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Abstract – Deterioration models significantly 
contribute to increasing the efficiency of life-cycle 
planning for highway assets. Therefore, asset 
managers strive to maximize the accuracy of such 
models and intensify the efficacy of the life-cycle plan. 
Even though nearby assets have been thought to have 
an impact on each other’s conditions, usually, such 
interrelations have not been considered in previous 
deterioration models. To this end, in this paper, we 
focused on investigating the impact of considering 
nearby assets interrelations on the accuracy of 
prediction models. Our results show that this 
consideration resulted in more accurate prediction 
models in comparison to considering each asset 
individually.  
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1 Introduction 
The optimization of budget allocation in highway 

asset management programs is gaining more attention 
due to the massive maintenance needs of the existing 
aged roadways. Furthermore, in recent years, the 
constrained budget has resulted in an ever-growing 
backlog of funding. As an example, the amount of budget 
shortage for preserving the U.S. roadways in a good state 
of repair was estimated $836 billion in 2017. As a result, 
this budget deficit emphasizes the need for optimal and 
smart investments in highway asset management 
programs [1]. Therefore, in the pursuit of optimal 
allocation of the available funds, highway decision 
makers look for procedures that maximize the level of 
service with minimal expenditure. To this end, 
information modeling and management are the keys in 
establishing optimized Life Cycle Plans (LCPs) and 
maintenance works [2; 3; 4; 5]. In the meantime, the 
accuracy of deterioration prediction models highly 
affects the efficiency of LCPs and, in turn, highway asset 
management programs. Therefore, decision makers 

strive to increase the accuracy of data-driven 
deterioration prediction models given the limited extent 
of available data so that they could better predict possible 
future deficiencies in roadways. 

In a highway system, several asset classes can be 
found next to each other. According to the first law of 
geography that specifies there is a relation between 
everything with nearby elements being more related, it 
can be hypothesized that the conditions of neighboring 
assets are correlated [6]. For instance, the condition of 
neighboring pavements, shoulders, and slopes might be 
correlated because of the similar impact of the identical 
temperature variations and precipitation rates that happen 
in their vicinity. Also, defects in adjacent asset items 
could be affected by possible interrelations between the 
degradation of neighboring elements. For example, the 
deformation of a slope next to a shoulder might cause the 
shoulder’s subsidence.   

However, the majority of previous studies developed 
their condition prediction models when each asset was 
considered individually [7, 8, 9, 10, 11]. For this reason, 
the possible interrelations of nearby asset classes have 
not been fairly considered in previous deterioration 
models. To address this challenge, the main motivation 
of this study is to examine the impact of incorporating the 
condition of neighboring asset classes into condition 
prediction models on the accuracy of condition forecasts. 
To this end, we selected flexible pavement, paved 
shoulder, and slope to perform the analysis. We selected 
these assets because: (i) they are made of similar 
materials, (ii) they are located in close proximity, and (iii) 
similar factors affect their degradation rates. Then, we 
developed deterioration models for the selected asset 
types in a case study. We then performed a comparative 
study to measure the impact of including the conditions 
of neighboring assets in the developed prediction 
frameworks for the selected asset items. The following 
section moves on to the review of the literature in 
deterioration prediction models of the selected asset 
items. 
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2 Background 
Several studies targeted developing deterioration 

models for pavements and bridges. However, other 
roadway assets have received less attention. In addition, 
agencies have focused more on measuring the 
performance of pavements and bridges in comparison to 
the other assets [12]. Therefore, sometimes agencies do 
not own enough performance data of other assets such as 
slopes and shoulders. Yet, in a roadway asset 
management system, all asset types are required to be 
considered together under a framework wherein their 
performance prediction models specify their 
maintenance investment needs. Consequently, adding the 
information of assets with abundant data (e.g. pavement) 
in condition prediction of other assets with less available 
data could mitigate uncertainties and contribute toward a 
better budget allocation.  

We identified two main shortcomings in previous 
works. The first found gap is that the majority of 
prediction models were developed based on the data of a 
single asset type, where each asset was modeled 
individually. For instance, [7], [13], and [14] developed 
prediction models for the condition of pavements only 
based on the historical data of pavement segments. 
Another identified shortcoming in the literature is that 
even though the condition of nearby assets might be 
dependent, this dependency was not considered in 
developing prediction models. For example, in spite of 
the probable impacts of underlying pavements on the 
condition of pavement markings, the majority of studies 
investigated their conditions separately [15, 16]. In 
addition, several studies performed individual 
investigations of degradations for other asset types, such 
as signs, barriers, and culverts [17, 18, 9]. Therefore, the 
possible interrelations between neighboring assets have 
not been fairly considered in previous studies. However, 
a few of the past studies partially investigated the mutual 
impacts of some of the neighboring assets on each other. 
For example, the impact of drained and undrained base 
and subbase layers on the condition of pavement were 
examined in some works, where the outcomes unveiled 
that the presence of water in the subsurface layer and its 
surroundings can significantly influence the pavement’s 
stiffness [19, 20]. In addition, [21] studied the role of 
routine maintenance of paved shoulders on the condition 
of adjacent flexible pavement. In another study, [22] 
investigated the influences of shoulders’ rumble strip on 
the pavement condition. Finally, [23] performed a 
correlational study between the condition of nearby 
flexible pavements, paved ditches, and paved shoulders. 
They identified some interrelations that mutually impact 
the condition of the selected asset items. However, they 
did not study the possible impacts of these correlations in 
the condition prediction models of each asset. 

To fill the identified gaps in the body of knowledge, 

the main objective of this study is to examine how 
including the condition of nearby assets as a predictor in 
the condition prediction of a particular asset improves the 
accuracy compared to single asset modeling where the 
deteriorations are predicted based on the information of 
each asset individually. The next section moves on to the 
step-by-step methodology proposed in this study and 
explains each step in more detail.  

3 Methodology  
In this study, we selected three asset classes for our 

analysis: flexible pavement, shoulder, and slope. We 
used a wide range of contributing factors to degradation 
in our analysis under three main categories: weather, 
traffic, and historical asset’s condition due to their 
importance and data availability. We developed the 
prediction model of each asset in two different scenarios: 
when the conditions of its adjacent assets were 
considered (i.e. nearby-asset modeling) and ignored (i.e. 
single asset modeling). Prior to developing prediction 
models, we performed a feature reduction step to ensure 
there was no multicollinearity in the input dataset. Next, 
we used logistic regression to predict the existence of 
pothole defects in flexible pavement and shoulder, and 
erosion and erosion patterns in slope under the scenarios 
as mentioned earlier.  

To measure the capability of the proposed framework, 
we applied it on 321.4 kilometers of I-81, I-77, and I-381 
highways in Virginia as our case study. Selected 
roadways were split into 84 segments, each of which has 
a length of 3.2 kilometers (2 miles). The utilized datasets 
in this study recorded the corresponding values of 
weather, traffic, and historical conditions between 2015 
and 2019. Fig. 1 shows the framework of the proposed 
methodology. The following sections provide a detailed 
description of each step. 

3.1 Data Collection and Preparation 
The utilized data in this study were categorized into 

three groups: weather, traffic, and condition. First, we 
collected data from available resources and then audited 
the data to detect and correct possible errors, 
abnormalities, and irregularities.   

3.1.1 Traffic  

The traffic dataset was extracted from a public portal 
[24]. We performed a cleaning step to identify missing 
information and inaccuracies in the dataset.  Next, in 
order to prevent the occurrence of bias in the results, we 
used the min-max scaling in our analysis to linearly map 
the features between 0 and 1 [25]. We applied this scaler 
on each feature of the cleaned traffic dataset separately. 
The summary of the utilized traffic features, as well as 
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their descriptive statistics, including minimum, 
maximum, 25th percentile, median, and 75th percentile 
before scaling are provided in Table 1 and Figure 2, 
respectively.  

 
Figure 1. Proposed methodology framework 

Table 1. Traffic features  
Parameter Definition 
ADT average daily traffic 
AAWDT average annual weekday traffic 
ADT_4 average daily traffic of 4-tire vehicles 
ADT_BU average daily traffic of buses 
ADT_TR average daily traffic of trucks with 1 trailer 
ADT_1 average daily traffic of trucks with 2 axles 
ADT_2 average daily traffic of trucks with 2 trailers 
ADT_3 average daily traffic of trucks with 3 axles 

 
Figure 2. Traffic feature statistical description  

3.1.2 Weather 

We extracted the weather data from the National 
Oceanic Atmospheric Administration (NOAA) database. 
We collected the data from 24 weather stations to cover 
our case study. Figure 3 shows the selected weather 

stations and their location with respect to the case study.  

 
Figure 3. Selected weather stations and the case 
study 

We cleaned the dataset to minimize inaccuracies and 
missing information. We filtered the stations to the ones 
with more than 250 days of recorded data, which reduced 
the number of remaining stations to 20. Table 2 provides 
a summary of the weather features used in our analysis.  

We used the ordinary kriging to interpolate the 
extracted weather features onto each segment. We used 
this technique due to its acceptable accuracy for weather-
related features [26, 27, 28]. In addition to the common 
weather features, we devised and considered more 
attributes to incorporate temperature variations. For 
instance, the average daily maximum-minimum 
temperature difference in a year, TMAXTMIN, is one of 
the attributes that we used to take into account the daily 
fluctuation of the temperature. TMAXTMIN ranges 
between two extremums: the upper bound, which takes 
place in desert-like regions, and the lower bound being 
observed in low-lying humid areas. 

Table 2. Weather features  
Parameter Definition 
TMAX annual maximum daily temperature (o C) 
TMIN annual minimum daily temperature (o C) 

TMAXMIN annual average of daily max_min temperature 
difference (o C) 

DWT32 number of days with minimum temperature<0o C 
(32o F) in a year 

DWT80 number of days with maximum temperature>26.7o 
C (80o F) in a year 

DWTMXN30 number of days with Tmax-Tmin>16.7o C (30o F) 
in a year 

DSNW number of days with snow depth > 2.54 cm (1 
inch) in a year 

EMSD maximum annual daily snow depth (cm) 
EMXP maximum annual daily precipitation depth (cm) 
PRCP total annual precipitation (cm) 
SNOW total annual snow depth (cm) 
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We additionally added another feature to our analysis 

to include the number of days with maximum-minimum 
temperature difference greater than 16.7 degrees Celsius 
(30 degrees Fahrenheit), called DWTMXN30. Then, like 
traffic data, we used min-max scaling to map the weather 
data as well. Figure 4 provides the statistical descriptions 
of the extracted weather features through a set of boxplots 
prior to scaling. 

 
Figure 4. Weather features’ statistical description 

3.1.3 Condition 

The condition of each asset corresponds to its 
physical characteristics that affect its performance at the 
time of inspection [29]. We extracted the condition data 
from a Maintenance Quality Assurance Program (MQAP) 
that inspected and recorded the condition of the selected 
assets (i.e. flexible pavement, paved shoulder, and slope) 
in our case study between 2015 and 2019. The MQAP 
recorded pothole defects on flexible pavement and 
shoulder in each segment of roadways, and erosion and 
erosion patterns in slopes. Being a common defect on 
flexible pavements and shoulders, potholes pose extreme 
dangers to vehicles and drivers. Driving over potholes 
can harm different parts of vehicles and could force 
drivers to show dangerous maneuvers for avoiding 
driving over them. Like potholes in flexible pavements 
and shoulders, erosion and erosion patterns are major 
probable defects in slopes that endanger their stability. 
They could cause dangerous failures in slopes. Therefore, 
we considered these defects in our analysis. The utilized 
MQAP rated the recorded conditions in 4 classes: very 
poor, poor, good, and very good. The definitions of all 
classes of recorded conditions for each asset are provided 
in Table 3 to Table 6. 

 

Table 3. Condition descriptions for flexible pavement - 
pothole 

Condition Description 
Very Poor More than one pothole present 
Poor One pothole present 
Good No pothole 

Very Good No pothole or any sign of distressed asphalt 
such as rutting, heaving, or troughing  

Table 4. Condition descriptions for shoulder - pothole 
Condition Description 
Very Poor More than one pothole present 
Poor One pothole present 
Good No pothole 

Very Good No pothole or any sign of distressed asphalt 
such as rutting, heaving, or troughing  

Table 5. Condition descriptions for slope - erosion 
Condition Description 

Very Poor Multiple erosion along slope greater than 8 
inches deep 

Poor Erosion along slope greater than 8 inches deep 
Good Less than or equal to 8 inches deep erosion. 
Very Good No slope erosion. 

Table 6. Condition descriptions for slope - erosion 
pattern 

Condition Description 

Very Poor Pattern of erosion that endangers the stability 
of at least 25% of the slope. 

Poor Pattern of erosion that endangers the stability 
of less than 25% of the slope. 

Good No pattern of erosion that endangers the 
stability of the slope. 

Very Good N/A 

3.2 Prediction Model 
We used logistic regression to develop prediction 

models and to predict the future condition of selected 
assets. In developing prediction models, we aggregated 
the defects into pass or fail classes. This new 
classification is aligned with trigger levels in 
maintenance decision making systems that highlights the 
necessity of repairs for very poor and poor classes. 
Therefore, in each asset, very poor and poor conditions 
were merged into the fail class while good and very good 
into the pass class. As a result, the output of the model 
would be a binary value (pass/fail), which corresponds to 
the predicted condition of each asset in the considered 
segment.  

Prediction models in this study were developed in two 
different scenarios so that the interrelations of 
neighboring assets could be investigated. In the first 
scenario, we only considered weather, traffic, and the 
condition of each individual asset in the modeling (single 
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asset modeling). The condition feature only contains the 
recorded condition in the prior year of the targeted 
prediction time. For example, to forecast the condition of 
the flexible pavement in 2017, the single asset prediction 
model uses only the condition of flexible pavement in 
2016 as a predictor, as well as other weather and traffic 
features. Figure 5 schematically shows the single asset 
prediction modeling used in this study. 

 
Figure 5. Single asset prediction modeling 
procedure 

 In the other scenario, we added the historical 
condition of the nearby assets in both the prior and the 
prediction years into the feature space as well (nearby-
asset prediction modeling). For instance, for predicting 
the recorded condition of slope (i.e. slope erosion) in 
2017, in addition to weather, traffic, and conditions of the 
slope (slope erosion and erosion patterns) in 2016, the 
condition of nearby flexible pavement, shoulder, and the 
condition of the slope under erosion pattern in 2017 were 
also included in the modeling. In this way, the 
interrelations between the condition of neighboring 
assets in the past and also in the year of prediction are 
taken into account. Figure 6 schematically describes the 
modeling process used in this study. 

In both scenarios, we first performed a feature 
reduction step to ensure that the considered features are 
not highly correlated.  

 
Figure 6. Nearby-asset modeling procedure 

3.2.1 Feature Reduction 

The efficiency of a multivariable analysis could be 
highly impacted by multicollinearity among features. 
Multicollinearity corresponds to the existence of high 
correlations among some attributes in a dataset, which 
can bias the result toward correlated attributes [30].  
Therefore, we used a correlational investigation to find 
high correlations between features and to remove 
multicollinearity.  

Given the essence of the considered inputs, we 
performed the feature reduction in two steps. First, we 
ensured that there was not any high correlation among 
continuous features, i.e. weather and traffic, using 
Pearson correlation coefficients. As a rule of thumb, 
features whose pairwise absolute Pearson correlation 
coefficients are more than 0.9 are considered highly 
correlated [31, 30]. Therefore, we clustered such features 
and chose only one of them as the only representative of 
the group.  

In the next step, we measured the correlation between 
the remaining continuous and categorical features, i.e. 
condition classes, utilizing absolute point-biserial 
correlation coefficients. Any group of attributes with a 
more significant correlation than 0.9 were considered as 
highly correlated and represented with only one of the 
considered features. 

3.2.2 Logistic Regression 
After feature reduction, we used logistic regression to 
develop the condition prediction model, which predicts 
the probability of each condition category, i.e. pass or fail, 
for each asset based on multiple independent variables 
that were available in the dataset, i.e. weather, traffic, and 
condition. Maximum likelihood estimation was used to 
evaluate the probability of categorical membership in the 
binary logistic regression [32, 33]. For example, if yi is 
the dependent variable with two categories (0/1), the 
probability of being in category 1 could be denoted by 
𝜋𝜋𝑖𝑖

(1) = Pr (𝑦𝑦𝑖𝑖 = 1)  with the chosen reference 
category, 𝜋𝜋𝑖𝑖

(0). If only one independent variable xi existed, 
a logistic regression model would be written as Equation 
1: 

𝐿𝐿𝐿𝐿𝐿𝐿�
𝜋𝜋𝑖𝑖

(1)

𝜋𝜋𝑖𝑖
(0)� = 𝛽𝛽0

(1) + 𝛽𝛽1
(1)𝑥𝑥𝑖𝑖   (1) 

Wherein 𝛽𝛽0
(1) is the intercept and 𝛽𝛽1

(1) is the regression 
coefficient. In addition, the probability of being yi in the 
reference category (0) is written in Equation 2. 
 

𝜋𝜋𝑖𝑖
(0) = 1 − 𝜋𝜋𝑖𝑖

(1) =
1

1 + 𝑒𝑒(𝛽𝛽0
(1)+𝛽𝛽1

(1)𝑥𝑥𝑖𝑖)
 (2) 

Therefore, 𝜋𝜋𝑖𝑖
(1)can be calculated using Equation 3. 
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𝜋𝜋𝑖𝑖
(1) =

𝑒𝑒(𝛽𝛽0
(1)+𝛽𝛽1

(1)𝑥𝑥𝑖𝑖)

1 + 𝑒𝑒(𝛽𝛽0
(1)+𝛽𝛽1

(1)𝑥𝑥𝑖𝑖)
 (3) 

3.2.3 Validation of Prediction Models 

After developing prediction models, we validated 
them using k-fold cross-validation that evaluates and 
controls the performance of the models over unseen data. 
We utilized five folds for this purpose. 

4 Results and Discussion 
This section provides the results that we obtained 

after applying the proposed methodology to our case 
study. Figure 7 shows the correlation matrix and 
corresponding pairwise absolute Pearson correlation 
coefficients among continuous features i.e. weather and 
traffic. As it can be observed, traffic features are highly 
correlated. In addition, TMAXTMIN and DWTMXN30 
are highly correlated as well. Therefore, we only 
considered ADT as the representative of the traffic 
features, as well as all of the weather features except for 
TMAXTMIN in the final dataset.  

 
Figure 7. Correlation matrix of continuous 
features 

In the next step, we measured the correlation between 
the remaining continuous and categorical features (i.e. 
conditions). The corresponding correlation matrix, using 
absolute point-biserial correlation, is provided in Figure 
8.  

 
Figure 8. Correlation matrix of mixed features 

As Figure 8 suggests, there is not any high correlation 
in the mixed feature, and we proceeded with the 
remaining features ensuring that the multicollinearity has 
been removed.  

Next, we fed the reduced dataset into the logistic 
regression to develop the condition prediction models. 
We developed the models for each asset in both single 
asset and nearby-asset modeling scenarios and reported 
the obtained confusion matrices in Figure 9 and 10, 
respectively. In addition, the results of the average 
accuracy of the final validated prediction models for the 
two considered scenarios are summarized in Table 7. It 
can be observed that in all cases when the conditions of 
the nearby asset items were considered in developing the 
condition prediction model, the accuracy of predictions 
increased in comparison to single asset prediction models.  

 
Figure 9. Confusion matrix of single asset 
modeling: (a) Flexible Pavement-Pothole, (b) 
Shoulder-Pothole, (c) Slope-erosion, (d) Slope-
erosion pattern 
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Figure 10. Confusion matrix of nearby-assets 
modeling: (a) Flexible Pavement-Pothole, (b) 
Shoulder-Pothole, (c) Slope-erosion, (d) Slope-
erosion pattern 

Table 7. Summary of the obtained accuracies   

Asset/Defect 
Accuracy 

Improvement Single 
asset 

Nearby-
asset 

Flexible Pavement-
Pothole 65.2% 67.3% 3.22% 

Shoulder-Pothole 59.5% 64.6% 8.57% 
Slope-Erosion 92.9% 96.4% 3.77% 

Slope-Erosion Pattern 94.9% 97.0% 2.21% 

5 Conclusion  
In this study, we examined the impact of 

interrelations between nearby assets in the accuracy of 
their condition predictions. We selected three assets 
(flexible pavement, shoulder, and slope) to investigate 
how considering the condition of nearby assets into the 
condition prediction of each one improves the accuracy 
of predictions. To this end, we developed prediction 
models in two different scenarios: when the conditions of 
nearby assets were and were not considered as a predictor. 
We then implemented the proposed methodology on a 
case study in the state of Virginia. The results show that 
in all of the selected asset items, when the conditions of 
nearby assets were included in the modeling, the 
accuracy of condition predictions increased. This 
highlights the interrelation between nearby assets and its 
impact on the condition of individual asset items. With 
potentially increasing the accuracy of deterioration 
models, the results of this study could benefit the 
optimization and scheduling of maintenance activities 
and facilitate planning for an optimum and effective Life 
Cycle Plan (LCP). In this study, we applied the 
methodology on three assets. Similarly, the idea could be 
applied to the other highway asset items with more 

possible interrelations. Furthermore, we considered 
weather, traffic, and maintenance as major contributing 
factors to the degradation of the selected assets. However, 
other factors such as construction quality potentially 
impact the condition and could be taken into account in 
future studies. Another limitation of this study is that we 
performed the feature reduction using a traditional 
approach (correlation matrix). It is suggested that future 
studies utilize other techniques as well.   

References 
[1] ASCE. Infrastructure Report Card, ASCE, Reston, 

VA. 2017. 
[2] Cooksey, S. R., Jeong, D. H. S., & Chae, M. J.  

Asset management assessment model for state 
departments of transportation. Journal of 
Management in Engineering, 27(3), 159-169. 2011. 

[3] Guevara, J., Garvin, M. J., & Ghaffarzadegan, N. 
Capability trap of the US highway system: Policy 
and management implications. Journal of 
Management in Engineering, 33(4), 04017004. 
2017. 

[4] Le, T., Le, C., & David Jeong, H. Lifecycle data 
modeling to support transferring project-oriented 
data to asset-oriented systems in transportation 
projects. Journal of Management in Engineering, 
34(4), 04018024. 2018. 

[5] National Commitment to the Interstate Highway 
System: A Foundation for the Future. National 
Academies Press. Washington DC. 

[6] Zhu, A. X., Lu, G., Liu, J., Qin, C. Z., & Zhou, C. 
Spatial prediction based on Third Law of 
Geography. Annals of GIS, 24(4), 225-240. 2018. 

[7] Abaza, K. A. Empirical Markovian-based models 
for rehabilitated pavement performance used in a 
life cycle analysis approach. Structure and 
Infrastructure Engineering, 13(5), 625-636. 2017. 

[8] Anyala, M., Odoki, J., & Baker, C. Hierarchical 
asphalt pavement deterioration model for climate 
impact studies. International Journal of Pavement 
Engineering, 15(3), 251-266. 2014. 

[9] Halmen, C., Trejo, D., & Folliard, K. Service Life 
of Corroding Galvanized Culverts Embedded in 
Controlled Low-Strength Materials. Journal of 
Materials in Civil Engineering, 20(5), 366-374. doi: 
10.1061/ (ASCE) 0899-1561 (2008) 20:5 (366). 
2008. 

[10] Rasdorf, W. J., Hummer, J. E., Harris, E. A., 
Immaneni, V. P. K., & Yeom, C. Designing an 
efficient nighttime sign inspection procedure to 
ensure motorist safety (No. FHWA/NC/2006-08). 
NCDOT, Raleigh, N.C. 2006. 

[11] Sun, L., Hudson, W. R., & Zhang, Z. Empirical-
mechanistic method based stochastic modeling of 

717



37th International Symposium on Automation and Robotics in Construction (ISARC 2020) 

fatigue damage to predict flexible pavement 
cracking for transportation infrastructure 
management. Journal of Transportation 
Engineering, 129 (2), 109-117. doi: 10.1061 / 
(ASCE) 0733-947X (2003)129: 2 (109). 2003. 

[12] Falls, L. C., Haas, R., & Tighe, S. Asset service
index as integration mechanism for civil
infrastructure. Transportation research record,
1957(1), 1-7. 2006.

[13] Chopra, T., Parida, M., Kwatra, N., & Chopra, P.
Development of Pavement Distress Deterioration
Prediction Models for Urban Road Network Using
Genetic Programming. Advances in Civil
Engineering. 2018.

[14] Gao, L., Aguiar-Moya, J. P., & Zhang, Z. Bayesian
analysis of heterogeneity in modeling of pavement
fatigue cracking. Journal of computing in civil
engineering, 26(1), 37-43. doi: 10.1061/ (ASCE)
CP.1943-5487.0000114. 2012.

[15] Sitzabee, W. E., White, E. D., & Dowling, A. W.
Degradation modeling of polyurea pavement
markings. Public works management & policy,
18(2), 185-199. 2012.

[16] Malyuta, D. A. Analysis of Factors Affecting
Pavement Markings and Pavement Marking
Retroreflectivity in Tennessee Highways.
University of Tennessee at Chattanooga. 2015.

[17] Immaneni, V. P., Hummer, J. E., Rasdorf, W. J.,
Harris, E. A., & Yeom, C. Synthesis of sign
deterioration rates across the United States. Journal
of Transportation Engineering, 135(3), 94-103. doi: 
10.1061 /(ASCE)0733-947X (2009)135:3(94).
2009.

[18] Chimba, D., Emaasit, D., Allen, S., Hurst, B., &
Nelson, M. Factors affecting median cable barrier
crash frequency: new insights. Journal of
Transportation Safety & Security, 6(1), 62-77. 2014.

[19] Forsyth, R. A., Wells, G. K., & Woodstrom, J. H.
Economic impact of pavement subsurface drainage
(No. 1121). 1987.

[20] Ghabchi, R., Zaman, M., Khoury, N., Kazmee, H.,
& Solanki, P. Effect of gradation and source
properties on stability and drainability of aggregate
bases: a laboratory and field study. International
Journal of Pavement Engineering, 14(3), 274-290.
2013.

[21] Al-Mansour, A. I., Sinha, K. C., & Kuczek, T.
Effects of routine maintenance on flexible
pavement condition. Journal of Transportation
Engineering, 120(1), 65-73. 1994.

[22] Coffey, S., & Park, S. Observational study on the
pavement performance effects of shoulder rumble
strip on shoulders. International Journal of
Pavement Research and Technology, 9(4), 255-263.
2016.

[23] Karimzadeh, A., Sabeti, S., Burde, A., Tabkhi, H., 
and Shoghli, O. Spatial-Temporal Deterioration of 
Multiple Highway Assets: A Correlational Study, 
ASCE Construction Research Congress 
(CRC-2020), Tempe, Arizona. 2020.

[24] Virginia   Department   of   Transportation (VDOT). 
Virginia Roads. https://www.virginiaroads.org/. 
2019.

[25] Aksoy, S., & Haralick, R. M. Feature normalization 
and likelihood-based similarity measures for image 
retrieval. Pattern recognition letters, 22(5), 563-
582. 2001

[26] Da Silva, A. S. A., Stosic, B., Menezes, R. S. C., & 
Singh, V. P. Comparison of interpolation methods 
for spatial distribution of monthly precipitation in 
the state of Pernambuco, Brazil. Journal of 
Hydrologic Engineering, 24(3), 04018068. 2018.

[27] Frazier, A. G., Giambelluca, T. W., Diaz, H. F., & 
Needham, H. L. Comparison of geostatistical 
approaches to spatially interpolate month‐year 
rainfall for the Hawaiian Islands. International 
Journal of Climatology. 36(3), 1459-1470. 2016.

[28] Plouffe, C. C., Robertson, C., & Chandrapala, L. 
Comparing interpolation techniques for monthly 
rainfall mapping using multiple evaluation criteria 
and auxiliary data sources: A case study of Sri 
Lanka. Environmental Modeling & Software. 67,
57-71. 2015.

[29] Karimzadeh, A., & Shoghli, O. Predictive Analytics 
for Roadway Maintenance: A Review of Current 
Models, Challenges, and Opportunities. Civil 
Engineering Journal, 6(3), 602-625. 2020.

[30] Yoo, W., Mayberry, R., Bae, S., Singh, K., He, Q. 
P., & Lillard Jr, J. W. A study of effects of 
multicollinearity in the multivariable analysis. 
International Journal of Applied Science and 
Technology, 4(5), 9. 2014.

[31] Bujang, M. A., Sa’at, N., & Bakar, T. M. I. T. A. 
Determination of minimum sample size 
requirement for multiple linear regression and 
analysis of covariance based on experimental and 
non-experimental studies. Epidemiology, 
Biostatistics and Public Health, 14(3). 2017.

[32] Friedman, J., Hastie, T., & Tibshirani, R. The 
elements of statistical learning (Vol. 1): Springer 
series in statistics, New York. 2001.

[33] Wang, Y. A multinomial logistic regression 
modeling approach for anomaly intrusion detection. 
Computers & Security, 24(8), 662-674. 2005.

718

https://www.virginiaroads.org/



