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Abstract 

The automated detection of structural elements (e.g. concrete columns) in visual data is 
useful in many construction and maintenance applications. The research in this area is under 
initial investigation. The authors previously presented a concrete column detection method 
that utilized boundary and color information as detection cues. However, the method is 
sensitive to parameter selection, which reduces its ability to robustly detect concrete columns 
in live videos. Compared against the previous method, the new method presented in this 
paper reduces the reliance of parameter settings mainly in three aspects. First, edges are 
located using color information. Secondly, the orientation information of edge points is 
considered in constructing column boundaries. Thirdly, an artificial neural network for 
concrete material classification is developed to replace concrete sample matching. The 
method is tested using live videos, and results are compared with the results obtained with the 
previous method to demonstrate the new method improvements. 

KEYWORDS: robust detection, concrete columns, live videos. 

INTRODUCTION  

Many building construction and maintenance applications will be facilitated, if structural 
elements (e.g. concrete columns, beams and walls) can be automatically detected from 
construction site images and videos. For example, project progress will be monitored to tell 
whether the project is ahead or behind schedule by comparing the detected as-built structural 
elements with project’s 4D as-designed models (Golparva-Fard et al., 2009). Construction 
operations can be analyzed to indicate whether they have high or low productivity by 
knowing how many structural elements have been built within a certain period (Gong and 
Caldas, 2009). Traditional routine infrastructure inspection practices can be enhanced, when 
the defects are automatically located on structural element surfaces, and further their impacts 
are evaluated with quantitative measurements (Zhu and Brilakis, 2010). 

Although automated structural element detection is useful, the research in this area is under 
initial investigation. Most existing methods are not adequate enough, as they relied on either 
boundary or color/texture information to detect structural elements. The sole reliance on 
boundary information makes the methods fail in differentiating structural elements with other 
objects that have similar shapes (e.g. concrete columns vs. wooden table legs). Similarly, 
although color and texture are good indicators for object recognition, the sole use of color and 
texture makes the methods unable to differentiate two structural elements in a building, when 
these two structural elements have the same material and connect each other. The authors 
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previously presented a concrete column detection method that combined boundary and color 
information as detection cues (Zhu and Brilakis, 2010).    

Compared against the previous method, this paper presents a new concrete column detection 
method that aims to reducing the reliance of parameter settings mainly in three aspects. First, 
edge maps are produced using RGB (Red, Green and Blue) values instead of intensity values. 
Color-based edge detectors can locate edges that were not found by intensity-based edge 
detectors. Secondly, the orientation information of edge points is considered in the Hough 
transform to construct column boundaries. Based on the orientation information, each edge 
points only votes for one line once. This not only eliminates the number of falsely detected 
lines, but also significantly reduces the computation load in the Hough transform. Thirdly, 
machine learning techniques are introduced to generalize concrete material classification 
knowledge. An artificial neural network for concrete material classification is designed to 
replace concrete sample matching. 

The method is tested using live videos indoors and outdoors. The performance of the method 
is measured using the criteria suggested in the signal detection theory (Wickens, 2002). The 
ground truth is identified manually first, and then the test results are compared with manual 
detection ones to find the true positive (TP), false positive (FP) and false negative (FN). The 
detection precision and recall are calculated as TP / (TP+FP), and TP / (TP+FN). The results 
are also compared with the results obtained with the previous method to demonstrate the new 
method improvements. 

BACKGROUND  

Detecting structural elements is always the first step to automate construction applications, 
such as progress monitoring (Wu and Kim, 2004; Golpard-Vard et al., 2009), productivity 
measurement (Chi et al. 2009; Gong and Caldas, 2009), and construction safety improvement 
(Teizer, 2008). Given a template, the structural element detection in general is regarded as the 
problem of locating the structural elements that “looks” similar to the template (Ge et al. 
2008). Depending on the different template types, most existing methods are classified as 
color/texture-based and shape-based. Although scale/affine-invariant features can also use to 
visually characterize a specific object in multiple images, they are not appropriate for 
structural element category detection. This is because the extracted "features" only reflect the 
individual characteristics of each structural element not the salient features of the whole 
structural element category (Zhu and Brilakis, 2010).  

Color/Texture-based Structural Element Detection 

Color/Texture-based methods make use of structural elements’ material information to 
perform detection. Neto et al. (2002) observed that construction materials, such as concrete 
and steel, do not have a constant color value but a range of nuance of the value due to the 
variance of light conditions or the nature of materials. Based on this observation, their 
method starts from identifying structural elements’ boundaries by tracing the image pixels 
that satisfy two conditions: 1) the color values of these pixels fit in the color value range; and 
2) the color values of at least one of their neighbors does not fit in the color value range. 
When one boundary has been identified, all internal pixels in the boundary are checked. 
Those whose color values do not fit in structural elements’ special color value range are 
removed, and the remaining pixels represent structural element regions.  
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Brilakis and Soibelman (2008) created a method of detecting linear structural elements using 
the concept of material “signature”. In their method, an image is first cropped into regions. 
The signature of each region is represented by a vector of the mean and the standard 
deviation of region’s color and texture values. This signature is compared with the signatures 
of material samples by measuring their Euclidean distances. If the distance of the region’s 
signature to the signature of one material sample is smaller than a pre-defined threshold, the 
region is assumed to contain that material. For example, if the signature of one image region 
is matched with that of a concrete sample, the material contained in the region is assumed to 
be concrete. When all material regions are identified, their maximum cluster dimensions 
(MCD) and maximum dimensions along the perpendicular axis of MCD (PMCD) are 
calculated. The region is regarded as a column (or beam) based on three assumptions: 1) the 
region is linear, if its MCD is significantly larger than PMCD; 2) if the region is linear, then 
the tangent of the MCD edge points represents its direction on the image plane; and 3) the 
linear region is a column (or beam), if the computed direction is within 45° from the vertical 
(or horizontal) image axis. 

Color/texture-based methods rely on the retrieved material information to infer the shape 
information of structural elements. This may lead to their failure in detecting structural 
elements of most frame structures, where one structural element (e.g. a concrete column) is 
connected to another structural element with the same material (e.g. a concrete beam) (Zhu 
and Brilakis, 2010). It was also found that the methods performed poorly in detecting thin 
and stick like components, as their color and texture are easily corrupted (David, 2005). 

Shape-based Structural Element Detection 

Shape-based detection methods make use of structural elements’ boundary information to 
locate the elements. This boundary information preserves the important object’s structure 
properties (e.g. discontinuities in object surface orientation and changes in object surface 
material), and are therefore useful in detecting thin and stick-like objects that are difficult to 
be detected using color/textures-based methods.   

So far, several shape-based structural element detection methods have been created.  Wu and 
Kim (2004) used the Canny edge detector to extract structural component regions from image 
background with gaps close and hole fill mechanisms. Lukins and Trucco (2007) developed a 
concrete column classifier using the Haar features (e.g. edge features, line features and 
centre-surround features) and the Adaboost algorithm (Viola and Jones, 2001). The classifier 
was trained on a set of one hundred concrete column samples, and the test results indicated 
that the identification of columns is not entirely reliable, as some scaffolds are also identified 
as concrete columns (Ibrahim and Kaka, 2008).  Wu et al. (2010) recently proposed a 
concrete column recognition method using morphology-based 3D CAD model filtering 
techniques. In their method, the results from the Canny edge detector and Watershed 
Transformation are fused to retrieve image edge information. Then, a 3D CAD-based image 
mask is generated by aligning a 3D CAD model to the image with the manual measurements 
of camera location and orientation. The mask filters the retrieved edge information to get 
desired columns. 

In general, the sole reliance on the shape information is not always robust in object detection. 
The algorithms based on edge statistical analysis only (i.e. high edge magnitude and variance) 
may fail in complex and cluttered scenes; and also, the failure may be produced, when the 
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boundaries of the object of interest are not clear due to damages or dirt, or other objects that 
have similar shapes are also presented (Zhu and Brilakis, 2010).  

Previous Work in Concrete Column Detection 

The authors recently combined both color/texture and boundary information as concrete 
column detection cues. For each concrete column, it was found that (1) the shape of one 
concrete column surface is dominated by a pair of long vertical lines and (2) the texture and 
color patterns on the surface are uniform. Based on these two findings, a concrete column 
detection method was proposed (Figure 1).  

 

Figure 1: Previous Method Overview and Improvements 

The method starts from the Canny edge detector to produce image’s edge map, where edge 
points are shaded white and non-edge points are shaded black. The map does not contain any 
line information imposed on the edge points. In order to retrieve long vertical lines from the 
edge points, the Hough transform is applied. The transform maps the edge points’ Cartesian 
coordinates (x, y) into a radius-and-angle (ρ, θ) parameterization space and records the voting 
number for any possible pair of ρ and θ to satisfy Eq. 1 at each edge point. The places having 
high voting number along the line of θ = 0 in the parameterization space are located, and the 
corresponding radius values (ρ) are used to formulate long vertical lines.  

                                                                                           (Eq. 1) 
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Each long vertical line is compared with its neighbouring ones. Two lines are regarded as a 
pair only when they are close to each other and have similar length. The comparison is 
performed iteratively, till no pair can be found. A bounding rectangle for each pair is 
constructed, and its width/height ratio is checked. If the ratio is larger than 1, it means the 
rectangle’s width is larger than its height, which is not common for most concrete columns in 
practical buildings. Therefore, the pairs like this are discarded. For the remaining pairs of 
vertical lines, the image region contained in each pair is retrieved. The region’s material 
signature is calculated using the method presented by Brilakis et al. (2006), and compared 
with the signatures of pre-defined concrete samples. If its material is determined to be 
concrete, the corresponding image region is believed to be a concrete column’s surface. 

Most concrete columns in images can be successfully located with the method, when the 
optimal parameters are experimentally selected. The parameters include the ones for edge 
detection, line pair extraction, and concrete sample matching. The sensitivity of the method to 
these parameters reduces the ability of the method to robustly detect concrete columns in live 
videos where the manual selection of optimal parameters is infeasible. 

METHOD IMPROVEMENTS 

In order to robustly detect concrete columns in live videos, the method presented in this paper 
reduces the reliance of parameter settings from three aspects (Figure 1). Compared against 
the previous method, the new method first locates edge points using their color information, 
which permits a more complete representation of images (Liu et al. 2007). Secondly, the 
orientation information of edge points is considered in the Hough transform to find vertical 
lines. At each edge point, not all possible pairs of ρ  and θ that satisfy Eq. 1 are recorded. 
Instead, θ is fixed by edge point’s gradient direction. This not only removes falsely detected 
lines, but also greatly reduces the computation burden. Thirdly, machine learning techniques 
are adopted to classify concrete materials. An artificial neural network based concrete 
material classifier is created to replace concrete sample matching.  

Column Boundary Retrieval 

In the Canny edge detector, the edges detected from a gray image are controlled by two 
hysteresis thresholds: one for initial strong edge segments locating and the other for edge 
linking. Previous research results indicated that these two thresholds significantly affect edge 
detection results.  Therefore, a color-based edge detector is used. 

Consider a color image as a mapping from an x-y plane to a RGB space. The Jacobian matrix 
 of the mapping is represented in Eq. 2, which indicates the color change induced by 

moving any infinitesimal step ( ) in the image plane. The Euclidean squared magnitude 
of the change can then be calculated as Eq. 3, where the largest eigenvalue of the matrix  is 
the gradient magnitude and the eigenvector corresponding to the largest eigenvalue is the 
gradient direction. When the precise gradient magnitude and direction of each pixel are 
retrieved, those with local maximum gradient magnitude in their gradient direction are 
marked as potential edge points (Liu et al. 2007). These points are further checked and the 
isolated potential edge points are treated as noise and removed from edge point collection. 
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        (Eq.2)                                    (Eq.3)   

Not all the retrieved edge points are considered to construct long vertical lines. Instead, only 
edge points with horizontal gradient direction are used to vote in the Hough Transform. 
Moreover, at each edge point, not all possible pairs (ρ, θ) that satisfy Eq. 1 are enumerated 
and recorded. θ is fixed based on the edge point’s gradient direction obtained in the previous 
edge detection stage. Therefore, each edge point only votes once.  

Once lines are detected using the Hough-based approach described previously, there remains 
the need to associate line pairs together in order to find potential columns and other vertical 
structures in the image. This association is completed using geometric criteria based on line 
proximity, both horizontally and vertically. For a given reference line described by the 
coordinates (xref1,yref1) and (xref2,yref2) of its extremities and a line candidate given by 
(x1,y1) and (x2,y2), we define the distance based on Eq. 4. For all candidate lines, the distance 
to the reference line is computed. Subsequently, the candidate line with minimum distance is 
paired to the reference line. In our experiments, the value 0.6 is used. 

                                    (Eq. 4) 

Concrete Material Classifier 

The regions between long vertical line pairs are extracted, and the visual features of the 
regions are calculated. These visual features include the ratios of the normalized red to the 
normalized green and the normalized blue to the normalized green. Instead of using statistical 
concrete sample matching, an artificial neural network is created to classify whether the 
materials contained in the regions belong to concrete or not. The network is composed of 
three layers (one input layer, one hidden layer and one output layer). In the input layer, the 
network takes, and transfers them to the hidden layer, where one material classification 
boundary is created on each neuron-node. Then, these boundaries built on the neuron-nodes 
of the hidden layer are combined together using an AND operation in the output layer. A 
classification region in the feature space is formed. 

The network is trained through supervised learning. The visual features of training samples 
are first extracted and their output values of the network are manually specified as 1 for 
concrete samples and -1 for non-concrete samples. During the training process, the network 
automatically adjusts the neurons’ weights to minimize identification errors. The training is 
repeated thousands of times. Although it is possible to have more repetitions to further reduce 
error rates, the long training will result in an overtraining problem, which makes the network 
only memorize the peculiar patterns of the training samples. 

In cases where the appearance of the concrete columns cannot be described by the artificial 
neural network, thresholding in the RGB colorspace is performed to achieve concrete 
material classification. Specifically, the mean color intensity of the material sample is defined 
as well as the standard deviations tolerated along each channel (R, G, B). From these 
quantities, a parallelepiped is defined in the RGB colorspace. A pixel whose color intensity 
falls inside the parallelepiped is then classified as concrete while being classified as no-
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concrete when the color intensity falls outside.  This is a simple, fast and very efficient binary 
classification method that can be used to perform concrete material classification when the 
appearance model of the concrete samples remains unimodal. 

IMPLEMENTATION AND RESULTS 

The aforementioned improvements were implemented into a prototype developed using 
Microsoft Visual C++. OpenCV (Intel® Open Source Computer Vision Library) was used as 
the prototype’s main image processing library. The prototype run on a Laptop (HP Compaq 
2210b with Intel® Core™2 Duo Processor T7100 and 1G Memory) connected to a regular 
web camera (Logitech Pro 9000) (Figure 2). The video resolution is fixed at 960x720.  Figure 
3 shows concrete column detection results in a series of video frames. 

 
  Figure 2: Camera Set-up                  Figure 3: Concrete Column Detection Results from a Video  

True Positive (TP), False Positive (FP) and False Negative (FN) are figured out based on the 
results. In each video frame, TP is the number of correctly detected concrete columns; FP is 
the number of incorrectly detected concrete columns; and FN is the number of actual concrete 
columns that are not detected by the method. Therefore, the total number of actual concrete 
columns in each video frame can be represented as the sum of TP and FN (TP + FN), and the 
total number of detected concrete columns can be represented as the sum of TP and FP 
(TP+FP).  The detection precision of the method is calculated as TP / (TP+FP), which 
indicates the detection exactness or fidelity. High (low) detection precision means many 
(few) detected concrete columns are actual concrete columns. The detection recall of the 
method is calculated as TP / (TP+FN), which measures the detection completeness. High 
(low) detection recall means many (few) actual concrete columns are correctly detected. 
Table 1 illustrates the detection precision and recall ratios from five videos, where sample 
concrete column detection results are included. 

In order to demonstrate the new method improvements, the concrete column detection results 
obtained by the new method are compared with the results obtained with the previous method 
frame by frame (Zhu and Brilakis, 2010). Figure 4 shows both methods’ concrete column 
detection results from the video #1 in Table 1; and the corresponding TPs, FPs and FNs for 
the first one hundred video frames are illustrated in Figure 5.  
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Table 1: Detection precision and recall from five videos with samples included 

 

CONCLUSIONS 

The detection of structural elements from images/videos is useful for facilitating many 
building construction and maintenance applications including project progress monitoring, 
construction productivity analysis, and automated infrastructure visual inspection. The 
research in this area is under initial investigation. Most existing methods relied on either 
structural elements’ shape information or their color/texture information to perform detection. 
The sole reliance on shape information makes the methods unable to differentiate structural 
elements with other objects that have similar shapes. Similarly, the sole use of color and 
texture makes the methods fail in identifying two structural elements in a building, when 
these two structural elements have the same material and connect each other. 

The authors previously proposed a method of combining the boundary and color/texture 
information as concrete column detection cues.  Most concrete columns in images can be 
located when the optimal parameters of the method are experimentally set. However, it was 
found that the detection results were easily influenced by parameter settings. This makes the 
method unable to robustly detect concrete columns in live videos where the manual 
adjustment of parameters for each video frame is impossible. The method presented in this 
improves the previous one mainly from three aspects. First, edge points are located using the 
precise gradient magnitude and direction obtained from their color values. Secondly, the 
gradient direction information at each edge point is used in the Hough transform to construct 
column boundaries. Thirdly, an artificial neural network for concrete material classification is 
designed to replace traditional concrete sample matching. 

The method was tested using live videos indoors and outdoors. Preliminary test results 
indicated that three improvements can significantly reduce the method’s sensitivity to 
parameter setting for detecting concrete column in videos. Compared with the previous 
methods, the overall detection precision (represented as TP / (TP+FP)) and recall 
(represented as TP / (TP+FN)) of the improved method can reach 92.55% and 76.22%. 
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Figure 4: Detection Results for Both Methods from the Video #1 in Table 1 

 

Figure 5: True Positives, False Positives and False Negatives from the first 100 video frames 
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