
INTELLI(TP SYSTEMS FOR THE FJJL ATION OF BUILDING REGULATIONS

David Stone and David A. Wilcox

Building Directorate

Scottish Office

Edinburgh EH1 3SZ U.K.

1.0 Introduction

The Building Directorate of the Scottish Office is responsible for the

Building Standards (Scotland) Regulations . The Regulations are intended to

safeguard public health and safety and to ensure energy conservation in the

built environment and set out statutory, technical requirements for build-

ing design and construction . As a part of a major review programme the

Directorate has been developing intelligent, knowledge-based , systems for

use by the writers of regulations for the formulation and analysis of

information.

The problems inherent in drafting and maintaining large bodies of regula-

tory or statutory information have been well documented [1-7]. The sheer

volume of information involved can itself be daunting . The current Scot-

tish Regulations occupy just over five hundred pages of text and the

current revision process has involved contributions from seven authors.

The administrative problems of co-ordinating contributions, amending and

revising requirements following consultation and arranging, indexing and

cross-referencing material can be formidable . Until recently [3,4], there

have been few examples of attempts to use formal methods to assist in this

process of specifying and testing proposed regulations. The absence of an

acceptable , systematic framework for the development of material can lead,

despite the best intentions of authors , to regulations which are, at best,

idiosyncratic in style and, at worst, to regulations with in-built incon-

sistencies. Fenves et al[5,6,7] identified a range of such inconsistencies

which can appear in regulation texts . These include conflicting

740

requirements , incomplete rule sets, redundant conditions and circularities

in definition . One of the most common of such inconsistencies is an incom-

plete requirement. Consider , for example, the following fragment from the

fire regulations :-

"..the walls and ceilings of rooms having a floor area not more

than 4 sq.m . and not entered directly from a stairway enclosure

may have a surface classification of 3"

This at first reading appears to be an unambiguous requirement. It is,

however, not explicit on what is required when the floor area is greater

than 4 sq . m. or the room is entered directly from a stairway. A represen-

tation of the requirement as a decision tree reveals that two additional

rules are required :-

floor area <= 4

/Y / \N

entered from stair ?
Y/ N

?? Class 3

It can be shown that these kinds of inconsistencies are syntactic or logi-

cal properties of information and can be conzs.ciered independently from its

semantics or meaning . The significance of this is that, given a suitable

representation , the process of checking information for syntactic incon-

sistencies can be automated.

These problems of drafting regulations texts can have consequences for

their use in practice . The large volume of material to be searched, espe-

cially where it is poorly arranged, often fru& r-ao_ls easy access to infor-

mation. Idiosyncracies of drafting style can obscure an authors meaning

and intent whilst inadvertent errors and inconsistencies can lead to

differing interpretations of requirements by users and enforcing authori-

ties.

In the work described in this paper we have been attempting to address some

741

of these problems of drafting and maintaining bodies of regulatory texts by

developing a suitable, logic-based, computing environment for standax•:r

writers. We had a number of objectives in developing such an environment

Firstly, we wanted to devise a systematic framework for developing regula-

tions information which ensured an orderly accumulation of material and a

consistent style of presentation. Secondly, we wanted the system to act as

an intelligent critic of texts in terms of an ability to detect syntactic

errors. Finally, we wanted the output from this writer system to be in a

format that could be used directly in end-user applications such as expert

systems.

The system described has been implemented in a version of the logic pro-

gramming language Prolog and centres upon a formalisation of regulation

texts in a database of Prolog rules and assertions . Prolog offers a number

of advantages for the representation of codes, standards and statutory

information in general [8,9,10]. Regulations are by nature definitional in

character and rule orientated and , therefore, formalise quite readily into

Prolog's English-like syntax and clausal form. In addition, the inherent

modularity of Prolog clauses means that the definition of information can

proceed incrementally; general, top-level, requirements can be defined in

advance of the rules governing their lower-level, detailed, conditions. In

the context of regulations this permits the progressive refinement of

information during the formative stages of defining a requirement.

The value of Prolog, however, is not confined simply to a convenient

representation of regulations information. Prolog's in-built computational

strategy of logical inference enables the logical consequences of a partic-

ular formulation of a regulation requirement to be examined in a convenient

and systematic manner. By addressing a query to the system and, where

necessary, supplying a range of values for design variables, the behaviour

and effect of a set of requirements can be observed. This simulation of

the use in practice of a proposed regulation can indicate whether the

intent of a set of requirements has been properly conveyed in the expres-

sion of the rules.

There is a final advantage that can be argued for a Prolog representation

of regulations. The work cited earlier [Fenves ibid] defined a set of

742

properties which regulatory information should exhibit if it is to be con-

sidered properly expressed and free of inconsistencies. Fenves proposed a

range of formal representations for information which could be used as a

basis for testing for these required properties . These included decision

logic tables , decision trees and information networks . Prolog's list

structured clausal form naturally implements the logical features of these

formal representations . Prolog clauses can, therefore, themselves be

analysed to ensure the syntactic properties of a formalisation.

It is, however, unrealistic to expect users to communicate with a system

directly in terms of Prolog syntax and clauses. We have, therefore,

developed an interface which enables a writer to communicate with the sys-

tem using conventional English texts. The system provides a set of struc-

tured forms for entering texts which are based upon an analysis of the con-

tent and organisation of existing regulations information; this structure

of regulations information and the forms are described in section 2. The

texts entered on the forms are parsed by the system and mapped into an

equivalent set of Prolog rules and assertions; this process and the parser

are described in section 3. The system provides, in addition to the normal

data management functions for editing, searching and sorting material, a

set of functions for the analysis of the syntactic properties of the infor-

mation and for the display of its logical structore; these are described

in section 4. Finally, section 5 describes a system for end-users which

makes use of the output from the writer environmleint and which provides the

normal expert system functions of intelligent information retrieval, con-

sultative dialogue and explanation of reasoning. A summary of the func-

tions of the environments described is shown Lu'.1J zrati€:ally in Figure 1.

2.0 Structure of regulations information

The primary objective of building regulations is to ensure the health and

safety of people in and around buildings. The development of a statutory

requirement to meet this objective proceeds , ideally, through three levels

of information . These levels are, statements of intent , knowledge of

principle and the statutory requirements themselves. Statements of intent

are essentially policy statements and are declarations of the particular

743

DET 14OPMENT SNVON `ENT

specification of regulations : definition, testing
analysis, editing

analysis of information structure models of regulations' information
ingredience k dependence networks information hierarchies and types

validation of rule-base :-
consistent complete
unique acyclic
non-redundant

S18UCTt RULE-BABE
Prolog rules & facts

.. texts parsed
a formalised

texts indexed
for dialogue

REGULATION TEXTS k

possible interface with consultation : intelligent information retrieval
CAD/draughting systems for consultative dialogue
automated compliance checking explanation and justification

reports

ORM NOW,

end-user applications : intelligent information
systems for design practice

CONSULTATION E)&IROANENT

Figure 1 : Story of system functions

risk to be avoided or the condition to be assured. Knowledge of principle

involves defining the corpus of knowledge , whether derived from research,

empirical observation or simply good practice, which provides the basis for

translating the policy intent into an effective and enforceable require-

ment. The statutory requirements, the end product of this process, define

how the intent can be satisfied in terms of specific attributes of physical

parts of buildings or their spaces.

For a number of reasons detailed information on the supporting principles

of regulation requirements is rarely explicit in existing documentation.

structured information development
FORM : natural language text input

preferred sentence syntax
and vocabulary

744

The work described here, therefore, has focused on the intent and require-

ment levels of regulations information . We nevertheless believe that

knowledge of principle would be a necessary component of any comprehensive

regulations knowledge-base and essential to support satisfactory and mean-

ingful explanations in expert systems. The descriptions which follow,

however, omit discussion on the representation of principle.

The primary divisions of regulations information described, then, are

statements of intent and how these may be satisfied by a set of require-

ments . Typically, each requirement defines a required property for a given

building element or a required relationship between elements . This organi-

sation is essentially hierarchical in that it proceeds from a general

objective to detailed requirements . Thus any ran-:; intention may address a

range of elements and generic properties . in turn , each property may

address a range of specific requirements . For example, the intent of pro-

viding adequate means of escape from fire is satisfied by taking into

account , amongst other things , the width of escape routes and the width of

escape stairs . The requirements for the width of escape routes are met by

determining a minimum width for any one escape route and an aggregate width

for all escape routes.

In addition to these primary divisions of regulatory information further

sub-divisions or types of information can be identified . An important type

is information which in some way qualifies the primary intent or effect of

requirements . This qualifying information may be of two types . Firstly,

there is information which defines when a requirement applies and,

secondly , there is information which defines when an exception is permit-

ted. Other secondary information types include definitions of the meaning

of terms used in requirements and methods of rs {^asurnt for properties.

This limited set of information types seems adequate to characterise the

bulk of regulations information . It is not rest:,i crted, however , and it is

anticipated that other information types may be identified which augment or

extend the set. Figure 2 shows the regulati-xis information hierarchy

described.

The following section describes how this typology of regulations informa-

tion is used as a basis for the organisation of the user interface to the

745

-Intent

INTENT (string) if
SATISFIED (element property)
SATISFIED (element element relationship)

SATISFIED (

-Scope

SATISFIED () if
requirement (args, , ,)
requirement (ergs...)

requirement

-Standards

requirement () if

condition (ergs...)

Condition (args...)

qualifiers

APPLIES (rule head)
EXCEPT (rule head)

rdefiners

k,

condition (

Figure 2 : Regulations information hierarchy

DEFIED (constant ten)
EIBASIRE (constant ten)

system and to provide a systematic framework for the development of infor-

mation.

2.1 System forms

The device adopted to control communication between user and system in

terms of the creation and editing of regulation texts is that of the struc-

tured form. These are intended to be analogous to conventional forms on

paper and are structured to capture a particular level or type of informa-

tion. For example, the most commonly used form in the system is that for

entering the detailed requirements and appears on the terminal screen as in

Figure 3. The head of the form is concerned with information on the inten-

tion to which the requirement refers and the building element and generic

property or relationship which it addresses. The system ultimately uses

746

4

-Bequiresent fora
IN'f8] T : PEOPEETY :

MN, : RELATION :

r-Application

r-Require®ent

r-Exceptions

J

Figure 3 : Typical system form

this information to locate the requirement at the appropriate place in the

internal information structure. If no information is entered here the sys-

tem simply assumes that the requirements define conditions to some higher

level rule. The body of the form is for the text of the requirement itself

and any qualifying texts which define application or exception.

It is not necessary to enter all relevant information on a form at one ses-

sion. The requirement can be refined or €^ded to progressively. Simi-

larly, rules of application or exception c }ei^ composed after the require-

ment. In this way the forms can be regarded as convenient notepads for

incrementally defining information in a system atic and orderly fashion,

each form contributing material to the overall information hierarchy. The

user's logical view of the information he creates is always in terms of

these system forms. Thus if information is recalled for editing it is

recovered on the same form and in the same format in which it was entered.

At the moment the system recognises two further form types in addition to

the requirement form described above. These are for entering texts on

definitions of terms and methods of measurement respectively. Other forms

747

maybe designed and added to the system or existing ones modified as neces-

sary . For example, we are currently considering a form type for entering

information in a tabular format. A significant amount of regulations

information can be expressed more concisely in tables than in the

equivalent , extended text. However, whatever the eventual number of form

types available in the system their most important characteristic is seen

as providing an explicit and consistent means of compiling information in a

format which can be agreed by all contributors to the texts.

Texts entered on the forms are written as conventional English sentences.

There are, however , two disciplines of which a user must be aware when com-

posing his texts. The first of these is that different parts of the text

must be delineated by certain key words. For example , on the requirement

form described above the text describing application should be preceded by

the words "where" or "when". Similarly the requirement text should be del-

ineated by an "if......and......then" construction and any exception text

preceded by the phrase "except where". Simple facts do not require any

such key word delineation.

The second discipline is more subtle and is concerned with the expression

of requirements. This is influenced by the system parser which reads the

texts from the forms and maps them into Prolog clauses. In order to dis-

cuss this issue of expression further it is necessary to describe the stra-

tegy and behaviour of the system text parser.

3.0 System text parser

The design of the text parser exploits the fact that regulation texts are

concerned with a defined domain of information that exhibits a specific

information structure and typology and employs a relatively restricted

vocabulary. The parser is, then, a syntactic parser. Its understanding of

sentences is solely in terms of their structure or grammar . Three com-

ponents in texts are recognised by the parser; word patterns , phrases ,

and sentences . The parser contains a set of rules of grammar which deter-

mine how the word patterns may be assembled into phrases and phrases into

sentences.

748

The simplest component of a sentence , word patterns, are contained in a

system lexicon. Nine word pattern types are recognised and these are

listed below together with an identifying mnemonic and examples.

1) Determiner (DET)

2) Preposition (PRP)

3) Element (EIM)

4) Facet (FAC)

5) Descriptor (DES)

6) Predicate (PRD)

7) Operator (OPR)

8) Value (VAL)

9) Units (UNT)

the, every, a

of, in, from, on

room, escape route, door

side, part, lining

insulated , dangerous

occupant capacity , travel distance

is a, is less than

5, 100, yellow

mm, metre

Plurals are not stored in the lexicon . The parser recognises plurals in

texts and searches the lexicon only for the singular form.

Word patterns may be assembled into three primary and three secondary

phrase types . The three primary phrase types are element phrases (EP),

predicate phrases (PrP) and value phrases (VP). Element phrases have three

secondary phrase types. These are prepositional eases (PP), descriptive

phrases (DP) and facet rases (FP). This set of phrase types reflect the

specific character of the regulations domain which , as noted earlier, is

primarily concerned with assigning property or relationship values to

building elements.

The following description of the rules of grammar, whereby word patterns

may be assembled into phrases and phrases into seta-,tenses, adopts the con-

ventions suggested by Graham[11]. In this the grammar rule for an element

phrase is written :-

EP --> (FP*) DP (PP*)

where the parentheses indicate that the item is optional and the asterisk *

that any number of the item may occur. Thus an element phrase may consist

of any number of optional facet phrases followed by a descriptive phrase

followed by any number of optional prepositional phrases. The grammar

749

rules can, alternatively, be represented as transition networks in which

nodes represent states in a parsing sequence and arcs possible transitions

from one state to another. In this representation the element phrase above

would appear as : -

DP

Using this particular rule, for example, the phrase :-

"the side of the heating appliance next to the wall"

would be parsed as :-

<the side of (FP)> <the heating appliance (DP)> <next to the wall (PP)>

The complete set of grammar rules is shown in Figure 4, both in the rule

form. and as transition networks.

The top level of text which the parser recognises is the sentence, which

consists of an assembly of phrase types. The parser currently identifies

ten sentence types in regulation texts. These are listed below in the

grammar rule format :-

S(1,2) --> PrP EP (EP) VP

S(3,4) --> EP (EP) PrP EP

S(5,6,7,8) --> EP (EP) PrP (VP)

S(9,10) --> VP PrP EP (EP)

Text entered on a form is read and passed to a form processor which adopts

the following strategy. Firstly, the text is split into its constituent

sentences which are defined by the keyword delimiters. Each sentence is

then passed seperately to the parser. Initially the parser generates a set

of hypotheses about a sentence which involves matching word patterns in the

sentence with entries in the system lexicon. More than one hypothesis may

750

1.0 BLEW PHRASE

EP --> (FPt) DP (PP*)

1.1 Prepositional phrase

pp --) PEP EP

1.2 Descriptive phrase

DP --) (DRT) (DRS*) BIM (DES*)

1.3 Facet phrase

FP --) (DBT) (DESt) FAC (DESt) PEP :.

2.0 PREDICATE PHRASE

PrP --) (DBT) PRD

3.0 VALUE PHRASE

VP --) (OPR) VAL (UHT)

Figure 4 : Phrase grammar rules

DES, ,DBS

be formed for any sentence for two reasons. Firstly, word patterns in the

lexicon can be made up of one or more words, any of which may appear in

more than one pattern. Secondly, words may appear in more than one

category in the lexicon; "brick" for instance can be an element or a

descriptor.

Once the hypotheses are formed, the parser attempts to combine the word

patterns , using the phrase grammars, into a set of phrase types. In the

same way, once a set of phrases is established, the parser tries to match

the set to one of the sentence types in order to verify that a legitimate

sentence has been found . If the parser fails either to find a set of

751

phrase types or to match phrases to a sentence pattern then the text is

referred back to the user for modification . It is in this way that the

parser can exert an influence on the expression of regulation texts.

This issue of expression or style in technical writing is problematical.

It is accepted that regulatory texts, more especially those that will have

statutory force, should be as clear, concise and consistent in presentation

as ;possible. However, what constitutes clear and concise text can be sub-

jective and a matter of opinion. What the design of the parser can

reflect, through the choice of appropriate phrase and sentence grammars, is

some agreed, consensus, view of an acceptable style. In other words, the

parser can be tuned to coerce users into using a prefered grammatical

style.

Once a set of sentences has been successfully parsed they are passed to a

rule generator which maps the parsing into a set of equivalent Prolog

clauses . This mapping is performed at the phrase level of the sentences

and simply involves a set of transformation rules for mapping phrases into

Prolog syntax . For example, the simple sentence :-

"the minimum width of an escape route must be 1100 mm"

parses to the phrase set :-

<the minimum width (PP)><an escape route (EP)><must be 1100 (VP)>

and is transformed into the Prolog assertion :-

(minimum-width (escape route)(1100 mm))

The Prolog clause is added into the rule-base and, where appropriate, the

necessary linkages to the intent and satisfied levels in the rule-base

hierarchy are instantiated. The original text from the form is added to

the text files as a list of sentences, indexed from the Prolog rule-base.

A schematic representation of the text input process is shown in Figure 5.

752

FO S
tables -

measure.ent
definitions-

requirements-

if the number of seats in a seatway is less
than 23 and the seatway is not combined with
a gangway then the minimum width for the
seatway is 400_n

-FORK PROCESSOR
sentence generator :
(the number of seats in a seatway is less than 23)

sentence parser
(the number of (PP)>(seats in a seatway (EP)>(is less than 23 (VP))

rule generator
(number-of (seats seatway)(less than 23))

PROLOG RULE-EASE TEYT FILES

Figure 5 : Text input process

4.0 Analysis and validation of rule-sets

Once text has been entered into the system, parsed and mapped into the Pro-

log rule-base, the system offers a number of functions for examining the

structure of the information and for ensuring that it is free from syntac-

tic inconsistencies. These analytic and validation functions are carried

out on the Prolog formalisation of the texts. The logical structure of the

information can be examined in terms of two types of network, ingredience

networks and dependence networks [Fenves ibid]. An ingredience network

shows, for any given conclusion, all the items of information which

753

contribute to that conclusion. An example ingredience network, for the

determination of total aggregate width of escape stairs , is shown in Figure

6 below.

total aggregate width all escape stairs

....calculated width all escape stairs

....appropriate capacity storeys served

....number of storeys served

....building compartmented

....storeys seperated by compartment floor

....total occupant capacity all storeys

....greatest combined occupant capacity adjacent storeys

....greatest occupant capacity one storey

....minimum aggregate width all escape stairs

....minimum width one escape stair

....appropriate capacity

...... (sub-network as above)

....number of escape stairs

.... occupancy group

.... functional type

....occupant capacity

Figure 6 : Example ingredience network

Dependency networks are, in a sense , the reverse of ingredience networks.

Whereas ingredience networks scan down an information tree , dependency net-

works show particular paths up through the tree . That is to say, depen-

dency networks show, for any given item of information, all the possible

conclusions to which it contributes . For example , information defining the

occupancy classification of a building contributes to many different

requirements in the regulations . Occupancy group, therefore, determines

many dependency paths through the information network.

There are a number of advantages in this kind of analysis of the structure

of regulations information. Ingredience and dependency networks show,

graphically and in summary form, the logic and information flows implicit

754

in a body of text . This understanding of the structure of information can

be of considerable value when arranging , indexing and cross-referencing

texts in conventional documentation . By arranging texts in the order sug-

gested by an ingredience network, for example , a reader can be progres-

sively and logically introduced to the relevant information.

4.1 Validation

In addition to an analysis of the structure of the information the system

includes several functions for determining the syntactic or logical proper-

ties of information . The particular properties of interest are that the

information is :

- consistent

- complete

- unique

- acyclic

- non-redundant

System checks for consistence are concerned with ensuring that, in the

writing of requirements, a consistent terminology has been used. However,

a complete determination of consistency almost always requires some seman-

tic understanding of the text. For example, is a reference to "...internal

wall surfaces" intended to be the same as a ^° f r_no to "...internal sur-

faces of walls" ?. Given such semantic ambiguit.i.e:; there is a limit to the

analysis a solely syntactic consistency checker c;n achieve. The strategy

of the checker is, then, as follows. Given any requirement conclusion, the

checker scans up through the information hierarchy looking for possible

matches. A possible inconsistency is found. whcn there is similarity but

not an equivalence in the clause patterns. Thus the example cited above

would be detected and reported as a possible erro.9rr•

The properties of completeness and uniqueness in rule sets are complemen-

tary . Both are a consequence of there being variable values involved in

the resolution of a requirement . In regulations these variables are design

or context dependent and involve data items such as occupancy group, occu-

pant capacity , heights of storeys, floor areas and so forth. A set of

755

requirements can be shown to be complete if, for any given set of variable

values, the rule set always generates a conclusion. This is the problem

referred to in the introduction and illustrated as an incomplete decision

logic tree. The system strategy for checking for completeness is as fol--

lows. Rules are examined to detect possible branchings in their logic.

The rule-base is then scanned to check that rules with the appropriate

branchings exists. For simply negated conditions the check is relatively

simple. Other possible logical branchings are more difficult. For exam-

ple, the condition :-

(occupant-capacity (room)(greater than 100))

implies the alternative :-

(occupant-capacity (room)(less or equal 100))

The completeness checker resolves this by maintaining a dictionary of

pairs which record value operators and their logical opposites.

Determination that a rule set is unique is a more difficult problem. A set

of requirements can be said to be unique if, for any possible set of vari-

able values, the rule set generates one, and only one, conclusion. How-

ever, the possible combinations of values for even a small and bounded set

of condition variables can be large and formal testing for uniqueness,

therefore, computationally prohibitive. We have adopted a pragmatic

approach, therefore, to the problem of uniqueness which exploits Prolog's

inherent back-tracking strategy on failure. A formalisation of a set of

requirements is given a range of probable values to design variables. For

any given set of values, once a conclusion has been generated , the system

is forced to back-track and seek other solutions; if the formalisation is

unique, no further conclusions should be generated.

Circularity and redundancy in rule sets are simpler to define and test.

Checks for circularity involve scanning a rule hierarchy to ensure that it

terminates and is not a closed loop in which lower level rule conditions

reference higher level conclusions. Redundancy can be be characterised as

a problem of over definition of requirements and is defined as follows.

756

K

Where two rules have the same conclusion and differ in respect of only one

condition, then that condition is immaterial ; it may, therefore, be ommit-

ted and the rules merged.

5.0 Consultation environment : an end-user application

The development environment described above for the drafting of building

regulations generates a database of regulation texts together with a

corresponding formalisation of the requirements in a Prolog database of

rules and assertions . These databases may then be used as the basis for

the development of systems for use by end-users of regulations. Such sys-

tems may be expert system applications or, possibly, systems for automatic

compliance checking interfaced to CAD/draughting packages. This section

describes one such system which has been developed for the interrogation of

the regulations and the determination of requirements . The system

described has some of the characteristics of an expert system, that is to

say, it provides consultative dialogue and explanation and justification of

conclusions.

It is envisaged that users of this consultative system will include the

writers of regulations themselves. It was argued earlier that one of the

distinctive advantages of a Prolog formalisation of a set of regulation

requirements is that, when interrogated, it reveals the logical conse-

quences of a particular formulation. This ability to observe , as end-

users , the effect of a set of requirements is seen as an important part of

the testing and validation process. It is, moreover, a form of testing

which cannot easily be achieved with conventional texts and documentation.

The system developed and described here is menu driven. The user indicates

his interest either in terms of a subject , say means of escape from fire,

or an element , say escape routes, or an element property or relationship ,

say the width of escape routes or the arrangement of gangways and auditoria

seating. This user choice is composed internally into a query and

addressed to the Prolog rule-base. All internal reasoning within the sys-

tem is performed on the Prolog rules whilst all communication with the user

is conducted using the original input texts. Thus it is not necessary to

757

compose special dialogue texts or templates.

The process of resolving the query in the database relies upon Prolog's

normal backward chaining strategy. Any rule condition for which there is

no match in the rule-base is assumed to be a design variable and a value is

solicited from the user. At any point in a dialogue the user may ask the

system for supplementary information. He may, for instance, ask what a

valid answer is to a system query, or how a particular term is defined or

how a particular value is measured. Once the initial query is resolved the

system presents a report to the user. This contains the applicable

requirement together with any exceptions that are permitted and any other

relevant information that has been determined in answering the query. The

user may then choose to modify any of his answers and iterate through the

query process to examine alternative conclusions. Alternatively, the user

may request an explanation of the requirement. System strategy for expla-

nations is based upon the usual inference chain display , that is a pro-

gressive stepping down of a trace of the proof path [13]. It is recognised

that this is an imperfect strategy for explanations, in that it provides

the how but not the why of a conclusion [14]. It is our view that for

building regulations the additional representation of the principles of

requirements is necessary to support more satisfactory explanations. A

typical dialogue with the system described is shown in Figure 7.

The paper has described a prototype intelligent e-system for the formulation

of building regulations. The system is intended to provide a systematic

environment for the development, analysis and validation of regulatory

texts. Texts are entered into the system via a series of standard forms

which partition regulations information into its constituent parts. Texts

are parsed by the system, using preferred grammar rules, and formalised as

a set of Prolog rules and assertions. The consequent rule -base can be used

directly in end-user applications such as expert systems. A typical

advisory system for the determination of requirements has been described.

758

[system is checking all requirements for escape route widths]

SYSTEM is it true that there is an escape route on a ground storey
USER yes
SYSTEM is it true that the escape route is part of an escape route from an escape stairway ?
USER why ?
SYSTEM I need to know if the escape route is part of an escape route from an escape stairway in order to determine if

the requirement for the minimum width of the combined part of the escape route applies : is it true that the
escape route is part of a route from an escape stairway ?

USER yes
SYSTEM what is the actual width of the escape stairway ?
USER valid ?
SYSTEM checking the minimum width for the escape stairway : is it true that the escape stairway serves only one

storey ?
USER yes
SYSTEM what is the occupant capacity of that storey ?
USER 120
SYSTEM the minimum width for the escape stairway is 1100 mm : what is the actual width of the escape stairway ?
USER measure ?
SYSTEM the width of escape stairways is measured over the strings : handrails may intrude up to 100 ma over the stair

: what is the actual width of the escape stairway ?
USER 1250 n
SYSTEM the minimum width for the combined part of the escape route is 2300 mm

Figure 7 : Typical dialogue in consultation environment

759

7.0 References

1. B.N. Lewis , I.S. Horabin and C.P . Gene, Flow charts, logical trees and

algorithms for rules and regulations , Centre for Administrative Stu--

dies Occasional Paper No . 2, Her Majesty's Stationery Office, London,

(1967)

2. B.N. Lewis , Decision logic tables for algorithms and logical trees,

Centre for Administrative Studies Occasional Paper No . 12, Her

Majesty's Stationery Office , London, (1970)

3. F.I Stahl , R.N. Wright , S.J. Fenves and J.R . Harris, Expressing stan-

dards for outer-aided building design , Journal of Computer-Aided

Design 15 , (6), pp. 329-334, (1983)

4. J.S. Gero et al., AMUBC system final report, Computer Applications

Research Unit, Dept. of Architectural Science, University of Sydney,

(1984)

5. S.J. Fenves, K. Rankin and H.K. Tejuja, The structure of building

specifications , NBS Building Science Series No. 9, National Bureau of

Standards, Washington D.C. (1976)

6. S.J. Fenves and R.N. Wright, The representation and use of design

specifications, NBS Technical Note 940, National Bureau of Standards,

Washington D.C., (1977)

7. J.R Harris, Logical analysis of Building Code provisions , Proc. 1st

NBS/NCSBCS Joint Conference on Research and Innovation in the Building

Regulatory Process , National Bureau of Standards , Washington D.C.,

pp. 285-316, (1976)

8 M. Sergot, Representing legislation as logic programs , Department of

Computing, Imperial College of Science and Technology, London, (1985)

760

9. T. Bench-Capon and M. Sergot, Towards a rule based representation of

open texture in law , Department of Computing , Imperial College of Sci-

ence and Technology , London, (1985)

10. M. Sergot , Logic programming and its application in law, Department of

Computing , Imperial College of Science and Technology , London, (1985)

11. N. Graham , Natural language processing , in Artificial Intelligence,

pp. 209-219, Tab Books (1979)

12 G. Ritchie, H. Thomson, Natural language processing, in Artificial

Intelligence ed. T. O'Shea, M. Eisenstadt, pp. 358-388, Harper & Row

(1984).

13. D. Waterman et al., Expert systems for legal decision making, Expert

Systems, 3 , (4), pp. 212-226, (1986)

14. D.C. Berry and D. Broadbent, Expert systems and the man-machine inter-

face: the user interface, Expert Systems, 4 , (1), pp.18-27, (1987)

761

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

