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Abstract – 

Machine learning techniques have been 

successfully implemented for the identification of 

various construction activities using sensor data. 

However, there are very few studies on activity 

recognition in the automated construction of low-rise 

residential buildings. Automated construction is 

faster than conventional construction, with minimal 

human involvement. This requires high accuracy of 

identification for monitoring its operations. This 

paper discusses the development and testing of 

machine learning classifiers to identify normal 

automated construction operations with high 

precision. The framework developed in this work 

involves decomposing the activity recognition 

problem into a hierarchy of learning tasks in which 

activities at the lower levels have more details. The top 

recognition level divides the equipment states into two 

classes: ‘Idle’ and ‘Operations’. The second 

recognition level divides the ‘operations’ into major 

classes depending on the top-level activities 

performed by the equipment. The third recognition 

level further divides the activities into subclasses and 

so on. Since the number of classes and the similarity 

between them increase with the recognition level, 

identification becomes extremely difficult. The 

identification framework developed in this study 

classifies operations belonging to the parent class at 

each level in the hierarchy. The efficacy of this 

framework is demonstrated with a case study of a top-

down modular construction system. In this 

construction system, the modules of a structural 

frame are assembled and lifted starting with the top 

floor followed by the ones below. The accelerometer 

data collected during top-down construction is used 

to identify the construction operations. The proposed 

framework shows superior performance over 

conventional identification using a flat list of classes. 
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1 Introduction 

Construction operations are monitored for several 

purposes like the determination of cycle time, 

productivity, fuel consumption, quality of work and 

possible failure conditions [1]–[3]. Identifying the 

activity with reasonable accuracy is sufficient for these 

purposes. However, for the development of a monitoring 

system to ensure safety, high accuracy of identification is 

necessary.  

Automated construction is faster than conventional 

construction, with minimal human involvement. In a fast 

automated construction system, an undetected faulty 

operation might cause catastrophic accidents [4], [5]. 

Besides, the level of detail required in this activity 

recognition problem is also higher. If an operation is 

detected as faulty in ongoing automated construction, the 

details like which operation, the stage of construction in 

which it happens and its location, have to be identified to 

take appropriate corrective actions. Hence, the operation 

identification problem has to be carefully formulated to 

develop a monitoring system. 

Existing studies on equipment activity recognition 

aim to improve the identification results by exploring 

advanced machine learning techniques, training options, 

hyperparameters, features extracted and also by carefully 

selecting the data [6]–[9]. The current study examines the 

significance of problem formulation in activity 

recognition. 

The main objective of this study is to identify 

automated construction operations with high accuracy.  A 

hierarchical operation recognition framework has been 

developed in this study which involves decomposing the 

activity recognition problem into a hierarchy of learning 

tasks. At the top level, equipment states, ‘idle’ and 

‘operations’ are identified. The activities at lower levels 

have more details. The performance of this framework is 

compared with that of the conventional approach to 

operation recognition which involves a flat list of classes 

to be separated. The two approaches were evaluated 

using data from an automated construction system (ACS) 
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prototype. Acceleration data collected from the structure 

is used for operation identification. Both approaches use 

artificial neural networks (ANN) as the learning 

algorithm.  

2 Equipment activity recognition methods 

Advancements in computing technology have opened 

a wide range of possibilities for automated activity 

recognition. There are mainly three methods for 

automated activity recognition: sensor-based methods, 

computer vision-based methods and audio-based 

methods [3]. In some cases, a combination of these 

methods is also adopted. 

Sensor-based methods capture the characteristic 

signals associated with operations [10]. Accelerometers, 

gyroscopes, inertial measurement unit (IMU) and Global 

Positioning System (GPS) are some of the widely used 

sensors for activity recognition [6], [8], [11].  Sensor-

based methods can be reliably applied to chaotic 

construction sites where equipment is often beyond the 

line of sight. A broad range of studies explored various 

supervised learning methods, starting from simple ANN, 

K-nearest neighbour (KNN), logistic regression, Support

vector machine (SVM) to deep learning methods in

recent times [7], [8], [12], [13].

Vision-based methods have the potential to identify 

any type of equipment if ambient conditions are 

favourable. Images or videos of the construction 

equipment are used for activity recognition. Initial 

studies used SVM and 2D motion descriptors for activity 

recognition from spatiotemporal data [14], [15]. More 

recent studies explore deep learning methods for 

automated labelling of activities in video data [2], [16]. 

Major limitations associated with the vision-based 

methods include high sensitivity to ambient conditions, 

obstructions, cost of implementation and need for large 

storage space. 

Audio-based methods can be used to identify any 

equipment that generates sound. Numerous machine 

learning classifiers were implemented for sound 

classification. Some of the most popular classifiers are 

KNN, SVM, ANN, Hidden Markov model (HMM) and 

deep neural networks [17]–[20]. Microphones can 

capture the data from all directions without getting 

affected by visual obstructions [3]. This data is not biased 

by the skill level of the operator. However, not all 

equipment can be identified by this method. Data 

collecting for these methods can be challenging for noisy 

construction sites. 

The current study attempts to identify operations of 

an ACS prototype for low-rise buildings. Acceleration 

data is used for activity recognition. ANN is one of the 

best performing machine learning classifiers for 

equipment activity recognition. Hence, ANN with a 

simple architecture (single hidden layer) is selected for 

the current study. 

3 Methodology 

Figure 1 shows the methodology adopted for this study. 

Acceleration data is collected during the modular 

construction of a structural frame using an Automated 

Construction System (ACS) prototype. After pre-

processing, the data is supplied to the operation 

recognition framework. This machine learning-based 

framework identifies the operations that are organized 

hierarchically into 4 recognition levels (RL). Two 

approaches are compared: a) Conventional approach 

using a flat list of classes to be identified, and b) 

Hierarchical operation recognition framework. Each step 

of the research methodology is described in detail in the 

following sections. 

3.1 Automated modular construction 

The automated top-down construction method is 

adopted for the construction of the structural frame in this 

study [4], [5], [21], [22]. This method is mainly 

developed for the modular construction of low-rise 

buildings. For automated top-down construction, the 

main load-bearing parts of a structure are divided into 

smaller components. The modules of the beam and 

column are assembled sequentially, starting from the 

topmost parts of the structural frame. After the assembly 

of the first set of components, the completed structure is 

lifted to a certain height. The modules of the column are 

Figure 1. Methodology for operation recognition 
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added to the existing structure and lifted it again in the 

next operation cycle. Since the structure is completed 

from top to bottom using an ACS, this method is called 

automated top-down construction. 

Figure 2. Data collection during automated modular 

construction 

Figure 2 shows the laboratory prototype of the ACS 

and the structural frame developed for this study. The 

ACS consists of 6 lifting machines. Each of these 

machines is capable of operating individually for lifting 

or lowering of specific support and as a group for 

simultaneous lifting or lowering of all supports 

(coordinated lifting or coordinated lowering). The 

structural frame modules are made of standard steel pipe 

sections with external threading on both edges. They are 

connected by couplers and universal joints with internal 

threading. The structure has redundant columns to ensure 

stability during top-down construction. Each column of 

the structure is supported by a lifting platform of the 

ACS.  

At the beginning of the top-down construction, the 

top most beam and column modules are connected and 

supported by these lifting platforms. This idle condition 

before the beginning of the operation cycle is termed as 

‘Idle_CS0’ where CS0 refers to Construction Stage 0. 

This is followed by the first operation cycle of top-down 

construction. The operations involved in one cycle are 

given below [21]. 

1. Coordinated lifting

2. Lowering support 1

3. Assembling module of column 1

4. Lifting support 1 till the load is transferred from

column 1

5. Repeat steps (2) to (4) for other supports (support 2

to support 6)

One cycle of the top-down construction finishes one 

stage of construction (CS). Two cycles of operations 

were carried out for one set of experiments. Totally 6 sets 

of experiments were conducted for the study. 

3.2 Data collection 

Acceleration data was collected from 8 different 

locations on the structure during automated construction 

(Figure 2). Monoaxial piezoelectric accelerometers 

(measurement range: -5g to +5g, sensitivity: 1000 mv/g) 

were installed on the topmost beam-column assembly for 

this purpose. The data is acquired through HBM 

universal measuring amplifier (model: QuantumX 

MX840B) at 200 Hz sampling frequency. The 

timestamps of all operations were manually recorded in 

a time tracking excel sheet. These sheets were compared 

with the timestamps of the acquired data for generating 

operation labels required for supervised learning.  

3.3 Data pre-processing 

The acceleration data collected using HBM data 

acquisition software is exported to Microsoft Excel and 

MATLAB files for analysis. Based on the studies of 

equipment activity recognition, 5 time-domain features 

and 5 frequency domain features were extracted from the 

raw data [6], [11], [23]. The time-domain features 

include mean, variance, interquartile range, peak and root 

mean square error. The period of the signal and signal 

energy were extracted through autocorrelation of the 

signal. The other frequency domain features include the 

three prominent frequencies from the Fast Fourier 

Transform (FFT) of the signal. Totally 80 features (10 

features x 8 sensor locations) were extracted from the raw 

acceleration data. 

3.4 Supervised learning and operation 

recognition 

In previous studies, supervised learning techniques 

have demonstrated superior performance compared to 

unsupervised learning techniques for unbalanced datasets 

[6], [14]. The current study adopts Artificial Neural 

Networks (ANN) for the classification of automated 

construction operations.  
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Figure 3. Conventional approach for operation 

recognition 

The identification problem has 4 recognition levels 

(RL) as follows. 

● RL1: Recognizes whether the ACS is ‘idle’ or

‘operating’

● RL2: Recognizes the major operation categories

● RL3: Recognizes the sub-operation categories

● RL4: Recognizes stage of construction

The conventional approach for operation recognition 

uses a flat list of classes to be separated. However, in 

order to test the performance of this approach at different 

recognition levels, the identification problem is divided 

into 4 different identification tasks, one task per RL 

(Figure 3). An ANN classifier is assigned to each 

identification task. The classifiers are named as CF 1, CF 

2, ..., CF 4, represented by blue boxes in figure 3. The 

operation categories identified are given as a list next to 

it. The actual operation categories identified by the 

classifiers are given in Table 1. The complexity of the 

identification problem seems to increase from RL1 to 

RL4 in this approach.  

Hierarchical operation recognition framework is 

developed by considering the hierarchical relationship 

among the operations (Figure 4). If the major category of 

an operation is identified with high accuracy, the further 

identification task can be simplified by exploring the 

subcategories of that operation. This idea is the basis of 

the hierarchical operation recognition framework. The 

main  

Figure 4. Hierarchical operation recognition framework 
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Table 1. Classifiers in operation recognition frameworks 

Recognition 

Level 

Classifiers in 

conventional approach 

Classifiers in 

hierarchical operation 

recognition framework 

Name of Classes 

1 CF 1 CF 1.1 
Idle 

Operations 

2 CF 2 

Idle 

CF 2.1 

Coordinated Lifting 

Lowering Support 

Assembling Column Module 

Lifting Support 

3 CF 3 

Idle 

Coordinated Lifting 

CF 3.1 

Lowering Support 1 

... 

Lowering Support 6 

CF 3.2 

Assembling Column Module Step 1 

… 

Assembling Column Module Step 6 

CF 3.3 

Lifting Support 1 

… 

Lifting Support 6 

4 CF 4 

CF 4.1 
Idle_CS0 

Idle_CS2 

CF 4.2 

Coordinated Lifting_CS0 

Coordinated Lifting_CS1 

Coordinated Lifting_CS2 

CF 4.3 
Lowering Support 1_CS1 

Lowering Support 1_CS2 

… … 

CF 4.8 
Lowering Support 6_CS1 

Lowering Support 6_CS2 

CF 4.9 
Assembling Column Module Step 1_CS1 

Assembling Column Module Step 1_CS2 

… 

CF 4.14 
Assembling Column Module Step 6_CS1 

Assembling Column Module Step 6_CS2 

CF 4.15 
Lifting Support 1_CS1 

Lifting Support 1_CS2 

… 

CF 4.20 
Lifting Support 6_CS1 

Lifting Support 6_CS2 

the identification problem is divided into a hierarchy of 

simple identification tasks across the RLs. Hence, there 

can be more than one identification task per RL. The 

classifiers are named as ‘CF RL.n’ where the first index 

RL represents recognition level and n denotes the number 

of the classifier in that RL. For clarity, only one classifier 

is shown per RL in figure 4 The classifier and the 

operations classified are shown in blue boxes. This figure 

is also for the representation of the concept of 

hierarchical operation recognition framework. The actual 

details of the framework are given in Table 1. 

The performance of all classifiers is assessed through 

k-fold cross-validation. This avoids the problem of

overfitting to the given data. The classifiers in RL1 to

RL3 are 10-fold cross-validated and those in RL4 are 5-

fold cross-validated for both identification frameworks.

The predicted class labels were compared with the digital
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record of actual class labels to estimate the accuracy of 

identification. The accuracy is computed as given in 

equation 1. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 𝑥 100 %  (1) 

4 Results and discussion 

Table 2. Summary of operation recognition results 

Recognition 

level (RL) 

Conventional approach for 

operation recognition  

Hierarchical operation recognition 

framework 

Classifiers 
Overall accuracy 

per RL (%) 
Classifiers 

Overall 

accuracy per 

RL (%) 

1 CF 1 99.58 CF 1.1 99.58 

2 CF 2 99.18 CF 2.1 100.00 

3 CF 3 95.92 CF 3.1 - CF 3.3 99.07 

4 CF 4 84.56 CF 4.1 - CF 4.20 99.19 

The operation recognition results are summarized in 

Table 2. For comparing the performance of the two 

approaches, the prediction accuracy of all classifiers in 

the hierarchical framework is combined to estimate the 

overall accuracy per RL. The classifier CF 1 and CF 1.1 

are assigned with the same identification task: classifying 

‘idle’ and ‘operations’. Hence the accuracy of 

identification is also equal. At RL 2, the hierarchical 

framework performs slightly better than the conventional 

approach with 100% accuracy. Meaning all main 

operations were identified correctly. CF 2.1 removes the 

‘idle’ from the classes. This is the reason for improved 

accuracy.  

RL 3 onwards there is a significant difference in the 

problem formulation. The hierarchical framework has 

focused classifiers for the identification of sub-operations 

at RL3. Hence the operations were better identified in this 

framework. At RL 4 where the construction stage is to be 

identified, there is a significant difference in performance 

between two recognition frameworks.  

While the hierarchical framework consistently 

delivers accuracy close to 100%, the performance of the 

conventional approach continuously declines with the 

increase in the recognition level. Even though both 

approaches use the same machine learning algorithm, 

their performances are different. The results emphasize 

the importance of problem formulation in activity 

identification. 

5 Conclusions 

This study proposes a robust framework for 

identifying automated construction operations with high 

accuracy. The hierarchical operation recognition 

framework formulates the identification problem into a 

hierarchy of learning tasks. The performance of this 

framework is compared with the conventional approach 

to operation recognition using a flat list of classes 

representing activities.  

Both approaches use ANN as the learning algorithm. 

Even though their performances are comparable at the 

top level, the hierarchical framework outperforms the 

conventional approach while identifying operations with 

minute levels of details. Most previous activity 

recognition studies have attempted to improve the 

performance by carefully selecting data, and exploring 

learning algorithms, training options, parameter selection 

and features extracted. This study shows that the problem 

formulation can make a tremendous difference in the 

performance.  

Acknowledgement 

The project is funded by the Department of Science 

and Technology (DST), India through the grant 

DST/TSG/AMT/2015/234. 

478



37th International Symposium on Automation and Robotics in Construction (ISARC 2020) 

References 

[1] J. Kim, S. Chi, and J. Seo, “Interaction analysis

for vision-based activity identification of

earthmoving excavators and dump trucks,”

Autom. Constr., vol. 87, pp. 297–308, Mar. 2018,

doi: 10.1016/j.autcon.2017.12.016.

[2] A. Khosrowpour, J. C. Niebles, and M.

Golparvar-Fard, “Vision-based workface

assessment using depth images for activity

analysis of interior construction operations,”

Autom. Constr., vol. 48, pp. 74–87, 2014, doi:

10.1016/j.autcon.2014.08.003.

[3] B. Sherafat et al., “Automated Methods for

Activity Recognition of Construction Workers

and Equipment: State-of-the-Art Review,” J.

Constr. Eng. Manag., vol. 146, no. 6, 2020, doi:

10.1061/(ASCE)CO.1943-7862.0001843.

[4] A. Harichandran, B. Raphael, and A. Mukherjee,

“Identification of the Structural State in

Automated Modular Construction,” in 36th

International Symposium on Automation and

Robotics in Construction (ISARC 2019), 2019,

pp. 187–193, doi:

https://doi.org/10.22260/ISARC2019/0026.

[5] A. Harichandran, B. Raphael, and A. Mukherjee,

“Determination of Automated Construction

Operations from Sensor Data Using Machine

Learning,” in Proceedings of the 4th

International Conference on Civil and Building

Engineering Informatics, 2019, pp. 77–84.

[6] R. Akhavian and A. H. Behzadan, “Construction

equipment activity recognition for simulation

input modeling using mobile sensors and

machine learning classifiers,” Adv. Eng.

Informatics, vol. 29, pp. 867–877, 2015, doi:

10.1016/j.aei.2015.03.001.

[7] T. Slaton, C. Hernandez, and R. Akhavian,

“Construction activity recognition with

convolutional recurrent networks,” Autom.

Constr., vol. 113, no. August 2019, p. 103138,

2020, doi: 10.1016/j.autcon.2020.103138.

[8] K. M. Rashid and J. Louis, “Times-series data

augmentation and deep learning for construction

equipment activity recognition,” Adv. Eng.

Informatics, vol. 42, p. 100944, Oct. 2019, doi:

10.1016/j.aei.2019.100944.

[9] C. Chen, Z. Zhu, and A. Hammad, “Automated

excavators activity recognition and productivity

analysis from construction site surveillance

videos,” Autom. Constr., vol. 110, p. 103045,

Feb. 2020, doi: 10.1016/j.autcon.2019.103045.

[10] C. R. Ahn, S. Lee, F. Peña, and P. Peña-Mora,

“Application of Low-Cost Accelerometers for

Measuring the Operational Efficiency of a

Construction Equipment Fleet,” J. Comput. Civ.

Eng., vol. 29, no. 2, p. 04014042, 2015, doi: 

10.1061/(ASCE)CP.1943. 

[11] L. Joshua and K. Varghese, “Accelerometer-

Based Activity Recognition in Construction,” J.

Comput. Civ. Eng., vol. 25, no. 5, pp. 370–379,

Sep. 2011, doi: 10.1061/(ASCE)CP.1943-

5487.0000097.

[12] A. Harichandran, B. Raphael, and K. Varghese,

“Inferring Construction Activities from

Structural Responses Using Support Vector

Machines,” in 35th International Symposium on

Automation and Robotics in Construction

(ISARC 2018), 2018, pp. 332–339, doi:

https://doi.org/10.22260/ISARC2018/0047.

[13] L. Joshua and K. Varghese, “Automated

recognition of construction labour activity using

accelerometers in field situations,” Int. J.

Product. Perform. Manag., vol. 63, no. 7, pp.

841–862, 2014, doi: 10.1108/IJPPM-05-2013-

0099.

[14] M. Golparvar-Fard, A. Heydarian, and J. C.

Niebles, “Vision-based action recognition of

earthmoving equipment using spatio-temporal

features and support vector machine classifiers,”

Adv. Eng. Informatics, vol. 27, no. 4, pp. 652–

663, Oct. 2013, doi: 10.1016/J.AEI.2013.09.001.

[15] E. Rezazadeh Azar, S. Dickinson, and B.

McCabe, “Server-Customer Interaction Tracker:

Computer Vision–Based System to Estimate

Dirt-Loading Cycles,” J. Constr. Eng. Manag.,

vol. 139, no. 7, pp. 785–794, Jul. 2013, doi:

10.1061/(ASCE)CO.1943-7862.0000652.

[16] D. Roberts and M. Golparvar-Fard, “End-to-end

vision-based detection, tracking and activity

analysis of earthmoving equipment filmed at

ground level,” Autom. Constr., vol. 105, Sep.

2019, doi: 10.1016/j.autcon.2019.04.006.

[17] C.-F. Cheng, A. Rashidi, M. A. Davenport, and

D. V. Anderson, “Activity analysis of

construction equipment using audio signals and

support vector machines,” Autom. Constr., vol.

81, no. March, pp. 240–253, Sep. 2017, doi:

10.1016/J.AUTCON.2017.06.005.

[18] J. Cao, W. Wang, J. Wang, and R. Wang,

“Excavation Equipment Recognition Based on

Novel Acoustic Statistical Features,” IEEE

Trans. Cybern., vol. 47, no. 12, pp. 4392–4404,

Dec. 2017, doi: 10.1109/TCYB.2016.2609999.

[19] J. Cao, W. Huang, T. Zhao, J. Wang, and R.

Wang, “An enhance excavation equipments

classification algorithm based on acoustic

spectrum dynamic feature,” Multidimens. Syst.

Signal Process., vol. 28, no. 3, pp. 921–943, Jul.

2017, doi: 10.1007/s11045-015-0374-z.

[20] J. Cao, T. Zhao, J. Wang, R. Wang, and Y. Chen,

479



37th International Symposium on Automation and Robotics in Construction (ISARC 2020) 

“Excavation equipment classification based on 

improved MFCC features and ELM,” 

Neurocomputing, vol. 261, pp. 231–241, Oct. 

2017, doi: 10.1016/j.neucom.2016.03.113. 

[21] A. Harichandran, B. Raphael, and A. Mukherjee,

“Development of Automated Top-Down

Construction System for Low-rise Building

Structures,” Int. J. Ind. Constr., vol. 1, no. 1, pp.

22–33, 2020, doi: doi.org/10.29173/ijic217.

[22] B. Raphael, K. S. C. Rao, and K. Varghese,

“Automation of modular assembly of structural

frames for buildings,” in Proceedings of the 33rd

International Symposium on Automation and

Robotics in Construction (ISARC 2016), 2016,

pp. 412–420, doi:

https://doi.org/10.22260/ISARC2016/0050.

[23] D. Figo, P. C. Diniz, D. R. Ferreira, and J. M. P.

Cardoso, “Preprocessing techniques for context

recognition from accelerometer data,” Pers.

Ubiquitous Comput., vol. 14, no. 7, pp. 645–662,

Oct. 2010, doi: 10.1007/s00779-010-0293-9.

480




