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Abstract – 

Visual facility inspections performed manually 

are tasks that can be automated. Segmentation of 

facility image data is one of the automated methods of 

identifying problems in facilities. However, the 

machine learning methodology that is mainly used to 

train the segmentation model requires a large amount 

of training dataset. Preparing training dataset 

accompanies laborious manual labeling. To address 

this issue, we present a new method for generating 

synthetic data that do not require manual labeling. 

The method is to create photograph-style images from 

the BIM images; a generative adversarial network 

called CycleGAN is used to enable style transfer 

between the two different domains.  
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1 Introduction 

Facility management aims to effectively operate the 

facility for a long period of time. Whether the facility is 

functioning can be understood by comparing the ideal 

state and the current state. Recent advances in imaging 

devices have caused image data to be widely used to 

monitor the current state of facilities. Images show the 

appearance of the facilities so that people can understand 

their condition. However, in a large-scale infrastructure, 

it takes time for a person to check images or videos. 

Therefore, it is necessary to automatically extract 

valuable information that provides the current state from 

the image. Segmentation extracts information such as 

spatial context [[1], [2]] and structure installation [3] 

from the image, enabling the identification of the current 

state of the facility on behalf of the human.  

There is a difficulty when carrying out the 

segmentation. The difficulty is that large-scale training 

dataset is needed to train machine-learning models for 

segmentation (such as supervised-learning). Preparing a 

training dataset involves collecting and annotating 

multiple images. While image acquisition is effortless, 

annotating operation requires a lot of time and effort [4]. 

To deal with this, we propose a novel method for 

generating synthetic data similar to photograph using 

Building Information Model (BIM) designed during 

infrastructure construction.  

BIM is the digital twin of the infrastructure, 

representing geometry, material and time information of 

the construction entities, in electronic form. Therefore, 

the images captured from BIM are similar to the 

photograph, but not completely identical.  It is our 

proposal to create synthetic data that can be used as 

training data in segmentation models by applying the 

style of the photograph to the image captured in the BIM. 

Style transfer between real-world domain and BIM 

domain is performed using Cycle-consistent adversary 

networks (CycleGAN[5]). An evaluation of whether the 

generated virtual data is suitable for scene understanding 

will be conducted in further research. The framework of 

the research is shown in Figure 1.  

Figure 1. Research framework 

2 Related work 

In the field of construction, vision-based analysis has 

been used as an important instrument for understanding 

the situation. In particular, vision-based analysis using 

deep learning has recently been actively conducted due 

to the performance enhancement of computer (CPU and 

GPU). Among the 2D image-based analysis techniques 

using deep learning are classification, detection, and 

segmentation. Among them, segmentation, the 

technology that classifies the class of each pixel and 

includes the two preceding methods, are widely used in 

the latest research in the construction sector. It was used 

for various construction management purposes including 
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worker safety enhancement [3], progress monitoring [6], 

defect identification [[7], [8], [9]], and to update the 

status of the building [[10], [11]]. 

The aforementioned deep leaning-based method has 

limitation that requires a lot of training data to train the 

model. Preparation for the training dataset includes a 

labeling task, which is labour-intensive. In an effort to 

overcome this limitation, the previous studies created 

databases (ImageNet[12], SUN[13], COCO[14], 

Cityscape[4]). However, infrastructure facility classes 

such as HVAC system, plumbing system, structural 

element and construction materials often do not exist in 

the mentioned databases. Therefore, it is necessary to 

create training datasets that can be labelled easily on the 

desired objects. 

To address the above issue, research have been 

conducted to generate training data using a 3D model 

[[15], [16]]. In the field of construction, Soltani et al. 

generated a synthetic image by adding background 

images and images captured from various angles on the 

3D expansion model for visual reconstruction services 

[17]. Kim et al. took  photographs of the concrete mixer 

trucks with a UAV camera, then created a 3D point cloud 

with a structure from motion technique, and created 2D 

synchronous images by projecting the point cloud on the 

plane [18]. 

Recently, research has also been conducted to 

generate synthetic data using BIM, the digital twin of 

infrastructure. Jong Won Ma et al. generated synthetic 

point clouds using 3D BIM to train the semantic 

segmentation model based on deep learning [19]. 

Although the synthetic point clouds are analogous to real 

point clouds, the differences in detail and volumetric 

information of some objects were cited as limitations. It 

is also difficult to train the model with the 2D synthetic 

images generated with unprocessed BIM. Inhae Ha et al. 

showed that differences exist in the feature map of the 

BIM images and the photographs for the same scene [20]. 

As such, the gap between real world and BIM is a factor 

that makes it difficult to use BIM image as training data. 

In order to reduce this gap, we create synthetic datasets 

that is transferred with CycleGAN so that the image 

obtained from BIM has a style similar to photographs.  

CycleGAN [5] is a network that transfers images of 

different domain by learning the two mapping functions. 

To achieve the objective, the adversarial loss as defined 

in the Generative Adversarial Networks (GAN [21]) and 

the cycle consistency loss are used. 

3 Methodology 

The proposed methodology consists of a step of 

training CycleGAN and a step of generating synthetic 

data utilizing the trained network. Details are explained 

in the following paragraphs. 

3.1 Training CycleGAN 

CycleGAN [5] is a network that trains mapping 

function between two different domains. The network 

include two generators, GAB mapping A to B and GBA

mapping B to A and two adversarial discriminators 

DA and D𝐵 , which enable mapping between source

domain A and target domain B. In the adversarial loss 

ℒGAN(𝐺𝐴𝐵 , 𝐷𝐵 , 𝐴, 𝐵), GAB  tries to make GAB(𝐴) similar

to B, and DB  tries to distinguish B from GAB(𝐴) .

ℒGAN(𝐺𝐵𝐴, 𝐷𝐴 , 𝐵, 𝐴) also works the same. The additional

loss due to the possibility that the correct mappings are 

not achieved with adversarial loss alone is a cycle 

consistency loss (ℒcyc). In ℒcyc(𝐺𝐴𝐵 , 𝐺𝐵𝐴), 𝐺𝐵𝐴(𝐺𝐴𝐵(𝐴))

is encouraged to have the same value as A, and 

𝐺𝐴𝐵(𝐺𝐵𝐴(𝐵)) is encouraged to have the same value as B.

As a result, the network operates to find 𝐺𝐴𝐵
∗  and 𝐺𝐵𝐴

∗  that

satisfy the following expressions: 

𝐺𝐴𝐵
∗ , 𝐺𝐵𝐴

∗ = min
𝐺𝐴𝐵,𝐺𝐵𝐴

max
𝐷𝐴,𝐷𝐵

ℒ(𝐺𝐴𝐵 , 𝐺𝐵𝐴, 𝐷𝐴 , 𝐷𝐵) (1) 

where, 

ℒ(𝐺𝐴𝐵 , 𝐺𝐵𝐴, 𝐷𝐴 , 𝐷𝐵) = ℒGAN(𝐺𝐴𝐵 , 𝐷𝐵 , 𝐴, 𝐵)
+ ℒGAN(𝐺𝐵𝐴, 𝐷𝐴 , 𝐵, 𝐴)+λℒcyc(𝐺𝐴𝐵 , 𝐺𝐵𝐴)

(2) 

In this study, real world is the source domain and BIM 

is the target domain. The structure of CycleGAN is 

illustrated in Figure 2. The generator 𝐺𝐴𝐵  receives the

real world image (photograph) A1  as an input and

generates 𝐺𝐴𝐵(𝐴1) similar to the BIM image as an output.

𝐺𝐵𝐴  that receives 𝐺𝐴𝐵(𝐴1)  as an input generates

𝐺𝐵𝐴(𝐺𝐴𝐵(𝐴1)) similar to the original image 𝐴1. L1-norm

between 𝐴1  and 𝐺𝐵𝐴(𝐺𝐴𝐵(𝐴1))  is calculated in cycle

consistency loss. Conversely, 𝐺𝐵𝐴  generates 𝐺𝐵𝐴(𝐵1)
that is similar to the photograph from BIM image 𝐵1, and

the discriminator 𝐷𝐴  discriminates whether the input

image is from domain A or B. 

Figure 2. The structure of CycleGAN 

3.2 Generating synthetic data 

In this study, CycleGAN is set to train for 200 epochs. 

We used two learning rate settings. One sets the learning 
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rate to 0.0002 for 200 epochs. The other one sets the same 

learning rate during the first 100 epochs, and linearly 

decreases the learning rate from 0.0002 to 0 for the 

remaining 100 epochs. Then every 40 of the 200 epochs, 

𝐺𝐵𝐴 takes the BIM images as the input and generates the

synthetic datasets. Figure 3 shows the process in which 

synthetic datasets are generated from each generator. We 

call the generator by concatenating the generator name 

with the number of epochs and adding the suffix "d” if 

the learning rate decays. 

Figure 3. The process of synthetic data generation 

4 Experimental Study 

4.1 Dataset 

The real-world domain training dataset was taken in 

the corridor of the north wing on the fifth floor of Yonsei 

University's first engineering building. 550 images were 

scaled from 3024 × 3024 to 512 × 512 pixels. Another 

training dataset, BIM domain, was extracted from Yonsei 

University's first engineering building BIM, which was 

implemented in Revit software. This BIM is the same as 

that used in Inhae Ha et al. [20].  564 images with image 

size 512 × 512 were obtained by creating 3D views and 

extracting views as image files. The 3D views were also 

constructed in the north wing on the fifth floor of BIM.  

The dataset, used as an input of generator 𝐺𝐵𝐴  to

generate synthetic datasets, is a set of 100 512 × 512-

sized images that do not overlap with training dataset. 

4.2 Implementation 

CycleGAN was trained with λ of 10 in Equation (2) 

and a batch size of 1. As mentioned in section 3.2, two 

settings of the learning rate were used: (1) non-decay 

setting and (2) decay setting.  

4.3 Results and Discussion 

This section compares one BIM dataset and eight 

synthetic datasets. The notation for the synthetic dataset 

is the same as for the generator. Figure 4 shows the image 

examples of BIM and synthetic datasets.  

Figure 4. Examples of results from different 

datasets; (a) BIM, (b) Synthetic40, (c) 

Synthetic80, (d) Synthetic120, (e) Synthetic120d, 

(f) Synthetic160, (g) Synthetic160d, (h)

Synthetic200, (i) Synthetic200d

As shown in Figure 4(b), synthetic40 looks similar to 

BIM. The color changed similar to the photograph, and 

the light shape and part of the exit marking in the BIM 

were generated. Some noise generated patterns of 

doorplates that appeared in the photograph. The grid 

patterns of floor and ceiling in the BIM have not yet 

disappeared. Synthetic80 shows the disappearance of a 

number of doorplate patterns in Figure 4(c). The position 

of the light is similar to the photograph, and the reflection 

of the light on the walls looks realistic in synthetic80. As 

shown in Figure 4(h), BIM's floor pattern and repetitive 
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patterns (especially in wood and brick area) are almost 

eliminated in synthetic200.  

As a result of the style transfer, it was found that the 

network produced small objects such as the fire 

extinguisher and exit marker, and caused color changes 

to produce values similar to those of photograph. In that 

process, small patterns such as exit marker appeared and 

disappeared, depending on the number of epochs. It is 

assumed that the synthetic200 and synthetic200d, the 

models trained with the 200 epochs, did not converge.  

Cosine similarity was used as an indicator of 

evaluating synthetic datasets. Cosine similarity is a 

measure of the similarity of two vectors. The cosine 

similarity was calculated between the photographs 

having the same scene and generated synthetic datasets. 

Table 1 shows the average and standard deviation of 

cosine similarity. All the synthetic datasets have cosine 

similarity greater than BIM dataset. 

Table 1. Average and standard deviation of cosine 

similarity with same scene real dataset 

Dataset 
Cosine 

Similarity Avg. 

Cosine 

Similarity Std. 

BIM .9145 .0220 

Synthetic40 .9488 .0198 

Synthetic80 .9495 .0193 

Synthetic120 .9497 .0204 

Synthetic120d .9479 .0211 

Synthetic160 .9492 .0217 

Synthetic160d .9454 .0232 

Synthetic200 .9500 .0209 

Synthetic200d .9442 .0237 

The synthetic datasets with photograph style and BIM 

content were created. The datasets, whose label can be 

easily obtained from BIM, are valuable as the training 

datasets of the segmentation model. In further research, 

the segmentation model will be trained with synthetic 

datasets and the performance of the model will be 

evaluated to assess whether the datasets are adequate for 

scene understanding.  

5 Conclusion 

This study proposed a method for generating 

synthetic image data that can be used as a training set for 

scene understanding in the field of facility management. 

In the proposed method, CycleGAN is used to train a 

mapping function such that transfer between BIM images 

and their corresponding real-world images is performed. 

The generator of the proposed model produces synthetic 

data similar to real images using the BIM images. Cosine 

similarity values calculated using corresponding scene-

photographs showed that the synthetic data are more 

realistic than BIM images. The label of synthetic data is 

the same as that of the corresponding BIM image, so 

labelled data can be obtained without any annotating 

works. This method could be highly beneficial for 

collecting data to train deep learning models in that the 

models usually require a large amount of data. In the 

experiment, noise patterns on the synthetic data appeared 

and disappeared repeatedly as the training of CycleGAN 

progressed. The noise patterns are expected to adversely 

affect the training of deep learning models when 

synthetic data, including the patterns, are used as training 

data for the models. To tackle this problem, further 

research should be conducted to improve the stability of 

training. In a future study, synthetic datasets generated in 

consideration of the aforementioned problem will be 

used as training sets for scene understanding. 
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