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Abstract – 
Recently, the demand for base-isolated structures 

has been increasing, especially in Japan. For reliable 
construction of seismic isolation devices, contractors 
must ensure that the area ratio of the air bubbles 
occupying the backside of the base plate does not 
cross the threshold, which is decided by the 
structural designer. However, the backside of the 
base plate can include larger and more air bubbles 
than ordinary concrete surfaces as it is difficult to 
pour concrete into the foundation properly. 
Additionally, the inspection process includes many 
time-consuming tasks. Therefore, it normally takes 
about one week or longer after concrete work to 
perform the inspection.  

We present a method to automate the tasks 
relating to inspection, including image preprocessing, 
air bubble extraction, and calculation of the area 
ratio of the air bubbles, using conventional image 
processing and a convolutional neural network 
(CNN) to speed up the inspection.  

While CNN normally requires a significant 
amount of training data to achieve high performance, 
it is generally difficult to collect such a large amount 
of high-quality data. We have conducted thorough 
accuracy inspections to evaluate the appropriate 
amount of training data required. Additionally, we 
have verified the effect of data augmentation and 
compared the performance of certain typical CNN 
architectures. 

As a result, our method has obtained results that 
are close to those of manual inspection by a skilled 
inspector. We can conclude that our method can 
reduce the overall inspection time by 50% compared 
to conventional methods. 
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1 Introduction 
The demand for seismic base isolation has increased 

Figure 1. Cross-section of base-isolated 
foundation 

Figure 2. Methodology to cast concrete 
underneath a baseplate 

due to the number of earthquakes experienced across the 
world, especially in Japan. Seismic isolation devices are 
installed at specific levels of the building in a base-
isolated structure to reduce the tremble caused by 
earthquakes. As shown in Figure 1, seismic isolation 
devices are installed on the base plate, which is set on 
the base-isolated foundation. To integrate the base plate 
into the foundation correctly, it is necessary to pour 
concrete with the base plate in place, as shown in Figure 
2. This pouring process could lead to the formation of
air bubbles underneath the base plate, which should be
avoided. As these bubbles negatively affect adhesion,
their area ratio should be decreased to increase the
adhesion force. However, the removal of the base plate
is not allowed during the construction phase to check
for the presence of air bubbles. Therefore, a full-scale
construction field test is required before the base-
isolated foundation work.
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A field test is conducted to inspect whether the ratio 
of the area of the air bubbles to that of the concrete 
surface satisfies the criteria that are generally set by 
structural designers. According to [1], the criteria for the 
ratio of the area of air bubbles is defined as less than 
10%, which differs for each project. We need to locate 
air bubbles and measure each bubble’s maximum 
diameter and area to calculate the area ratio. As there 
can sometimes be over 1000 air bubbles, the entire 
inspection process is time consuming and work 
intensive. 

The purpose of the field test is to confirm whether 
the planned workflow of the base-isolated foundation is 
appropriate. Base-isolated foundation work can begin 
when the result of the field test is verified. However, if 
the field test does not pass the criteria, the concrete 
placement plan must be reconsidered. Naturally, the 
field test must also be repeated. 

This study introduces a method to automate the 
entire inspection process in the field test using 
conventional image processing and a convolutional 
neural network (CNN). Additionally, we have 
conducted many accuracy inspections to evaluate the 
appropriate amount of training data and to determine 
which architecture is suitable for the considered purpose. 
The remainder of this paper is organized as follows: 
related works are reviewed in Section 2, the 
conventional inspection method is presented in Section 
3, the proposed method is introduced in Section 4, the 
experiments and results at the actual site are described 
in Section 5, and the conclusions are presented in 
Section 6. 

2 Related Work 
Many technologies have been developed to improve 

productivity in concrete work [2]. Their scope is not 
restricted to construction as they can be applied to 
inspection. Visual inspection is one of the important 
examinations in concrete work. Prasanna et al. [3] 
developed an automated crack detection algorithm for 
robot inspection.  

As in the present study, previous research has used 
CNN and other machine learning approaches to tackle 
this issue. Cha et al. [4] developed a crack damage 
detection method based on a CNN architecture. They 
mentioned that CNN is more robust than conventional 
approaches, such as the Canny and Sobel edge detection 
methods. Gang et al. [5] tested certain typical CNN 
architectures for tunnel crack detection. As listed here, 
many studies have focused on automatic crack detection 
systems.  

However, certain studies have also focused on 
automatic air bubble detection on the concrete surface. 
Yoshitake et al. [6] developed a method for tunnel 

lining. Gang et al. [7] developed a CNN-based method 
and compared it to Otsu’s thresholding method and 
Laplacian of Gaussian (LoG) algorithm. They 
concluded that their method was more robust against 
various light conditions. Fujia et al. [8] tested a popular 
CNN architecture for semantic segmentation, which is a 
major field in computer vision. The goal of semantic 
segmentation is to classify the class labels at the pixel 
level. 

In contrast to prior studies, this study specifically 
focuses on the concrete surface of the backside of the 
base plate in base-isolated structures, rather than the 
concrete surfaces on more classical architectural 
elements, such as walls and columns. The backside of 
the base plate normally includes more air bubbles than 
the surfaces of other architectural elements, as it is 
difficult to vent the air from the bottom of the base plate 
properly. Additionally, it is not possible to check how 
the concrete is being filled during the construction 
owing to the base plate structure. Therefore, the bottom 
of the base plate can include many air bubbles, of sizes 
larger than those on ordinary concrete surfaces. In a 
report focusing on the detection of air bubbles at the 
bottom of the base plate, Mitani [9] and Katoh [10] 
evaluated the accuracy of their method, which 
connected 2 CNN architectures that were used for object 
detection and semantic segmentation. However, the 
main targets of most object detection methods based on 
CNN are the objects, which are along the XY 
coordinates. This is due to the manner in which object 
detection methods are trained. In the training process, 
they normally evaluate if they properly detect the target 
objects by using bounding boxes that are along the XY 
coordinates. In contrast, air bubbles are multi-oriented 
objects. Therefore, they can be impediments in the 
training process as their bounding boxes can cover a 
wide area of the concrete surface and may intersect with 
other air bubbles.  

In contrast, as semantic segmentation methods 
generally do not depend on the axes on which target 
objects are based. Thus, we only used a CNN 
architecture for semantic segmentation to deal with 
various types of air bubbles. Additionally, this paper 
presents a method to automate the entire inspection and 
air bubble detection processes. Here, we employ 
conventional image preprocessing approaches, followed 
by semantic segmentation with a CNN structure, to 
detect air bubbles accurately. Each of these processes 
will be explained in Section 3. 

3 Conventional Inspection Method 
In the field test, according to the construction plan, 

concrete work is conducted at the beginning, after 
which the base plate is removed. Marking work is then 
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completed as a preparation for the area ratio calculation 
(Figure 3). If the area ratio satisfies the criteria, the 
construction site can proceed to the actual construction 
phase. The area ratio calculation in conventional 
inspection is composed of the following steps. 

1. Color the air bubbles red by hand using markers.
(Figure 4)

2. Take a picture of each grid.
3. Preprocess pictures, through keystone correction,

cropping, and resizing of each picture using an
image processing software.

4. Color the areas that are not on the backside of the
base plate, as this is outside the scope areas of the
inspection. (Figure 4)

5. Automatically extract the colored air bubbles
identified in step 1 using the software. If necessary,
correct the extracted results manually.

6. Exclude the air bubbles that are less than the
specified diameter. (Figure 4)

7. Repeat steps 3 to 6 for each grid.
8. Automatically calculate the area ratio of the air

bubbles against the area of the concrete surface.

It is important to note that certain tasks need to be 
carried out carefully. To perform accurate automatic 
extraction in step 5, it is necessary to color the air 
bubbles accurately in Step 1, and then take a picture 
from the front of the concrete surface as much as 
possible in Step 2. Although keystone correction in Step 
3 is necessary irrespective of how carefully the pictures 
are taken, the lower the distortion, the higher the 
obtained image quality. The areas identified as out of 
scope in Step 5 indicate locations that can be ignored. 
These not only include the outside of the backside of the 
base plate but also on bolts, air vent holes, and pressure 
inlets. As shown in Figure 4, these areas are colored 
using different colors so that they are ignored during the 
color extraction process in Step 8. Additionally, a 
negligible minimum diameter is normally set for this 
inspection. The air bubbles that are smaller than the 
minimum diameter need to be colored in Step 6 (colored 
black in Figure 4). After all the grids are processed 
completely from Steps 1 to 6, the area ratio can be 
automatically calculated by using the color extraction 
method. 

The conventional inspection method involves a lot 
of manual work. Additionally, the number of 

pictures to be processed can reach up to 100 per 
specimen. Further, if the construction site has multiple 
design types of base-isolated foundations, the field test 
must be conducted for each design. Thus, the tests need 
to be performed by a skilled inspector to hasten the 
entire process. However, despite having a skilled 
inspector for the field test, the process takes about a 
week after the completion of concrete work to obtain 

Figure 3. Concrete specimen and marking work 

Figure 4. Before preprocessing (Left), result of 
preprocessing (Right) 

Figure 5. Example of processed marking 
recognition, keystone correction, and cropping 

the test results when using the conventional inspection 
method. 

4 Methodology 

4.1 Automation of preprocessing using a 
conventional image processing method 

The preprocessing described in Step 3 in the 
previous section includes keystone correction, cropping, 
and resizing. This is necessary to calculate the area ratio 
in the real scale from a photograph. The preprocessing 
is performed manually using an image processing 
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Figure 6. Network architecture based on U-Net. Each number describes the number of channels in each 
convolutional layer. 

software. This process takes about one day, even for a 
skilled inspector. 

To automate the keystone correction process, it is 
first necessary to recognize the marked grids 
automatically. In this study, we use a template-matching 
algorithm to achieve this. The template-matching 
algorithm can detect the areas in the image that have a 
pattern similar to the pattern of the input template. We 
prepared simple vertical and horizontal templates to 
detect the grids. As a result, the algorithm can detect the 
grid lines as four different colored lines, as shown on 
the left side in Figure 5. 

Keystone correction utilizes the results of template 
matching. It needs to calculate the conversion matrix 
from a perspective image to an orthogonal image. It 
uses the four corner points detected by template 
matching for this. As a result, we obtain a square image 
that does not contain the perspective distortions, as 
shown on the right side in Figure 5. 

The image is then resized to the specified resolution. 
This process clarifies the relationship between the pixels 
and the real scale. The resolution used in this study was 
set to 2000 px.  

4.2 Automation of air bubble detection using 
a CNN 

In this study, a U-Net-based architecture is utilized 
for automatic bubble detection. The U-Net was designed 
for semantic segmentation, which won the International 
Symposium on Biomedical Imaging (ISBC) cell 
tracking challenge in 2015 [11]. Semantic segmentation 
is a typical task in the machine learning field and is 
performed to classify images in pixel units.  

As shown in Figure 6, the U-Net is mainly 
composed of two symmetry paths for encoding and 
decoding, where each path is composed of multiple 
layers of CNN blocks. Each layer has a connection from 
the encoding path to the decoding path. The connections 
contribute to maintaining a wide context in each focus 
area. The U-Net was originally designed for biomedical 
image segmentation, but its simple architecture can be 
utilized for many purposes, including air bubble 
detection. Therefore, we adopt the U-Net as the base 
architecture of our method. 

CNN is a type of neural network that normally 
consists of many convolutional layers. Each layer has 
many filters, and each filter can be trained to extract 
various types of image features. In contrast to CNN and 
recent learning-based algorithms, conventional image 
processing algorithms are not robust in diverse 
environments. Several studies referenced in Section 2 
report that CNN is more robust to changes in the light 
environment than conventional image processing 
algorithms. 

Although CNN is more accurate and robust, its 

Figure 7. Sample pair of training data 
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training process needs a large amount of training data. 
Additionally, U-Net belongs to a supervised training 
algorithm, indicating that the training dataset needs to 
have not only images but also labels that describe the 
classes to which each pixel in the image belongs. 
Therefore, we collected a large amount of data, as 
shown in Figure 7. 

While a learning-based algorithm is used for air 
bubble detection, the postprocessing, including 
calculation of each air bubble’s maximum diameter and 
area, uses the thresholding and contour extraction 
method. As mentioned in Section 3, small air bubbles 
that have maximum diameters less than the specified 
length are ignored in the inspection. In Section 5.2, the 
negligible diameter is set to 5 mm. 

5 Experiments 

5.1 Basic Experiments 
We evaluated different combinations of datasets to 

identify a suitable amount of training data to obtain a 
high-performance trained model. We collected 452 
images from 4 construction sites, with varying 
characteristics and light environments. Additionally, 
four images from each construction site were used as 
test data. Therefore, in total, 436 training data points 
and 16 test data points were considered. Each image 
was divided into smaller images, as processing high-
resolution images requires a large GPU memory. Thus, 
the resolution was set to 512 px. 

Precision, recall, intersection over union (IoU), and 
F1 scores were used as metrics to evaluate each result. 
Equations (1), (2), (3), and (4) define these metrics. 
Figure 8 describes each value of the equations, such as 
true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN). In this study, we assign 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1) 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2) 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
𝐹1	𝑆𝑐𝑜𝑟𝑒 =

2𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)

(3) 

(4) 

Actual 
Positive Negative 

Predicted 
Positive True Positive 

(TP) 
False Positive 

(FP) 

Negative False 
Negative (FN) 

True Negative 
(TN) 

Figure 8. Confusion matrix used for the 
evaluation 

Table 1. Training Dataset 

Dataset Site 1 Site 2 Site 3 Site 4 Total 
S1 10 10 10 10 40 
S2 30 30 30 30 120 
S3 60 60 59 60 239 
S4 223 94 59 60 436 

Table 2. Results of Each Dataset (N = 16) 

Dataset Precision IoU Recall F1 Score 
S1 0.803 0.687 0.835 0.812 
S2 0.874 0.769 0.869 0.868 
S3 0.888 0.769 0.856 0.868 
S4 0.839 0.763 0.897 0.863 

Otsu 0.686 0.563 0.786 0.712 

the greatest importance to the F1 score, as it can 
evaluate not only precision but also recall. 

We prepared four datasets, as shown in Table 1, to 
evaluate the effect of the amount of training data. Table 
2 presents the results obtained using the datasets. 
According to the results, the result of S2 was almost the 
same as that of S3 and slightly better than that of S4. 
The result indicates that 30 images from a construction 
site can contain most of the patterns in the construction 
site. Additionally, we evaluated Otsu’s automatic image 
thresholding [12] as a baseline result of conventional 
image processing. The result is shown at the bottom of 
Table 2. The result is lower in all metrics compared to 
the results of our method, even if the dataset is as small 
as S1. This means that air bubbles are not always darker 
than concrete surfaces and have various characteristics. 

To improve the results, we additionally conducted a 
study using data augmentation (DA). DA is known as 
the general technique to improve the results of machine 
learning algorithms. It includes a wide variety of 
manipulations, but we used only simple image 
processing methods, such as rotation, mirroring, 
expansion, contraction, color channel shifting, 
brightness, and random crop. The results are shown in 
Table 3. It increased the F1 score by 0.024. The result 
shows that DA can work well in our domain as well as 
in the other domains. 

Table 3. Results of Data Augmentation (N = 16) 

Dataset Precision IoU Recall F1 Score 
S4 0.839 0.763 0.897 0.863 

S4+DA 0.885 0.800 0.895 0.887 

5.2 Additional Experiments 
In addition to the experiments presented in the 

previous section, we conducted several experiments to 
identify the generalization of the trained model and 
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prepared additional datasets, as shown in Table 4. 
S4 was the same as the dataset used in the previous 

section. S5 included the data from S4 in addition to the 
data from Site 5, 6, 7, and 8, and S6 included data from 
S5 in addition to data from Site 9.  

Table 4. Training dataset for generalization test 

Dataset Site 1–4 Site 5–8 Site 9 Total 
S4 436 0 0 436 
S5 436 494 0 960 
S6 436 494 32 992 

In this test, four images from Site 9 were used as the 
test data. Site 9 was not included in S4 and S5 and was 
included only in S6. To clarify the results, we used a 
simpler DA approach, such as slight rotation, expansion, 
contraction, mirroring, and random crop, in this test.  

As shown in the result in Table 5, the higher the 
number of training data points, the more accurate the 
result. However, while S5 had almost the same number 
of training data points as S6, the result was not at the 
same level. This means that obtaining good results 
requires more diverse data or data from the construction 
site where our method was planned to be use.  

Table 5. Results against test data from Site 9 (N=4) 

Dataset Precision IoU Recall F1 Score 
S4 0.726 0.615 0.792 0.756 
S5 0.724 0.684 0.927 0.809 
S6 0.913 0.823 0.894 0.902 

Additionally, to evaluate the capabilities of different 
architectures, PSPNet [13] and DeepLabv3+ [14] were 
compared to the U-Net-based architecture. Both PSPNet 
and DeepLabv3+ are known for their well-designed 
architectures that enable them to exploit a broad image 
context. In this study, ResNet-101 [15] was used as the 
backbone architecture for PSPNet and DeepLabv3+. 

We used the S6 dataset to train all the architectures 
during the test. Additionally, four images from 8 
construction sites were used as test data, totaling 32 data 
points for the test. We also used a simple DA, similar to 
that used in the previous test. 

As shown in Table 6, our U-Net-based architecture 
obtained the highest F1 score. This was almost the same  

Table 6. Results of Architecture Comparison Including 
Negligible Air Bubbles (N = 32) 

Including negligible air bubbles 
Architecture Precision IoU Recall F1 Score 
U-Net based 0.873 0.768 0.869 0.865 

PSPNet 0.885 0.643 0.698 0.774 
DeepLabv3+ 0.916 0.704 0.754 0.821 

Table 7. Results of Architecture Comparison Ignoring 
Negligible Air Bubbles (N = 32) 

Ignore negligible air bubbles 
Architecture Precision IoU Recall F1 Score 
U-Net based 0.864 0.687 0.770 0.803 

PSPNet 0.860 0.710 0.805 0.819 
DeepLabv3+ 0.909 0.715 0.770 0.821 

Figure 9. Result of the proposed method 

as the results for S2, S3, and S4, as described in Table 2. 
However, while our U-Net-based architecture can 

detect almost all the smaller air bubbles, we found that 
it sometimes did not work well against larger air 
bubbles. Therefore, we reevaluated the results while 
ignoring the negligible air bubbles. As mentioned earlier, 
the negligible length was set to 5 mm. Table 7 shows 
the results, and Figure 9 shows the predicted result.  

It can be seen that when the negligible length is 
ignored, the results change significantly. The recall of 
PSPNet was increased by 0.097, indicating that it was 
good at detecting larger air bubbles but not smaller ones. 
However, the recall of our U-Net-based architecture 
declined by 0.139. This reveals how well this 
architecture worked against small air bubbles. 
Additionally, Table 7 shows that our U-Net-based 
architecture maintained a comparative F1 score in this 
study.  

From these results, we found that the dataset used in 
this paper needs not only the capability of detecting 
details, but also the capability of wide perception. For 
future work, continuous exploration of CNN 
architectures will be required to achieve higher 
performance. 
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Figure 10. Workload Comparison between Conventional Method and Proposed Method, assuming that 100 
pictures have to be processed. 

5.3 Workload Comparison between the 
Conventional Method and Our Method 

 In this section, the workload between the 
conventional method and the proposed method is 
compared to evaluate the effect of the proposed method. 
The best-performing model in Section 5.1 was used for 
air bubble detection.  

Figure 10 shows the workflow and workload of the 
conventional method and the proposed method. As 
shown here, the conventional method generally took 
approximately one week. The main tasks in the 
conventional method included preprocessing images 
and coloring of the air bubbles by hand. However, these 
manual steps were avoided in our method. At this 
moment, the predicted results still contain some false 
detections. However, as mentioned earlier, the U-Net 
based architecture works well against smaller air 
bubbles.  

Therefore, in this comparison, the inspector did not 
have to care about the smaller air bubbles. The area 
ratio was obtained with a high degree of accuracy by 
correcting the oversight of large air bubbles. The 
surface of the base-isolated foundation used in this 
comparison has 64 grids. Considering these grids, the 
area ratio obtained manually was 6.19%, and that 
calculated by our method, with oversight correction, 
was 6.56%. Additionally, the oversight correction took 
less than 2 hours since the inspector only focused on 
correcting the oversight of large air bubbles. 

Although the performance of our method needs to be 
improved, we have confirmed that it is effective in 
reducing the overall inspection time. Additionally, 
regarding the automation of preprocessing, we found 
that it worked almost perfectly for the expected situation 

where the grid was marked. Although it sometimes does 
not work well when including traces of the base plate’s 
boundary, we conclude that it contributes to improving 
the speed of the preprocessing step.  

From the above results, we conclude that our method 
can reduce the overall inspection time by 50%. 

6 Conclusion 
In this study, we developed a method to automate 

concrete surface inspection of a base-isolated structure. 
This paper presented a method that uses conventional 
image processing algorithms and a learning-based 
algorithm. Conventional image processing algorithms, 
such as template matching, thresholding, and contour 
extraction, were used for preprocessing and 
postprocessing of the images. For the learning-based 
algorithm, we used a U-Net-based architecture for 
automatic air bubble detection.  

In the experiments, we evaluated the performance of 
our method, recording a best F1 score of 0.887. When 
the salient false detections are corrected by hand, the 
difference between the area ratio calculated using our 
method and the area ratio calculated manually by a 
skilled inspector was 0.37%. Furthermore, the workload 
between the conventional method and our method was 
compared. As a result, although the results predicted 
using our method needed to be corrected by hand, our 
method can reduce the overall inspection time by 50%. 

In conclusion, this paper demonstrates the promising 
performance of the proposed method. While there is still 
room for improvement in terms of performance, this 
paper shows that our approach can automate the entire 
inspection process. There are many other promising 
CNN architectures and techniques available to improve 
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the performance. Accordingly, future work should focus 
on exploring better architectures and correcting more 
training data. 
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