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Abstract –  

Accurate information on workers' behavior is 

important for safety and productivity management 

on construction sites. In recent years, some methods 

for estimating construction workers’ behavior using 

sensing data have been proposed to collect the data 

based on scientific evidence. Due to the limitations of 

previously proposed methods that usually relied on 

expensive devices such as motion capture systems, the 

huge amount of investment on the system installation 

and human resource costs are required. This paper 

proposes a method for estimating workers’ posture 

with Long Short-Term Memory (LSTM) by using 

terminals that have already been introduced to 

construction sites, taking into consideration the 

operational cost and issues in the previous studies. 

Moreover, we also propose and evaluate a data 

augmentation method for utilizing limited training 

data sets. The experiment results for a reinforcing bar 

worker indicated that the proposed method could 

estimate not only the forward-leaning and squatting 

postures with 79% or more F-measure but also the 

number of rebar binding points by the acceleration 

data. Besides, we confirmed that the data 

augmentation method improved the accuracy of 

posture estimation by 5%. 
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1 Introduction 

While the number of labor accidents at construction 

sites in Japan is decreasing, the number of serious 

accidents continues to be higher than in other industries 

[1]. Therefore, it is necessary to take improvement 

measures in consideration of both the organization and 

the technology through a meeting among construction-

related people. Moreover, as construction demand is 

expected to be stabilized in recent years, there is a 

concern that the labor force will be insufficient due to a 

decrease in the number of young employees and the 

aging of skilled technicians. Thus, regarding labor 

productivity as well, it is necessary to formulate efficient 

construction plans by saving labor costs while also 

considering the safety of workers [2]. 

In recent years, for managing construction plans that 

consider safety and efficiency at construction sites, the 

introduction of construction support systems that have 

the function of visualizing the situation of workers and 

equipment on the site from past accumulated data has 

been promoted [3]. At such time, it is important to collect 

the condition data of the workers by using informative 

equipment such as sensors and cameras and convert them 

into information that is practical for site management 

such as the behavior history of the workers.  

Video data acquired by RGB cameras and sensing 

data from wearable terminals are used to gather behavior 

data of construction workers. In this study, we employ a 

method using sensing data that enables data acquisition 

in consideration of the obstructions on the site and 

personal privacy and estimates the workers’ behavior [4]. 

Also, it has been reported that supervised learning can be 

used for behavioral estimation based on individual 

characteristics.[5]. By applying these methods to workers 

at construction sites, the estimation of tools used by 

workers [6] and the work estimation of reinforcing bar 

workers [7] have been performed. Furthermore, 

smartphones with built-in inertial sensors or motion 

capture systems that attached multiple inertial sensors to 

the joints of the workers were also proposed to estimate 

their behavior [8]. However, these equipment costs are 

not easily achievable and besides, it is also essential to 

prepare the human resources for security and 

maintenance of these devices. Therefore, it is necessary 

to consider constraints such as project size and budget 

when applying it to the field. 

In this study, thus, we propose a construction worker 

behavior estimation system that considers the limitations 

when introducing it to a construction site by using 

monitoring devices that have already been used at the 

construction sites. Our method considers constraints such 

as sampling frequency when collecting data by adopting 

a model corresponding to time series data as a behavior 

estimation algorithm. Besides, we propose a data 
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augmentation method because it is labor-intensive and 

costly in order to prepare a high amount of training data 

for the behavior estimation model. Finally, we verify the 

posture estimation accuracy of the proposed system by 

conducting a verification experiment using the sensing 

data of the workers acquired at the actual construction 

site. 

2  Literature review 

Human behavior estimation technology has gained 

attention in recent years such as in medicine and 

engineering scopes [9]. Data collection for human 

behavior estimation can be separated into two types: a 

vision-based method, in which video devices are used to 

collect data from a target person at a distance, and a 

sensor-based method, which utilizes a device with a 

built-in sensor directly attached to the target person. In 

this section, we summarize the applications of each 

method that have been implemented on construction sites. 

2.1 Vision-based methods 

Video data is used in various fields because it is easy 

for humans to intuitively understand and obtain useful 

information from the images by looking at them directly 

[10]. In recent years, due to cost reduction, downsizing, 

and high resolution of video equipment, it has been 

introduced to the construction sites as well, and research 

on data collection of worker status and construction 

machines’ positions have been conducted [11]. In 

particular, recent research has been carried out to apply 

computer vision technology using deep learning. Some 

of the studies were to automatically identify which task a 

worker is engaged in [12] and to verify the appropriate 

utilization of safety devices such as safety belts [13]. In 

those studies [12-13], the practitioners use cameras to 

track the workers. However, hiring extra staff to work on 

these tasks increases the cost of the project.  A fixed-point 

camera-based method [14] has also been proposed. 

However, on the construction sites where workers and 

equipment are densely packed, the target workers may be 

hidden behind the equipment and the data cannot be 

continuously collected. 

In recent years, a method using a depth camera for 

behavior estimation[15] has also been reported. Depth 

information makes it possible to correctly reproduce the 

human posture that occurs in the real space. However, the 

depth camera cannot accurately obtain depth information 

of distant objects and may face some difficulties when 

some objects are exposed to sunlight.   

2.2 Sensor-based methods 

The sensor-based method is proposed to eliminate the 

weaknesses of behavior estimation using video data. The 

posture and motion can be estimated by attaching a 

terminal with built-in inertial or biometric sensors to the 

human body and performing the calculation on the 

sensing data. This method can compensate for the 

shortcomings of vision-based method because it can 

continuously collect data without being affected by 

surrounding obstacles, light sources, and sight distance 

[4]. Also, sensor-based method can collect data in 

consideration of the privacy of the subject [4]. Behavior 

estimation using sensing data has been applied in a 

variety of fields, as the recent spread of micro-electro-

mechanical-systems (MEMS) technology made it 

possible to easily develop behavior estimation systems 

[9]. In the construction sector, a motion capture system 

using multiple inertial sensors attached to human body to 

prevent Work-Related Musculoskeletal Disorders 

(WRMDs) was proposed at a construction site, and 

verification experiments have shown the effectiveness of 

the warning function [8]. However, the motion capture 

systems are hardly affordable and attaching many sensors 

to the human body is intrusive. With respect to 

productivity management, smartphone-based methods 

have been proposed to estimate tools handled by workers 

[6] and work estimation for rebar workers [7]. It is cost-

effective to use personal smartphones for data collection 

which are ubiquitous these days. Nevertheless, the recent 

diversification of smartphone models and specifications 

leads to an increase in the burden for system 

administrators. Thus low-cost, nonintrusive and uniform 

equipment is suitable for installation to construction sites. 

2.3 Objective of this research 

Considering the constraint for installing the 

equipment as shown through the literature review, we 

adopt the monitoring devices for the workers that have 

already been installed to construction sites. The devices 

meet the requirements of low-cost, nonintrusive and 

uniform. Then, we propose a system for estimating 

workers’ posture using a machine learning-based 

estimation algorithm and a data augmentation method 

corresponding to the sensing devices. 

3 Proposed method 

3.1 Overview of the proposed method 

In this study, we propose a behavior estimation 

method for construction workers that uses a helmet-

mounted terminal, which has already been installed on 

actual construction sites. Figure 1 shows an overview of 

the proposed system. The terminal with a built-in 

composite sensor provides sensing data including 

acceleration and positional information obtained by 

positioning system every second. These data are stored in 
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the terminal's memory. The stored data are transferred to 

the database in the laptop by connecting the terminals to 

the equipment installed at the site. Then, we construct a 

system to estimate the postural state of construction 

workers from the stored sensing data by utilizing a neural 

network model that is trained using past behavior data of 

workers. 

 

Figure 1. Overview of the proposed system 

3.2 Data Acquisition by terminals 

We use the "Construction Site Operation Monitoring 

System [16]" developed by Hitachi, Ltd. as a terminal for 

acquiring sensing data. The positional information is 

provided by Beacon or Global Positioning System (GPS) 

and sensing data, including triaxial acceleration, 

barometric pressure, and temperature are stored in the 

terminal's internal memory every second. The stored data 

are transferred to a server PC by connecting to the cradle 

installed on the site at the end of workday. The collected 

data are used to confirm the walking path of each worker 

verifying whether or not there are dangerous movements 

through the aforementioned system. 

The monitoring system has functions such as detection 

of approaching the dangerous area and falling, and 

calculation of worker's posture based on the triaxial 

acceleration values obtained every second, but it does not 

have a function to estimate worker's behavior considering 

the change of worker's condition over time. Therefore, it 

is not possible to use the results obtained from the 

estimation of worker's behavior for productivity analysis 

or safety management measures. 

3.3 Behavior estimation using sensing data 

3.3.1 Data processing flow 

Focusing on the fact that the workers’ behavior 

estimation function is not implemented in the monitoring 

system, the proposed system employs a posture 

estimation method based on acceleration data and its 

time-series. Figure 2 shows the flow of the behavior 

estimation process in the proposed system. After the 

processing starts, input data for estimation are read from 

workers lists and sensing data registered in the database. 

In the preprocessing phase, acceleration data are 

extracted and formatted to suit the input of estimation 

model. Then the posture state of the target worker is 

estimated and processed as the posture data of the worker 

at that time by inputting the extracted data into the 

estimation model inside the system. 

 

Figure 2. Data processing flow in the proposed 

system 

3.3.2 Reading data and prerprocessing 

The structure of the dataset used in this method for 

posture estimation and training of the estimation model 

is shown in equation (1). After reading sensing data from 

the database module, the time-series data is converted to 

the right side of the matrix in the equation (1) . We 

assume that the worker's condition at time 𝑡  is 

determined from the worker's condition before time 𝑡 and 

the acceleration values around time 𝑡. Then, we define 

the dataset as a mapping between the posture label 𝑃𝑡 at 

time 𝑡 and the acceleration values around time 𝑡. 

     𝑃𝑡 ↔

[
 
 
 
 
𝑥𝑡−𝑛

⋮
𝑦𝑡−𝑛

⋮
𝑧𝑡−𝑛

⋮
𝑥𝑡 𝑦𝑡 𝑧𝑡

⋮
𝑥𝑡+𝑛

⋮
𝑦𝑡+𝑛

⋮
𝑧𝑡+𝑛]

 
 
 
 

 (1) 

where 

𝑃𝑡: Posture label at time 𝑡 

𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡: Acceleration value of each axis at time 𝑡 

2𝑛 + 1: Time window width 

3.3.3 Posture estimation with LSTM 

In the posture estimation phase, a feature and 

classification algorithm should be selected in 

consideration of the terminals used for sensing and the 
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behavior characteristics of individuals [4]. We 

implement a neural network model that automatically 

extracts and learns features from the input training data 

to perform posture estimation for various occupations 

and individual differences in this study. We also use 

Long Short-Term Memory (LSTM), which has been 

reported to have a high performance in predicting time 

series data among neural network models [17]. The 

structure of the LSTM employed in the system is shown 

in Figure 3. LSTM is a kind of recurrent neural network, 

which replaces the hidden layer in the recurrent neural 

network (RNN) with a module called LSTM blocks. 

LSTM addresses the gradient vanishing problem, where 

the value of the hidden layer is decayed and lost, which 

is inherited by the next time layer by adopting the LSTM 

block. It is known that LSTM performs better than RNN 

for the problem of predicting time series data with long-

term dependency [18]. 

 

Figure 3. The structure of LSTM network for 

behavior estimation 

3.3.4 Data augmentation 

The data labeling should be done referring to data 

other than sensing data, such as video data, as shown in 

Figure 4, in creating datasets for behavior estimation. In 

the labeling of time-series behavior data, video data are 

commonly used to label behavior conditions [19]. On the 

other hand, this method is costly and labor-intensive, and 

inadvertent mislabeling may occur. In order to eliminate 

these tasks, previous works sharing human behavior data 

focusing on basic actions in daily life have been done 

[20]. Nevertheless, studies providing behavior data on 

specific workers such as construction workers have yet 

not been made. Therefore, we implement a data 

augmentation method for sensing data and propose a 

method to utilize limited data collected in the field as 

training data. 

The conceptual diagram of the data augmentation 

proposed in this study is shown in Figure 5. While most 

of the studies on action recognition using inertial sensors 

use a sampling frequency of 25 Hz or higher, the 

terminals used in the proposed system have a low 

sampling frequency of 1 Hz. Taking this condition into 

consideration, the proposed method restores the 

acceleration waveform using the interpolation formula 

for the data discretized by sensing. After that, the number 

of data sets is artificially increased by cutting out data 

from the interpolated acceleration waveform at equal 

intervals. By using this method, it is possible to add 

diversity to the training data while maintaining the 

correspondence between time-series information and 

posture labels, which can be used to generate models with 

high generalization performance. Indeed, our low-

frequency sampling system and this method are 

inappropriate for instantaneous motion classification 

problems such as gesture recognition. However, we 

adopt this method because of the postures targeted in this 

study record more stable data in the long term than 

gestures. 

 

Figure 4. Conceptual diagram of data labeling 

 

Figure 5. Conceptual diagram of data 

augmentation for sensing data 

4 Verification of the proposed system 

We evaluated the accuracy of posture estimation, 

verified the effectiveness of data augmentation, and 

estimated the number of binding points of rebar using 

acceleration data for a rebar worker at an actual 

construction site. 
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4.1 Experiment 

4.1.1 Target work setting and data collection 

A reinforcing bar worker (male, in his 50s, 37 years 

of experience) who works on binding rebars of floor slabs 

was asked to wear a terminal and recorded the working 

state together with the sensing by the terminal. In the 

work of binding the reinforcing bars of the floor slab, 

because the transition from the standing state to the 

forward-leaning posture and the squatting posture 

occurred repeatedly, the burden on the lumbar region of 

the worker was large, which caused a disorder of the 

musculoskeletal system. Because our system can be used 

for planning preventive measures against 

musculoskeletal disorders by quantifying and estimating 

the posture state. This criterion was also utilized for 

verification.  

The rebar binding work is a typical repetitive work of 

moving to the rebar binding point, preparing a binding 

wire at a hand, transitioning to the forward-leaning or 

squatting posture, binding rebar, and moving to the next 

binding point. Figure 6 shows the flow of the work for 

binding the reinforcing bars of the floor slab. Unevenness 

and excessive reduction in repetitive work times are 

important information for ensuring an appropriate 

working environment for workers.  

In this experiment, forward-leaning and squatting 

postures for a long time would be counted as rebar 

binding. The relationship between the posture and the 

rebar binding work of the floor slab is defined as shown 

in Figure 7. The number of rebar binding points is 

estimated based on that. Subsequently, by counting the 

number of binding points visually based on the actual 

video data and comparing the estimation results with the 

actual number, we consider the possibility of applying 

the proposed system to estimate the number of binding 

points of the reinforcing bars. 

4.1.2 Datasets preparation 

After acquiring the terminal record, the correct 

posture labels (hereinafter called ground truth label) were 

extracted from the video in every second. Then, the 

sensing data and correct labels were associated with each 

other to create data sets. Typically, the time window 

width is set to have a 50% overlap with respect to the 

sampling frequency [6], but in this experiment, given the 

low sampling frequency, we set it to 5 seconds with an 

80% overlap. Then, the acceleration data for 5 seconds 

before and after was associated with the posture label 𝑃𝑡 

at time 𝑡 . Three types of postures, standing, leaning-

forward, and squatting, were extracted as the static state 

from “The Nagamachi Work Posture Classification [21]”, 

which defines postures from the ergonomics point of 

view based on the magnitude of the load applied to the 

lumbar region of the human body in each work posture. 

For dynamic states, we set two categories: transitioning 

of posture states such as forward-leaning posture from 

standing posture and walking. Table 1 summarizes the 

aforementioned posture categories and their definitions 

in this experiment. 

 

Figure 6. The workflow for binding the 

reinforcing bars of the floor slab 

 

Figure 7. The flow of the estimation for the 

number of rebar binding points 
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Table 1. Posture classification of workers in the 

verification experiment 

State Posture Definition 

Static  

state 

Standing 
Upright posture with 

knees extended 

Forward-

leaning 

Posture with the waist 

bent by 30° or more  

with knees extended 

Squatting 
Sitting on the 

heels posture 

Dynamic 

state 

Transitioning 
State during  

changing posture  

Walking 
State of advancing  

step by step 

4.1.3 Estimation of accuracy indicators 

After the data sets were created, they were divided 

into training data and test data. The estimation model was 

trained based on the training data, and the estimation 

accuracy was calculated based on the test data. Table 2 

shows the breakdown of these data in the verification 

experiments. We allocated the correct labels and 

estimation results to the confusion matrix shown in Table 

3 and calculated the precision, recall, F-measure, and 

accuracy from Equation (2) to Equation (5) to evaluate 

the accuracy of the posture estimation.  

Table 2. The breakdown of datasets used for accuracy 

verification 

Posture Training data Test data 

Standing 160 16 

Forward-leaning 607 40 

Squatting 502 46 

Transitioning 344 53 

Walking 106 6 

Total 1719 161 

Table 3. Confusion matrix in two-class classification 

 
Estimation result 

Positive Negative 

G
ro

u
n

d
 

tr
u

th
 Positive 

True Positive 

(TP) 

False Negative 

(FN) 

Negative 
False Positive 

(FP) 

True Negative 

(TN) 

 

 

     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

   

     𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

   

     𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

   

     𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (5) 

4.2 Results 

4.2.1 Evaluation of data augmentation 

Table 4 shows the estimation results with the data 

augmentation ratio as a comparison when generating the 

estimation model. For the data augmentation ratio, 1x 

(without data augmentation), 2x, 4x, and 8x values were 

used, while linear interpolation was also implemented 

with the waveforms for the augmentation. The results in 

Table 4 indicated that the F-measures in each posture, 

increased and decreased as the ratio of the data 

augmentation was increased, while the accuracy tended 

to increase as the ratio was increased. It was confirmed 

that forward-leaning and squatting postures could be 

estimated with the F-measure of 79% or higher for all 

data augmentation ratios.  

Table 4. The estimation accuracy at each data 

augmentation ratio 

 Posture 
Data augmentation ratio 

1x 2x 4x 8x 

F
-m

ea
su

re
 Standing 0.73 0.60 0.62 0.60 

Forward-leaning 0.82 0.88 0.85 0.87 

Squatting 0.80 0.79 0.82 0.83 

Transitioning 0.41 0.51 0.60 0.65 

Walking 0.40 0.14 0.33 0.22 

Accuracy 0.68 0.70 0.73 0.73 

4.2.2 Evaluation in time-series 

Figure 8 shows a time-series evaluation of the ground 

truth labels and the estimation results at the data 

augmentation ratio of 8x, which recorded the highest 

accuracy in the estimation results as shown in Table 4. It 

was confirmed that the accuracy increased when the same 

posture continued for a long time. On the other hand, the 

accuracy tended to be lower if the posture changed 

frequently in a short period. 
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Figure 8. Time series evaluation of posture 

estimation 

4.2.3 Evaluation of rebar binding points 

estimation 

Table 5 shows the results of the estimation of the 

rebar binding points based on the results of the estimation 

flow of the binding points shown in Figure 7. The results 

of the posture estimation are shown in Figure 8. The 

condition that the rebar is bound while the forward-

leaning or squatting posture was continued for more than 

5 seconds was set. The number of binding points, the total 

time required for rebar binding, and the time spent on 

binding each point were also calculated. 

Table 5. Evaluation of rebar binding points estimation 

Input data for 

estimation 

Posture 

estimation 

Ground 

truth posture 

The number of 

binding points 
6 8 

Total binding 

time (sec) 
72.0 83.0 

Binding time per 

point (sec) 
12.0 10.4 

4.3 Discussions 

The results in Table 4 show that the proposed system 

can estimate the worker's posture correctly up to 73% 

accuracy based on the triaxial acceleration. The accuracy 

of the proposed system was increased from 68% to 73% 

by using the data augmentation method. It was also 

confirmed that the F-measure of 79% or more was able 

to be achieved for the forward-leaning and squatting 

postures. Their accuracies are higher than the other 

gestures in every data augmentation ratio. This is because 

the LSTM network learned the change in direction of the 

gravitational acceleration caused by the tilt of the 

worker’s head as effective feature for posture estimation. 

In the posture classification based on the influence on the 

musculoskeletal system [21], forward-leaning and 

squatting postures are set as the level of 5th and 6th out 

of 10th respectively. Therefore, calculating the 

cumulative frequency of these levels enable 

improvement of working environment using quantitative 

indicators. For further improvement of accuracy, we need 

to use positional information that was not used in this 

experiment and add small devices that consider 

intrusiveness of wearing. According to the results shown 

in Table 5, the number of rebar binding points were 

estimated, and six of the eight points were correctly 

estimated from the posture estimation results. By 

comparing these estimated results with the quantities of 

components extracted from product models such as 

Building Information Modeling (BIM), site stakeholders 

will be able to understand the progress quantitatively. 

5 Conclusions 

This paper proposed a system for estimating workers' 

posture using a helmet-mounted terminal, which is 

already in use at a construction site to collect worker's 

behavior data. From the results of posture estimation 

using triaxial acceleration data acquired at the terminal, 

it was confirmed that five different postures could be 

estimated with an accuracy of up to 73% by using LSTM 

and the data augmentation method. In particular, the 

system was able to detect forward-leaning and squatting 

postures with high accuracy, which indicates the system 

can be used to improve the ergonomic work environment, 

such as quantifying the load on the body, by calculating 

the cumulative time of those postures. It was also 

confirmed that the results of the posture estimation can 

be used to predict the number of rebar binding points. 

Future work includes collecting data to expand the 

range of jobs and postures to be estimated and improving 

the accuracy of posture estimation by linking with other 

types of sensing data such as positional information. We 

also aim to develop a management system that links 

behavior estimation with geometric and attribute 

information of the BIM model. 
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