets: fire extinguisher
and emergency signal. Among the pictures referring to
emergency signals there was a distinction between differ-
ent types 1: Emergency sign; Emergency sign door and
Emergency sign man. In 1 the original pictures have been
reported.

The network chosen for the training sessions has
been the tiny YOLOv2. This choice depends upon
the further uses of the customized network, which has
to be compatible with other components. The chosen
network came from a training with CoCo dataset and thus
pre-trained weights have been used. In 2 all the training
sessions for fire extinguisher category have been detailed.
In this table, TRAINING 2 uses the same dataset as
TRAINING 1 but a network that is not pre-trained. 3
reports the list of all the training session for emergency
signs.
Finally, a training (TRAINING 17) with a combined
dataset has been done using 500 original pictures of fire
extinguishers and 581 images of emergency signs. In this
case, the mAP = 71,98%.

5 Testing the networks
The testing process of all the trainings has been pursued

through the calculation of the metrics exposed in 3.4.
This process has been done using the same test dataset,
composed by 100 original pictures, so as to make the
tests comparable. 2 shows the output of the tests and the
evaluation about the result for the calculation of precision
and recall. The third column shows the confidence score
for every single object detected marked by its bounding
box. At test time YOLO defines the confidence score as
P(object) * (intersection/union) between the predicted
box and the ground truth which provides class-specific
confidence scores for each box. These The confidence
score threshold for the testing process has been set equal
to 60%.
Since the trainings produced a new weights file every
1000 iterations for every test it has been selected the
weights closer to the number of iteration that had obtained
the higher mAP. The test has been performed for the most
relevant networks as shown in 4.
On the other hand, Figure 4 displays the values of
precision, recall and F1 in a graph. Following these
calculations it is possible to express some observations:

• it can be seen that all the F1 values are acceptable
since they are higher than 80%;

• a high percentage of image augmentation deeply
worsen the performances of the network, as can be
seen in TRAINING 13;

• moderate percentage of image augmentation are still
acceptable as suggested by TRAINING 15.

Moreover, from these tests it is evident that the higher the
number of pictures the better the performances is not true,
with or without augmentation.

839



37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Table 1. Dataset composed by original images.
Object Dataset Number and origin of images

FIRE EXTINGUISHERS Dataset 1 175 from Polytechnic University of Marche and Flickr
Dataset 2 118 original images from University of Edinburgh
Dataset 3 286 images from Google
Dataset 4 127 images from Google
Dataset 5 270 images from Google
Dataset 6 24 images from Instagram

EMERGENCY SIGNS Dataset 7 45 images from Polytechnic University of Marche
Dataset 8 536 images from Google

Table 2. Fire extinguishers training sessions.
Training Dataset mAP
TRAINING 1 1000 original pictures using all fire extinguisher images 89%
TRAINING 2 1000 original picture using all fire extinguisher images 90,80%
TRAINING 3 100 original pictures taken from Dataset 1 89,11%
TRAINING 4 200 original pictures taken from Dataset 1, 6 and 2 92,86%
TRAINING 5 300 original pictures taken from Dataset 1, 6 and 2 98,91%
TRAINING 6 400 original pictures taken from Dataset 1, 6, 2 and 3 99,30%
TRAINING 7 500 original pictures taken from Dataset 1, 6, 2 and 3 73,43%
TRAINING 8 600 original pictures taken from Dataset 1, 6, 2 and 3 82,73%
TRAINING 9 700 original pictures taken from Dataset 1, 6, 2, 3 and 4 82,73%
TRAINING 10 800 original pictures taken from Dataset 1, 6, 2, 3, 4 and

5 76,68%

TRAINING 11 900 original pictures taken from Dataset 1, 6, 2, 3, 4 and
5 78,13%

TRAINING 12 175 original pictures from Dataset 1 and 175 pictures
coming from augmentation 94,95%

TRAINING 13 4000 pictures, only 175 original 16,43%

Table 3. Emergency signs training sessions.
Training Dataset mAP
TRAINING 14 1373 pictures, 539 original and 834 from re-edited photos 86,40%
TRAINING 15 581 original photos 80,98%.
TRAINING 16 310 original photos, 155original and 155 from augmen-

tation 84,46%.

Table 4. Training testing results.
Training Precision Recall F1
TRAINING 1 97,83% 97,83% 97,83%
TRAINING 2 97,08% 96,03% 96,55%
TRAINING 3 89,51% 98,56% 93,81%
TRAINING 6 97,08% 96,03% 96,55%
TRAINING 7 97,09% 96,39% 96,74%
TRAINING 14 86,57% 93,98% 90,12%
TRAINING 15 84,80% 91,77% 88,15%
TRAINING 16 81,97% 89,29% 85,47%
TRAINING 17 83,19% 89,31% 86,14%

With the aim of testing the network in real world condi-
tions it has been performed a test inside the Polytechnic
University of Marche premises. The customized network
was the one able to detect fire extinguishers only. The
chosen building is a three-floor construction and the fire
extinguisher were 32, 15 at the ground floor, 11 at the first
floor and 6 at the basement floor. Performances with real
and unfortunate light condition have been test in this case,
especially using the Hololens for taking the pictures while
in the aforementioned tests the pictures had been taken
with phone camera. This real world test has been done

with an embedded system composed by the Hololens for
taking the pictures, a raspberry and a neural compute stick
to run the network locally. In this case the network has
been always able to recognize the object although with
different level of confidence. Less than 10% of the object
have obtained a value of level of confidence lower than
60%. In 9 cases the recognition did not worked at the first
attempt. This was due not to light condition but to the
chosen point of view. When the white label usually on top
of fire extinguisher was not visible the network struggled
in recognize the object at the first attempt.

840



37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

Figure 2. Testing sheet reporting the obtained bounding box, true positive, false positive, false negative and
calculating performance indexes.

6 Conclusion
In this paper a study about the creation of a customized

YOLO CNN for fire safety system object recognition has
been proposed. Details about the training processes and
indications on the right number of images for good perfor-
mances have been provided. The results show that there
is not a minimum number for all the purposes and cat-
egories. Furthermore, this research tried to investigate
the role of augmentation for creating datasets that pro-
vide good trainings which result in good performances. A
deeper analysis can be carry out exploring different pro-
portion between original and re-edited pictures.
This application of CNN represents a part of an automated
method for system components inventory exploiting AI
and augmented reality so as to perform data collection and
interpretation directly on site.

References
[1] FMLink. Reducing the total cost of

ownership through a lifecycle approach.
https://fmlink.com/articles/reducing-the-total-

cost-of-ownership-through-a-lifecycle-approach/,
Accessed: 09/06/2020.

[2] M. Kong, H. Lee, H. Shin, and M. Park. Study
on Standardization and Construction of Inven-
tory Database for Asset Management in Wa-
ter Supply System. International Journal of
Database Theory and Application, 9(9):11–24,
2016. doi:10.14257/ijdta.2016.9.9.02.

[3] L. Díaz-Vilariño, H. González-Jorge, J. Martínez-
Sánchez, and H. Lorenzo. Automatic LiDAR-
based lighting inventory in buildings. Mea-
surement: Journal of the International Mea-
surement Confederation, 73:544–550, 2015.
doi:10.1016/j.measurement.2015.06.009.

[4] H. J. Jeong, K. S. Park, and Y. G. Ha. Im-
age Preprocessing for Efficient Training of YOLO
Deep Learning Networks. Proceedings - 2018 IEEE
International Conference on Big Data and Smart
Computing, BigComp 2018, pages 635–637, 2018.
doi:10.1109/BigComp.2018.00113.

841

http://dx.doi.org/10.14257/ijdta.2016.9.9.02
http://dx.doi.org/10.1016/j.measurement.2015.06.009
http://dx.doi.org/10.1109/BigComp.2018.00113


37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

[5] S.D. Kulik andA.N. Shtanko. Experiments with neu-
ral net object detection system yolo on small training
datasets for intelligent robotics. In Advanced Tech-
nologies in Robotics and Intelligent Systems, pages
157–162. Springer, 2020.

[6] J. Redmon, R. Girshick, A. Farhadi, and A. Dataset.
You Only Look Once : Unified , Real-Time Object
Detection. 2016.

[7] J. Redmon and A. Farhadi. YOLO9000: Bet-
ter, faster, stronger. In Proceedings - 30th
IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2017, volume 2017-Janua,
pages 6517–6525, 2017. ISBN 9781538604571.
doi:10.1109/CVPR.2017.690.

[8] J. Redmon and A. Farhadi. YOLOv3: An Incre-
mental Improvement. Accessed: 09/06/2020. URL
http://arxiv.org/abs/1804.02767.

[9] E. Valero, F. Bosché, and A. Forster. Au-
tomation in Construction Automatic segmentation
of 3D point clouds of rubble masonry walls ,
and its application to building surveying , re-
pair and maintenance. Automation in Construc-
tion, 96(August):29–39, 2018. ISSN 0926-5805.
doi:10.1016/j.autcon.2018.08.018. URL https://
doi.org/10.1016/j.autcon.2018.08.018.

[10] Q. Lu, S. Lee, and L. Chen. Image-driven fuzzy-
based system to construct as-is IFC BIM objects. Au-
tomation in Construction, 92(March):68–87, 2018.
ISSN 09265805. doi:10.1016/j.autcon.2018.03.034.
URL http://linkinghub.elsevier.com/
retrieve/pii/S0926580517306118.

[11] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E.
Alsaadi. A survey of deep neural network architec-
tures and their applications. Neurocomputing, 234
(December 2016):11–26, 2017. ISSN 18728286.
doi:10.1016/j.neucom.2016.12.038. URL http://
dx.doi.org/10.1016/j.neucom.2016.12.038.

[12] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song,
J. Pazhayampallil, M. Andriluka, P. Rajpurkar,
T. Migimatsu, R. Cheng-Yue, F. Mujica, A. Coates,
and A. Y. Ng. An Empirical Evaluation of Deep
Learning on Highway Driving. pages 1–7, 2015.
URL http://arxiv.org/abs/1504.01716.

[13] S. Shinde, A. Kothari, and V. Gupta. YOLO
based Human Action Recognition and Lo-
calization. Procedia Computer Science, 133
(2018):831–838, 2018. ISSN 18770509.
doi:10.1016/j.procs.2018.07.112. URL https:
//doi.org/10.1016/j.procs.2018.07.112.

[14] F. Lamio, R. Farinha,M. Laasonen, andH.Huttunen.
Classification of Building Information Model (BIM)
Structures with Deep Learning. Proceedings - Euro-
pean Workshop on Visual Information Processing,
EUVIP, 2018-November, 2019. ISSN 24718963.
doi:10.1109/EUVIP.2018.8611701.

[15] Z. K. Zhao, L. Wang, and N. Xu. Deep belief net-
work based 3D models classification in building in-
formationmodeling. International Journal of Online
Engineering, 11(5):57–63, 2015. ISSN 18612121.
doi:10.3991/ijoe.v11i5.4953.

[16] T. Bloch and R. Sacks. Comparing machine learn-
ing and rule-based inferencing for semantic enrich-
ment of BIM models. Automation in Construc-
tion, 91(July 2017):256–272, 2018. ISSN 09265805.
doi:10.1016/j.autcon.2018.03.018. URL https://
doi.org/10.1016/j.autcon.2018.03.018.

[17] E. Cosenza, A. Salzano, C. Menna, D. Asprone, and
M. Serra. Digitalizzazione del danno sismico di ed-
ifici su piattaforma BIM attraverso tecniche di intel-
ligenza artificiale. Ingenio, 2:1–17, 2018.

[18] A. Braun, K. Jahr, and A. Borrmann. Form-
work detection in UAV pictures of construction
sites. eWork and eBusiness in Architecture, En-
gineering and Construction, pages 265–271, 2019.
doi:10.1201/9780429506215-33.

[19] AlexeyAB. https://github.com/AlexeyAB/
darknet, Accessed: 09/06/2020.

[20] T. Lin, M. Maire, S. Belongie, L. Bourdev, R. Gir-
shick, J. Hays, P. Perona, D. Ramanan, C. L. Zit-
nick, and P. Dollár. Microsoft COCO: Common
Objects in Context. pages 1–15, may 2014. URL
http://arxiv.org/abs/1405.0312.

[21] I. Laptev and A. Gupta. Hollywood in Homes
: Crowdsourcing Data. 1:510–526, 2016.
doi:10.1007/978-3-319-46448-0.

[22] M. Everingham, S. M. A. Eslami, L. Van Gool,
C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge: A ret-
rospective. International Journal of Computer Vi-
sion, 111(1):98–136, Jan 2015. ISSN 1573-1405.
doi:10.1007/s11263-014-0733-5. URL https://
doi.org/10.1007/s11263-014-0733-5.

[23] Github. Darknet: yolov3workflow. https:
//github.com/reigngt09/yolov3workflow/
tree/master/1_WebImage_Scraping, Accessed:
09/06/2020.

842

http://dx.doi.org/10.1109/CVPR.2017.690
http://arxiv.org/abs/1804.02767
http://dx.doi.org/10.1016/j.autcon.2018.08.018
https://doi.org/10.1016/j.autcon.2018.08.018
https://doi.org/10.1016/j.autcon.2018.08.018
http://dx.doi.org/10.1016/j.autcon.2018.03.034
http://linkinghub.elsevier.com/retrieve/pii/S0926580517306118
http://linkinghub.elsevier.com/retrieve/pii/S0926580517306118
http://dx.doi.org/10.1016/j.neucom.2016.12.038
http://dx.doi.org/10.1016/j.neucom.2016.12.038
http://dx.doi.org/10.1016/j.neucom.2016.12.038
http://arxiv.org/abs/1504.01716
http://dx.doi.org/10.1016/j.procs.2018.07.112
https://doi.org/10.1016/j.procs.2018.07.112
https://doi.org/10.1016/j.procs.2018.07.112
http://dx.doi.org/10.1109/EUVIP.2018.8611701
http://dx.doi.org/10.3991/ijoe.v11i5.4953
http://dx.doi.org/10.1016/j.autcon.2018.03.018
https://doi.org/10.1016/j.autcon.2018.03.018
https://doi.org/10.1016/j.autcon.2018.03.018
http://dx.doi.org/10.1201/9780429506215-33
https://github.com/AlexeyAB/darknet
https://github.com/AlexeyAB/darknet
http://arxiv.org/abs/1405.0312
http://dx.doi.org/10.1007/978-3-319-46448-0
http://dx.doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://doi.org/10.1007/s11263-014-0733-5
https://github.com/reigngt09/yolov3workflow/tree/master/1_WebImage_Scraping
https://github.com/reigngt09/yolov3workflow/tree/master/1_WebImage_Scraping
https://github.com/reigngt09/yolov3workflow/tree/master/1_WebImage_Scraping


37th International Symposium on Automation and Robotics in Construction (ISARC 2020)

[24] D. M. Montserrat, Q. Lin, J. Allebach, and E. J.
Delp. Training object detection and recogni-
tion CNN models using data augmentation. IS
and T International Symposium on Electronic
Imaging Science and Technology, pages 27–36,
2017. ISSN 24701173. doi:10.2352/ISSN.2470-
1173.2017.10.IMAWM-163.

[25] Github VoTT. Labelling tool. https://github.
com/microsoft/VoTT, Accessed: 09/06/2020.

[26] Nils T. Customizing yolo. https:
//timebutt.github.io/static/
how-to-train-yolov2-to-detect-custom-objects/,
Accessed: 09/06/2020.

[27] G. Li, Z. Song, and Q. Fu. A new method of image
detection for small datasets under the framework of
yolo network. In 2018 IEEE 3rd Advanced Informa-
tion Technology, Electronic and Automation Control
Conference (IAEAC), pages 1031–1035, 2018.

[28] H. Hamledari, B.Mccabe, and S. Davari. Automated
computer vision-based detection of components of
under-construction indoor partitions. Automation in
Construction, 74:78–94, 2017. ISSN 0926-5805.
doi:10.1016/j.autcon.2016.11.009. URL http://
dx.doi.org/10.1016/j.autcon.2016.11.009.

[29] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-
fei. ImageNet : A Large-Scale Hierarchical Image
Database. 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 2–9, 2009. URL
10.1109/CVPR.2009.5206848.

[30] B. Quintana, S. A. Prieto, A. Adán, and F. Bosché.
Door detection in 3D coloured point clouds of in-
door environments. Automation in Construction, 85
(October 2016):146–166, 2018. ISSN 0926-5805.
doi:10.1016/j.autcon.2017.10.016. URL https://
doi.org/10.1016/j.autcon.2017.10.016.

843

http://dx.doi.org/10.2352/ISSN.2470-1173.2017.10.IMAWM-163
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.10.IMAWM-163
https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT
https://timebutt.github.io/static/how-to-train-yolov2-to-detect-custom-objects/
https://timebutt.github.io/static/how-to-train-yolov2-to-detect-custom-objects/
https://timebutt.github.io/static/how-to-train-yolov2-to-detect-custom-objects/
http://dx.doi.org/10.1016/j.autcon.2016.11.009
http://dx.doi.org/10.1016/j.autcon.2016.11.009
http://dx.doi.org/10.1016/j.autcon.2016.11.009
10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1016/j.autcon.2017.10.016
https://doi.org/10.1016/j.autcon.2017.10.016
https://doi.org/10.1016/j.autcon.2017.10.016



