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Abstract -

Fatal accidents occur at construction sites. Incidents in-
volving dangerous situations but not reaching the category
of fatal accidents also take place. When an incident occurs,
workers typically generate an on-site physiological reaction.
In this paper, an automatic detection system is proposed to
automatically identify incidents by measuring biological sig-
nals related to emotions of on-site workers, such as heart rate
and the masseter muscle. In the first stage of this study, some
virtual reality (VR) video-based experiments were conducted
with some wearable sensors to confirm whether the afore-
mentioned biological signals are suitable to detect incidents.
While watching the VR videos, biological signals of the sub-
jects were measured using different wearable sensors. The
experimental results corroborated that the proposed sensing
method is suitable to detect construction-site incidents.

Keywords -
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1 Introduction

According to a survey by the Ministry of Health, Labour
and Welfare, there has been a slight increase in the number
of occupational accidents in Japan. In particular, more fa-
tal workplace accidents occur in the construction industry
than in other industries [1]. The reasons for this are the
shortage of workers caused by the decline in the popula-
tion due to the low birth rate, and the aging of the on-site
workers. Therefore, the need to establish a safer working
environment is becoming urgent. To this end, we need to
detect an “incident”, i.e., a situation in which there is a risk
of an accident or other danger, and conduct an analysis of
the cause of the problem.

There are two main methods for detecting incidents, as
shown in Figure 1: detection from the external environ-
ment through devices such as a camera, and detection of
hazards perceived by field workers. For the latter method,
biological signals related to physiological responses are
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Observing from the external environment
with cameras etc...,
detecting and recording the incidents that occur.

Detecting incidents
from workers'
biological signals

Figure 1. Two main methods for detecting incidents.

often used to detect and register dangerous situations per-
ceived by the workers at the site. In this study, this method
was used because we finally would visualize the hazards
perceived by the field workers not only for incident de-
tection but also for removing the mental burden of the
workers in the future.

Previous studies related to ours reported a construction-
site incident detection method based on the heart rate [2].
In this study, the subjects’ heart rate was measured us-
ing a chest-belt smartwatch, and incidents were detected
using the measured heart-rate variability. There are also
previous studies for traffic incidents, where the heart rate
of drivers is used to detect incidents[3][4]. The heart
rate varies according to the activity of sympathetic and
parasympathetic nerves [5]. This is related to a person’s
mental state. Remarkably, the sympathetic nervous sys-
tem is dominant during tension, resulting in a higher heart
rate. In other words, the heart rate is higher when the
user feels in danger. However, it is generally known that
the heart rate increases not only during mental tension
but also during exercise[6]. At construction sites, workers
often carry heavy materials and perform other tasks that
require strenuous exercises. Therefore, the problem of un-
certainty about whether an elevated heart rate is caused
by exercise or worker ~ s unsafety feelings is expected to
occur.
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In this study, to solve the aforementioned problems, we
aimed to detect incidents at construction sites by using var-
ious biological signals related to physiological responses
in addition to heart rate. To achieve this, we created virtual
reality (VR) videos that simulated incidents that can occur
at construction sites. We also conducted experiments us-
ing the VR videos. Subjects were asked to watch the VR
videos while their physiological responses were measured
in terms of heart rate and electromyography (EMG) of the
masseter muscle. The detectability of construction-site
incidents using these biological signals was verified.

2 Proposed Method
2.1 Biological Signals Used

The final goal of this study was to detect situations where
workers feel in danger in the field through a wearable
sensor. The sensor measures their biological responses
and correlates them with the work content. To achieve
this, it is necessary to select the biological signals for
detecting the scene where a worker feels in danger. Typical
biological signals related to human emotions include the
heart rate and the masseter muscle.

The heart rate fluctuates according to sympathetic and
parasympathetic, i.e., autonomous, nervous activity [5].
This activity is related to the human psyche and is asso-
ciated with a higher heart rate owing to the dominance of
sympathetic nerves during tension. In other words, it is
believed that the heart rate increases when the worker is in
a tense state due to potential danger to himself.

Facial muscles, such as the masseter muscle, are known
to be related to human emotions [7]. Therefore, it is
possible to estimate workers’ emotions toward danger by
measuring the activity of the masseter muscle.

Overall, heart rate and EMG of the masseter mus-
cle can constitute physiological indicators to detect sit-
uations where a worker feels danger. In this study, we
used these indicators as candidates for the biological re-
sponse. We conducted indoor VR experiments to test
whether these candidate biological signals can be used to
detect construction-site incidents.

2.2 Detection Method

In this study, heart rate and EMG of the masseter muscle
were used as features, and a Gaussian naive Bayes classifier
was used to detect construction-site incidents, as shown in
Figure 2.

As in previous studies, we used the average heart rate &
atagiven time ¢ as a feature of heart rate [2]. Given that the
maximum amplitude is generally used for the evaluation
of EMG, the masseter EMG feature in our study was the
maximum amplitude f ata given time . The feature vector
x used in this study is expressed as follows:

Input Heart rate Masseter muscle EMG
Gaussian Naive Bayes classifier
Output Incident No incident

Figure 2. Outline of the proposed method.

x= (). (1)

Using this x as inputs, a Gaussian naive Bayes classi-
fier, which is often employed to classify time series data
such as those generated in this study, was used to deter-
mine whether an incident occurs at a construction site or
not. A Gaussian naive Bayes classifier assumes the inde-
pendence of each feature and simultaneously estimates the
probability from each feature. The label with the high-
est probability constitutes the output. The classifier is
expressed according to the following formula:

argmax[p(y[x)], 2)

D
argmax[p(y) [ | p(xaly)],
d=1

<>

3)

where § is the output label, p(y|x) is the posterior prob-
ability of correct label y given the input vector x, p(y)
is the prior probability of correct label y, p(xg4|y) is the
likelihood, x4 is the feature in the d-th dimension, and D
is the dimension of x.

To use the classifier, we need a unique parameter for
each probability distribution. The optimal value of the
eigen-parameters is found by maximum likelihood esti-
mation, with the feature matrix of the training data as X
and the corresponding correct label vector as y. The max-
imum likelihood function L(X,y) is expressed as follows:

L(X.y) “4)

N
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where N is the number of training data, y, is the correct
label in the n-th training data, x,, is the feature vector in
the n-th training data, and x,4 is the feature in the d-th
dimension of the n-th data.
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A Gaussian naive Bayes classifier assumes that the like-
lihood p(x|y) follows a Gaussian distribution and finds
the optimal value of the intrinsic parameters such that the
likelihood function L(X,y) is maximized for each event.
The Gaussian distribution is represented by the following
equation:

x—y)
202 7

exp(— 6)

pxly) = !
V2no?
where o2 is the distribution of the feature x when the cor-
rect label is y and u is the mean of the feature x when
the correct label is y. A Gaussian naive Bayes classi-
fier estimates the correct label from the input features by
computing the above equation.
In this study, the aforementioned methods were used to
classify whether incidents occur at a construction site.

3 VR Experience

3.1 Outline of Experience

In this study, we conducted experiments in which sub-
jects watched a simulated environment of a construction
site through VR videos and simultaneously obtained bi-
ological signals from a wearable sensor. Subjects sat in
a designated position in the laboratory, wore a wearable
sensor for biometric measurements, and watched a VR
video. To understand which scenes subjects felt as dan-
gerous, we gave them a controller and instructed them to
press the button on the controller when they felt a situation
as dangerous; we recorded the time when they pressed the
button. This experiment was conducted with the approval
of the Ethics Committee of the University of Tokyo.

3.2 VRyvideos

In the construction industry, personal injuries involv-
ing contact between workers and construction equipment
or machines such as automobiles are very common [8].
Therefore, in this study, we prepared VR videos of inci-
dent scenes where a subject and an excavator are likely to
come into contact. Specifically, we prepared the following
eight videos.

» Two types of incident scenes in which a hydraulic ex-
cavator moves backwards unaware of the presence
of a worker and almost comes into contact with
the worker, changing the stopping position (long-
distance backward and short-distance backward)

* Two types of incident scenes where a hydraulic ex-
cavator turns unaware of the presence of a worker
and the tip of the bucket almost comes into contact
with the worker at different distances (long-distance
turning and short-distance turning)
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Figure 3. Example of VR image.

* One type of non-accident scene where a hydraulic
excavator waits at a long enough distance from a
worker (standby)

* One type of non-accident scene where a hydraulic
excavator turns in the opposite direction with respect
to a worker (non-accidental turning)

* One type of non-accident scene where a hydraulic
excavator moves forward and away from a worker
(forward)

* One type of non-accident scene where a hydraulic
excavator crosses at a long enough distance from a
worker (crossing)

In addition, we prepared videos so that the subject could
see papers near the subject’s hand, simulating that the
subject is working at a site while looking at papers such as
instructions. The subjects were instructed in advance to
look at the papers before them and to pay attention to the
construction machines in front of them, as if they were in a
construction site. An example of such prepared VR images
is shown in Figure 3. These VR images were filmed at
the Public Works Research Institute using Ricoh Theta V,
operated by Hitachi Construction Machinery ZAXIS120.

3.3 Devices

The wearable sensors used in this experiment are shown
in Figure 4. The S&ME DL-310 was used to measure the
heart rate, as shown in Figure 4a, and the S&M DL-140
was used to obtain the EMG, as shown in Figure 4b. The
S&ME’s DL-310 amplifies the R wave of the cardiac signal
detected by the sensor with a filter amplifier, and outputs
this pulse. EMG of the masseter muscle was measured
by the S&M’s DL-140 with electrodes attached to the
temporal area of the face. The biological signals acquired
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(b) S&ME DL-140

(c) S&ME DL-3100

Figure 4. Sensors employed in the experiments.

from these sensors were recorded in an S&ME data logger
(DL-3100), as shown in Figure 4c. This S&ME DL-3100
has a sampling frequency of 1000 Hz and 16-bit A/D
conversion resolution and can store measurement data in
its on-board memory.

Vive Cosmos was used to present the VR videos. This
head-mounted display is also equipped with headphones;
thus, subjects could hear the sound recorded at the time of
filming and watch the video.

3.4 Biological Signals Processing

After applying a bandpass filter in the frequency range
from 0.16 to 500 Hz to the cardiac telegraphic signal in
the amplifier section, the biometric information was trans-
mitted to the receiver and recorded in the device. Simulta-
neously, a pulse waveform synchronized with the R wave
was generated in the amplifier section and was recorded in
the biometric device concurrently with the cardiac signal.
Given that the synchronized pulse rises at the time position
of the R wave, the R-R interval was calculated from the
time position of the rise of the pulse, and the heart rate was
calculated from the inverse of the pulse. The time at the
midpoint between consecutive R waves was used to record
the heart rate.

In this study, the root mean square (RMS) method was
used, which is commonly used for analyzing an EMG of
the masseter muscle. Considering the frequency range of
EMGs in previous studies, a 5-Hz high-pass filter was used
to process the EMGs [9]. Given that humans usually chew
in a range from 0.1 seconds to several seconds when they
chew, the frame length in this study was set to 100 ms and
the interval between frames was set to 1 ms. Denoting
the value of RMS at sample point n as S(), we obtain the
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(b) EMG of the masseter muscle in subject A.

Figure 5. Biological signals of subject A.

following equation:

S(n) = )

where N is the frame length and f(n+i) is the signal of the
masseter muscle at sample point n+i.

3.5 Result

Three male students in their twenties were the subjects
of this study.

As an example of experimental results, the variations
of heart rate and EMG of the masseter muscle for subject
A while he was watching the short-distance turning VR
video are shown in Figure5. Figure5a shows the heart rate
of subject A. The horizontal axis represents the time of the
VR video and the vertical axis represents the heart rate.
Figure5b shows the variation of the EMG of the masseter
muscle for subject A. The horizontal axis shows the time
of the VR video and the vertical axis shows the amplitude
variation of the EMG of the masseter muscle. The area
in red in both Figure5a and Figure5b is the interval of the
incident. Figure5 shows that the heart rate ranged from 73
to 86 bpm during the incident, and there was only a slight
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difference from the time before the incident occurred. In
contrast, the amplitude of the EMG of the masseter muscle
reached up to 0.38 mV, which is approximately twice as
large as before the incident occurred. This suggests the
possibility of detecting incidents from the EMG of the
masseter muscle.

In this study, among the experimental data of 3 subjects
watching 8 VR videos, 3 subjects watching 4 VR videos
(short-distance backward, short-distance turning, standby,
and crossing) were used as training data, and 3 subjects
watching the remaining 4 videos (long-distance backward,
long-distance turning, forward, and no-accident turning)
were used as evaluation data. Correct labels were as-
signed for the experimental data as incidents at the time of
the simulated incident in the VR video and no incidents
otherwise.

The detection of construction-site incidents by the pro-
posed method was evaluated using accuracy and recall.
Accuracy was calculated by comparing the estimation re-
sults of the proposed method with the correct labels of the
test data and dividing the number of correct answers by
the total number of test data. Thus, it provides the per-
centage of correct estimation results. Recall is calculated
by dividing the number of test data correctly detected as
incidents by the proposed method by the number of test
data actually labeled as incidents. Thus, it indicates the
completeness of the incident detection. The equations for
accuracy A and recall R are as follows:

DC

A= I ®)
DY

R = —, )
Dy

where D€ is the total number of correct data, D? is the
total number of evaluated data, DIC is the number of correct
data detected as incidents, and D,T is the number of data
labeled as incidents.

The accuracy and recall of the proposed method are
shown in Table 1. In addition, for comparison, the ac-
curacy and recall obtained by the method of estimating
only the heart rate as a feature are also shown in Table 1.
Accuracy was 0.48 for the proposed method and 0.87 for
the heart-rate-only method. Therefore, the accuracy of the
heart-rate-only method was higher. By contrast, recall was
0.57 for the proposed method and O for the heart-rate-only

Table 1. Accuracy and recall of the proposed method and
heart-rate-only method

Method Accuracy  Recall
Proposed Method 0.48 0.57
Heart-Rate-Only 0.87 0
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method. Therefore, the recall of the proposed method was
higher. The purpose of this study was to detect incidents,
and it is important to detect incidents comprehensively for
achieving a safe construction-site environment. Therefore,
it is desirable to have a method with high recall and accu-
racy. Given that the recall of the heart-rate-only method
is 0, it is assumed, according to such method, that no inci-
dents were detected at all. The proposed method is more
effective than the heart-rate-only method because the re-
call is higher and more comprehensive, even though the
accuracy of the proposed method is lower than that of the
heart-rate-only method. The reason why we could not de-
tect an incident using the heart-rate-only method in these
environments may be because heart rate responds after a
short period of time after an incident occurs. Generally,
the heart rate is known to respond about 10 to 20 seconds
after an incident occurs, but in the VR video used in these
experiments, the video ended within 10 seconds after the
incident occurred. It is thought that we could not detect
incidents using the heart-rate-only method. In the future,
we will consider creating a VR movie with more than 20
seconds left after an incident and using it for experiments.

4 Conclusion

In this study, a method for detecting construction-site
incidents through a Gaussian naive Bayesian classifier us-
ing heart rate and masseter EMG as features was devel-
oped. Indoor experiments in which subjects experienced
the simulated environment of a construction site through
VR videos were conducted to obtain biological signals.
The performance of the proposed method was evaluated
using the data obtained from the experiments. A compar-
ison between the proposed method and a heart-rate-only
method confirmed that the proposed method was more
effective in detecting incidents comprehensively. In the
future, we will aim to establish a method for detecting
incidents in which workers and construction machines are
close to come into contact with each other through verifi-
cation of experiments using VR videos.
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