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Abstract -
This research investigates the development and valida-

tion of state-of-the-art high-fidelity m odels o f s oil cutting 
operations. The accurate and efficient modeling of complex 
tool-soil interactions is an open problem in the literature. 
Modeling options that provide more flexibility in trading off 
accuracy and computational efficiency than current state-of-
the-art continuum or discrete element methods are sought. 
In this work, two modern numerical methods, the material 
point method (MPM) and a hybrid approach, are presented 
with the goal to simulate excavation maneuvers efficiently and 
with high accuracy. MPM, as an accurate, continuum-based 
and meshfree method, uses a constitutive model (here, non-
local granular fluidity model) for computing internal forces 
to update particle velocities and positions. The hybrid ap-
proach, a combination of particle and grid-based methods, 
avoids explicit integration scheme difficulties and unneces-
sary computations in the static regime. Visual and quantita-
tive data, including forces on the excavation tool, are collected 
experimentally to evaluate these two simulation methods with 
respect to geometry of the soil deformation as well as inter-
action forces, both as a function of time.
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1 Introduction
On Earth, construction, mining, and agricultural vehi-

cles are extensively in contact with soil as a granular mate-
rial. In space, exploration rovers are as well, as will robots 
for in situ resource utilization. However, granular flows 
and their interactions with rigid bodies are still poorly un-
derstood. In fact, their modeling is complex since they can 
experience various solid-like, fluid-like and gas-like de-
formations in time. Besides experiments, simulations can 
hugely contribute to this end. Nevertheless, the accurate 
and efficient modeling of complex tool-soil interactions is 
still an open research problem. In terms of accuracy, one

current direction of this research is the discrete element
method (DEM), which simulates contact mechanics for
millions of individual particles [1]. This state-of-the-art
approach demonstrates promise in modeling but it is so
computationally intensive as to be infeasible for real-time
applications, and for large physical domains can be un-
tenably expensive even in offline industrial applications
[2]. On the other end of the complexity spectrum, sev-
eral researchers highlight the insufficient predictive power
of classical terramechanics models [3, 4], and their lim-
itations to specific flow geometries [5], though they are
computationally efficient.

In order to maintain a desired accuracy while enhanc-
ing computational efficiency, one possible direction is us-
ing methods from continuum mechanics. In continuum
methods, there are two main aspects to make them ap-
propriate for a specific modeling problem. One aspect is
the constitutive model; it should be specific to the mate-
rial being used to capture most of the static and/or flow
regimes. For granular materials, they should generally
cover elastic (solid-like), viscoplastic (fluid-like), and free
(gas-like) behaviors. For the two extremes, elastic and
free models have been developed based on soil mechanics
(e.g. Drucker-Prager) and kinetic theory of gases, respec-
tively. However, the middle regime of (visco) plastic de-
formation is more challenging. Plastic models can suffer
from rate-independency [6] and in some cases, they may
have issues with modeling strain hardening [7]. Whereas,
viscoplastic models eliminate some numerical difficulties
associated with plastic models, such as hardening [8]. In
viscoplasticmodels, although localmodels [9] lack robust-
ness in their ability to predict all flowphenomena, nonlocal
models are accepted as highly predictive in different flow
regimes [10]. The other aspect in continuum modeling is
the numerical solver. Among the several continuum-based
numerical solvers, finite difference (FD) for viscoplastic
deformation, and finite element (FE) for elastic deforma-
tion, are the most common methods [11]. Both can yield
good results in certain cases. However, the FD method
has difficulties with extensional disconnection and static
regime, while the FE method has issues when mesh dis-
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Figure 1. Industrial excavator modeling. Soil colors represent velocity magnitude.

tortion becomes large. Alternatively, the material point
method (MPM) is a modern approach that combines the
advantages of both FD and FE methods [12].
On the other hand, some novel techniques can be applied

to terramechanics models to simultaneously maintain their
efficiency and refine their accuracy and flexibility (i.e.
extending to complex geometries). In fact, some intensive
computations can be ignored in the physical domains that
are in the static regime [13]. For the domains in the quasi-
static regime which have less deformation, terramechanics
models seem to be good candidates. With that, a classical
terramechanics model is introduced by McKyes [14] as
a method of trial wedges for 2-dimensional soil cutting
(known as McKyes model). It is later generalized for
3-dimensional applications such as bucket of excavators
and backhoes by Holz et al. [15]. In that, soil cutting
forces are formulated based on the fundamental equation of
earth-moving (FEE) [16]. Also, Skonieczny [17] replaces
the generic surcharge force term in McKyes model with
an explicit model of how cutting forces change due to
accumulating soil. Thus, this model (McKyes) with all of
its modifications can be employed for calculating forces on
the cutting tool when the flow is quasi-static. Moreover,
more flexible and advanced approaches can be applied to
the domains in the intermediate regime specifically with
(visco) plastic deformations. Particle-based methods are
good candidates due to the nature of the granular flows.
However, they often come with prohibitive computational
cost, as in traditional DEM. An efficient granular material
simulation method, based on Position Based Dynamics
(PBD) Muller et al. [18], was introduced by Holz [19]
as a faster variation of the traditional DEM. This method
showed promising results and was experimentally verified
in [20] for a wheel-on-soil configuration. Therefore, this
parallel position based approach can be utilized to model
the (visco) plastic granular flows when required, and even
be used in combination with the modified McKyes model.

With the two aforementioned areas in mind, in this
paper, two modern numerical methods are proposed for
modeling of soil cutting. First, for the sake of accuracy,
while being reasonably efficient, an efficient MPM (Mov-
ing Least SquaresMPM) solver is utilized with an accurate
constitutive model (nonlocal granular fluidity) developed

specifically for 3D MPM in a thermodynamically consis-
tent manner and written in C++. Second, a real-time ca-
pable and relatively accurate hybrid simulation approach,
combining particle and grid-based methods, is presented.
This approach was previously introduced by Holz et al.
[15] and is here extended with a dynamic soil failure angle
calculation for soil cutting operations. Furthermore, the
numerical results are compared and evaluated by the ex-
perimental data collected by innovative robotic equipment,
designed for this type of operation.

2 Methodology
2.1 Numerical Methods

MPM with Nonlocal Granular Fluidity. As dis-
cussed, MPM is similar to the FEmethod but also takes the
advantage of FDmethod by keeping an undeformed Carte-
sian background grid appropriate for large-deformation
problems as well. In addition to the grid, MPM consists
of particles that carry information (mass and momentum)
during the simulation. The particles can freely deform
and, at the end of each time step, transfer the information
to the grid nodes and vice versa. The procedure of MPM
with the nonlocal model is shown in algorithm 1.
The momentum equation (φρÛv = φρG + divT) as the

governing equation in the weak form

1
∆t

∫
Ω

φρ∆vq dV =
∫
Ω

φρGq dV −
∫
Ω

T∇q dV (1)

is solved on grid nodes. Where v is velocity, T is Cauchy

Algorithm 1: MPM-NGF
1. Initialization
repeat

2. Articulate rigid bodies
3. Calculate contact forces
4. Affect gravity, internal and contact forces on particle
5. Transfer momentum from particles to grid
6. Solve momentum equation on grid nodes
7. Calculate Laplacian term in NGF on grid
8. Transfer momentum from grid to particles
9. Advect particles and rigid bodies
10. Calculate particle internal forces via NGF

until Simulation ends;
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stress tensor, G is gravity acceleration, φ is volume frac-
tion, q is test function, ρ is density, and V is volume. The
angular momentum and energy conservations are satisfied
due to the symmetric stress tensor and the implementation
of hyperelasticity framework, respectively. To discretize
the spatial terms, the Moving Least Squares (MLS) shape
function [21] is used. It can speed upMPM by eliminating
the need for explicitly calculating the weighting function
derivative. Furthermore, it is consistent with the APIC
(affine particle-in-cell [22]) particle-grid transfer scheme
in the sense that MLS-MPM uses the ∂v

∂x quantity from
APIC, required in the deformation gradient update, to en-
hance efficiency.
One novel advance in this research is the accurate calcu-

lation of internal forces via the unsteady form of Nonlocal
Granular Fluidity (NGF) model [23] with hyperelasticity.
In fact, this is a thermodynamically consistent version of
the nonlocal theory for three-dimensional MPM [24, 25].
Hyperelasticity requires keeping track of the deformation
gradient, which is multiplicatively decomposed into elas-
tic and plastic parts. The total deformation gradient is up-
dated via ÛF = ∂v

∂x F, and the elastic deformation gradient
is calculated via Fe = F(Fp)−1. The nonlocal constitutive
model is hence utilized to calculate Fp . By assuming that
the viscosity (1/g where g is granular fluidity) is time-
dependent, the unsteady PDE of the model

t0
∂g

∂t
= A2d2∇2g − (µs − µ)g − b

√
ρsd2

p
µg2 (2)

should be solved for granular fluidity g. Where t0 is a
constant time-scale, A is a dimensionless material param-
eter called nonlocal amplitude, and d, p, and ρs are grain
diameter, mean normal stress and grain density, respec-
tively. Also, b is a local rheology parameter, the friction
coefficient µ, and static friction coefficient µs cause flow
to happen. Then the equivalent plastic shear strain rate
can be obtained via Ûγp = gµ.

Since in MPM granular materials can be separated, the
open-state particles should also be modeled. While ki-
netic theory of gases is capable of this modeling, in most
cases it is accurate enough to handle granular gas via pure
kinematics (stress-free). To detect this regime, pressure
(mean normal stress) should be tracked for every individ-
ual particle. Figure 2 shows four possible states that can
occur for a particle in the next time step.
The algorithm used to calculate the internal forces with

the nonlocal model is inspired from [25] for the implemen-
tation of the hyperelasticity framework. It is well adapted
for use in MPM with the techniques used to handle stress-
free particles, and to solve the unsteady nonlocal equation
explicitly (and uncoupled with the momentum equation).
In this, the particle nonlocal Laplacian term is obtained
via a second-order FD scheme on the centre grid node in

the kernel support of the particle, via equation (3) and the
particle internal force can be obtained given the calculated
Cauchy stress tensor.

∇2gi, j,k =
1
∆x2 (gi+1, j,k + gi, j+1,k + gi, j,k+1

− 6gi, j,k + gi−1, j,k + gi, j−1,k + gi, j,k−1). (3)

The MPM code used is from Hu et al. [21] with an
unsteady nonlocal model extension developed by authors
of this paper, and written in C++. Also, two issues ad-
dressed as corner and penetration issues in [21] are fixed
here. From a high performance computing (HPC) view-
point, multithreading (via Intel TBB) and vectorization
(via explicit SIMD) are utilized in the code, in addition to
some algorithmic improvements. These techniques make
the current MPM 2x faster than a traditional MPM [21].

Hybrid Approach. The hybrid approach presented in
this work extends on the hybrid, particle- and grid-based
simulation method introduced by Holz et al. [15], which is
included in the dynamics simulation toolkit Vortex Studio,
created by CM Labs Simulations Inc. In this simulation
model, the static soil state is efficiently represented by a
grid (a height field in this case). Soil portions in the grid
that transition into a dynamic, moving state are replaced
by particles. These so-called soil particles are simulated
using the Parallel Particles solver (P2) which ensures effi-
ciency and unconditional stability [19]. The organization
of soil in particles and grid is illustrated on the left side of
Figure 3.
The motivation behind the described approach is to pro-

vide a computationally efficient and stable, yet accurate
model, which, by modifying select discretization parame-
ters such as particle count or simulation frequency, can
achieve real-time or faster than real-time performance.
By using only a limited number of particles at a time,
namely the particles in motion, lower simulation frequen-

Figure 2. Possible states for a particle: under com-
pression (red) and stress-free (blue). Gray area rep-
resents granular material.
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MPMHyb

Figure 3. Left: Separation of simulated soil in particles and grid in the Hybrid method and force sources.
Particle/blade contact forces, Pi , surcharge force, Q, applied to soil wedge, and McKyes cutting force, F, are
indicated. Point S and angle β denote the soil failure point and the soil failure angle, respectively.
Right: Soil deformation pattern in MPM method shows soil failure point S and linear soil failure surface.

cies, i.e., fewer steps per second, can be used without
significantly reducing the solution accuracy or causing in-
stabilities. This measure is a great tool for speeding up the
proposed method up to real-time running times, as will be
shown in Section 3.2.
In the aforementioned setting, soil reaction forces ap-

plied to the cutting blade are produced by two sources,
the soil mass represented by particles, and the soil mass
represented by the grid. Soil particles, which model the
surcharge in front of the blade, directly exert contact forces
to the contacting blade surface. And the soil grid applies
force via a semi-empirical terramechanics model devel-
oped byMcKyes [14]. This separation of forces is depicted
in Figure 3. With increasing surcharge, i.e., increasing
amount of soil particles, the soil reaction forces also in-
crease. This is modeled by injecting a surcharge force into
the McKyes model as described by Holz et al. [15] and
explained in the following sections.

In the McKyes model, soil surface and blade are both
assumed to be linear. A non-cohesive soil in front of a
moving blade can then be assumed to fail along a straight
line. This results in a triangular soil wedge formed by the
surface of the terrain, the failure line and the blade. The
forces acting on the soil wedge are depicted in Figure 4.
In this configuration, the cutting force F per tool width
required to induce soil failure and deform the soil can be
computed as

F = γgd2Nγ + cdNc +QNQ + cadNa (4)

where

Nγ =
(cot ρ+cot β) sin(α+φ+β)

2 sin(δ+ρ+φ+β) , NQ =
sin(φ+β)

sin(δ+ρ+φ+β), (5a)

Nc =
cosφ

sin β sin(δ+ρ+φ+β), Na =
− cos(ρ+φ+β)

sin ρ sin(δ+ρ+φ+β) (5b)

with gravity g, soil slope inclination angle α, tool/soil
angle ρ, tool penetration depth d, soil failure angle β, soil
internal friction angle φ, soil cohesion c, specific weight
of the soil γ, tool/soil friction angle δ, tool/soil adhesion
ca and surcharge force per tool width Q.
In the original hybrid model [15], it was assumed that

soil failure occurred in the passive Rankine state, leading
to a constant soil failure angle β. However, it has been
shown that the soil failure angle does not remain constant
during a cutting operation and therefore must be dynami-
cally updated [17]. We assume that for non-cohesive soils
the point of failure (which is the intersection between soil
surface and failure line) roughly occurs at the far end of
the accumulating pile of soil that is being pushed by the
blade. We verified this assumption in the context of our
experiments based on visual inspection of soil failure pat-
terns occurring in the experiments themselves, as well as
by inspecting the particle flow in simulations obtained by
MPM (cf. right side of Fig. 3). We make use of this as-
sumption by walking across the particle skeleton in front
of the blade and in the general blade’s forward direction
until no more particles can be visited. The position of the

Figure 4. Forces acting on the soil wedge.
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Figure 5. Hybrid method using real-time, screen-space visualization from [26] (left), and display of particles and
grid (right), for experiment with 5-cm depth.

last visited particle indicates the location of the soil failure
point and is used to compute the soil failure angle used in
the McKyes model.
Once the soil failure point is found, the length of the

soil wedge ahead of the blade can be determined. All
particles sitting on top of this soil wedge contribute to the
surcharge force Q from Equation 4, which is measured by
summing up all contact forces of the particles colliding
with the soil grid and sitting on top of the soil wedge.
We experienced that introducing the full surcharge force
into the McKyes model leads to too high a soil reaction
force computed by the model. Consequently, we suggest a
convenient force tuning parameter, denoted as surcharge
contribution factor sq ∈ [0, 1], with which the surcharge
force submitted to the McKyes model can be weighted,
leading to the following modified version of Equation 4.

F = γgd2Nγ + cdNc + sqQNQ + cadNa (6)

As will be shown in Section 3, the sq-factor can be
used to calibrate the hybrid method in order to match
the simulated soil reaction forces to the forces that are
observed in experiments.

2.2 Experimental Method

In this research, an excavation experiment (identical
to the simulations) was set up to validate the numerical
methods. It consists of a sandbox positioned under a
3-degree-of-freedom motorized unit to which an excava-
tion accessory is attached. For this experiment and for
the numerical simulation presented here, the excavation
accessory is a flat plate (blade) as depicted in Figure 6
(top). The rake angle of the blade can be set manually
and it remains constant during the run. The excavator can
be moved horizontally and vertically independently. The
motors are controlled such that the impulses from the soil
flow do not affect the trajectory of the excavator. The
excavator is installed on a force-torque sensor Delta IP60
(ATI Industrial Automation Inc.) that measures the forces

and torques on the blade along each direction. The blade
trajectory is composed of three segments: first, a down-
ward ramped motion at the start to dive into the soil with
a specific depth, then a long-duration horizontal motion,
and finally an upward ramp in the end to resemble the mo-
tion of an industrial excavator. Two tests were done based
on this trajectory but at different (2-cm and 5-cm) depths.
The soil in the experiment is a NASA Glenn Research

Center lunar soil simulant (GRC-1). The relative density
used is 44.6 +/- 7.2%. This is calculated based on the
cone index gradient of 5.30 +/- 0.6 kPa/mm using the cor-
relation in [27]. Thus, the corresponding internal friction
angle can be obtained as 35 deg. The grain diameter and
density are 0.3 mm and 2583 kg/m3. Using the triaxial
test performed byOraveca et al. [27] the estimatedYoung’s
and shear moduli are 150 and 60 kPa, respectively. Also,
the measured external friction angle between the blade and
soil is ∼30 deg. The setup of the experiment is shown in
Figure 6.

3 Results
3.1 Experimental Verification

The tool-soil interactions in the simulations here are
evaluated by the forces measured in the experiments
(torque comparison is left). Figure 7 compares all the
forces from the experiment, MPM and Hybrid method.
The quantitative force values are in good agreement with
the experimental forces in the three (forward, vertical and
lateral) directions. A quantitative assessment of the simu-
lation accuracy in terms of mean percentage error (MPE)
is provided in Table 1. Due to the fast technique used to
calculate the nonlocal Laplacian term in MPM, the MPM
results seem to be slightly more oscillatory than the ex-
perimental results. However, in addition to the overall
trend, MPM is able to capture drops and rises in force at
various time steps of the two experiments. This can high-
light the unsteady form of the MPM solver as well as the
nonlocal constitutive model. Also, as a real-time method,
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Figure 6. Robotic equipment and experiment setup.

Hybrid has the ability to predict forces as deformations
increase. In fact, this time-dependent prediction is made
possible by the introduction of the dynamic soil failure
angle in the McKyes model, and modeling of the accumu-
lating soil surcharge by particles. Note, that the surcharge
contribution factor sq = 0.1 was found to produce the best
match between the Hybrid method and the experimental
results. All other simulation parameters are set based on
the physical properties of the soil used in the experiment.
A qualitative and visual comparison of the simulations

and the experiment is shown in Figure 8. This illustration
shows the soil geometry at the end of the second trajec-
tory segment in the 5-cm experiment for both MPM and
Hybrid method. Also, a real-time soil visualization for
the 5-cm experiment simulated with the hybrid method
is provided in Figure 5. In general, the soil behavior in
MPM and Hybrid are predicted similar to the one in the
experiment. The particle velocities visualized in colors
clearly depict the static (gray) and dynamic (red) parts;
while static parts in Hybrid are visualized as grid con-
sistent with its methodology. The MPM velocity field is
more compatible with the experiment. It can be due to
either the nature of MPM as a continuum-based method or
the higher number of particles used. However, even with
a lower number of particles and with real-time running
times, the Hybrid velocity field is still in good agreement
with the experiment, as can also be seen in Figure 5.

3.2 Run-Time Measurements

We measured the computational time spent in both
MPM and Hybrid method with 20 seconds of simulated
time in the 5-cm depth excavating experiment. The mea-
surements were performed on an Intel(R) Core(TM) i7-
6700 CPU @ 3.40GHz with 4 physical cores for MPM,
and on an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
with 6 physical cores for the Hybrid method. The results
are provided in Table 1.

Run-time as well as accuracy of both methods can be
influenced by modifying the simulation discretization pa-
rameters, e.g. particle count and simulation frequency.
In order to demonstrate this fact, the mean percentage er-
ror (MPE) of the forward cutting force in the simulation
relative to the experiment was calculated for different dis-
cretization settings.
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Figure 7. Interaction forces fromMPM, Hybrid, and
experiment for 2-cm (top) and 5-cm (bottom) depths.
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Figure 8. Geometries of soil deformations in MPM, Hybrid, and experiment for 5-cm depth. Four visual criteria
are emphasized for comparison.

As can be seen in the results, MPM runs slower than
real-time on the target hardware but can be substantially
sped up by reducing the number of particles per cell (ppc)
and/or increasing the grid spacing (∆x), both of which
results in a lower particle count. Using a lower simulation
frequency, i.e., a larger time step (∆t), would also lead
to a simulation speed-up, but since in MPM equations
are solved explicitly, the stability condition could become
violated as a consequence. An implicit MPM solver could
rectify this issue and would be future work.
The Hybrid method can run at real-time or faster than

real-time by reducing particle radius and simulation fre-
quency. Due to its implicit nature, the hybrid method
remains stable regardless of the chosen simulation fre-
quency. However, as can be seen in the results, the MPE
increases significantly for simulation runs with lower sim-
ulation frequencies. This situation can be remedied by
also choosing larger particle radii at which point the er-
ror reduces. This effect is likely due to excessive particle
collisions or tunneling artifacts caused by particles being
too small compared to the distances they travel between
steps at low simulation frequencies. Thus, by choosing
appropriate discretization settings, the error in the Hybrid
method can be reduced to a level that rivals with the preci-
sion achieved in theMPM simulations with faster run-time
settings.

4 Conclusion

Two efficient simulation methods for soil cutting opera-
tions have been presented and comparedwith experimental
results. Both methods show good agreement with the ex-
periments, with the MPM method yielding more accurate
results than the Hybrid method. While the MPM method
runs consistently slower than real-time, the Hybridmethod
can produce results at real-time and even faster than real-
time without significant loss in accuracy. This ability
makes the Hybrid method well-suited for use in virtual
prototyping contexts such as the development of a real-
time excavation automation control system. Accurate and
efficient simulation methods are specifically useful in the

training of machine-learning algorithms since faster sim-
ulation allows accelerating the training procedure. For an
example application in which a precursor of the presented
Hybrid method has been used for design of an excavator
automation system the reader is referred to [28].
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