
KNOWLEDGE REPRESENTATION FOR SCHEDULING CONSTRUCTIONS

M. A. Pollatschek

Technion

ABSTRACT

Knowledge may be conveniently represented in Expert Systems for

scheduling constructions by means of frames, or equivalently, by

assemblies of feature sets (pairs of the type NAME-OF-FEATURE,

VALUE-OF-FEATURE). Each frame is a description of a constraint

which is to be observed in a feasible schedule. Such a

representation is simple for the user but tends to take sizable

memory and extraction of information from it by pattern-matching

is time-consuming as well. We define the property of

decomposability of the feature sets. It may not be present in all

applications, but it deffinetely exists in the case of

construction scheduling. Utilizing decomposability leads to a

very sizable reduction of the knowledge base and opens a

possibility of efficient scanning of it. In this paper we define

decomposabilty and discuss its application to feature sets. We

also show how to compile the feature sets arising in constraction

scheduling so as to lead to extremely compact rules and efficient

scanning.

287

1. INTRODUCTION.

The CPM and PERT methods for scheduling in construction has

been well established for more than 20 years by now. They

provided good answers for revealing bottlenecks and are subject

to investigations still today (see e . g. [4]) . However, since

the introduction of these techniques two important developments

has arisen, namely the emergence of personal computers and expert

systems. Today we expect the scheduling software to do more than

just CPM or related tasks. It should also be somewhat

intelligent: it should check the human for plausible input and

create possible solutions, while all this should run on a

personal computer in reasonable time. There are research efforts

in this direction (see e . g. [5]), which show how to make

computers intelligent by building a suitable knowledge base. A

knowledge base is the data which describes rules. If a schedule

satisfies all the rules then it is acceptable or feasible.

However, there is no approach known to me which fully exploit the

specific situation in construction.

What we want to propose in this paper is a knowledge base for

construction scheduling which is compact enough to be

successfully employed from a personal computer, and at the same

time powerful like any professional expert system shell, which

utilizes the specific features characterizing our domain.

The special in our case is that we always consider a specific

job (like excavation) occurring in a time period (say in between

4 to 7 of February) and demanding given equipments and manpower.

288

Note that we have here a triad of the elements or atoms: job,

time, resource . We consider discrete time periods like days. It

is clear that the other elements are naturally discrete. We

denote the triad so :

[j, t, r]

where j is in the set {l..J}, t is in the set {l..T} and r is in

the set { l..R}, assuming .J kinds of jobs, T time -slots and R

sorts of resources while we assign natural numbers to the

specific elements.

Any schedule is an assembly of triads. However, not every

assembly is acceptable or feasible. For example we cannot start

building before excavation or we have to invest a given amount of

working days in a given job. The rules for inclusion or exclusion

of triads in a feasible schedule consist of the knowledge base.

We take advantage of the fact that a rule can be treated as a

constraint on the triads which may be in a feasible schedule. A

few examples will be given in the following sections.

We shall show that the rules can be represented in frames of

only two kinds , provided that a property which we shall define,

is satisfied. We claim that our problem can always be formulated

so that this property holds. The main result is that these frames

can be held very compactly in the random access memory of any

personal computer and these compact forms can be very efficiently

scanned to check a particular constraint.

2. KNOWLEDGE BASE IN FRAMES.

The term "frame " was coined by Minsky [6], and in the Handbook

of AI [1] is described as "declerative and procedural information

289

in predifined internal relations". For our present purposes

it can be imagined as an assembly of diads, where the first

element is the name of the feature and second is its value

(in general, frames can carry much richer information - see for

example (2)). The diads are sometimes called feature sets.

For example, consider the fact that no crane (say resource

5) can participate at any time in more than in one task. This

can be represnted in the following frame :

JOB SET : {1,..,J}

CONSIDER-MEMBERS-OF-JOB-SET : TOGETHER

TIME SET : {1,..,T}

CONSIDER-MEMBERS-OF-TIME-SET : SEPARATELY

RESOURCE SET : {5}

CONS IDER MEMBRS OF RESOURCE SET : NO MATTER

TYPE-OF-CONSTRAINT : LESS-THAN-OR-EQUAL

CONSTRAINT CONSTANT : 1

The SET feature refers to the atoms participating in the

constraint, while the CONSIDER feature defines the mode of

participation. The former has the appropriate set as the value

part and the value of the latter can be either TOGETHER or

SEPARATELY or NO MATTER. SEPARATELY means that for each member in

the set (in this example for each time-slot) we have separate

constraint, TOGETHER signifies that we take the members of the

set together in a single constraint. When the set has only one

member, TOGETHER and SEPARATELY implies the same, so we can

declare it as NO MATTER. Thus the above frame states that for

each t in {1,..T}, from all the J triads:

[1, t, 5] , [2, t, 5) , .., - [J, t, 5 1

only one or less may appear in any feasible schedule, or

290

equivalently , that resource # 5 (= crane) at any t (time-slot)

can do at most one job.

Another example : in the first 3 days (= time-slots)

equipment (= resource) # 8 and # 11 is not available. Here is

the frame describing the situation :

JOB_SET : {1,..,J}

CONSIDER-MEMBERS-OF-JOB-SET : SEPARATELY

TIME-SET : (1,2,3}

CONSIDER-MEMBERS-OF-TIME-SET : SEPARATELY

RESOURCE-SET : {8,11}

CONS IDER MEMBRS OF RESOURCE SET : SEPARATELY

TYPE-OF-CONSTRAINT : EQUAL

CONSTRAINT CONSTANT : 0

Here we add a further convention (not showing up in our previous

example), namely that if value SEPARATELY turns up more than

once we take the Cartesian product of all the sets considered

SEPARATELY . Thus the number of individual constraints here is

J x 3 x 2,

and they are : for each j in (1,..,J} and each t in (1,2,3} and

each r in {8,11} the number of appearance of the triad [j,t,r) is

zero, thus cannot be in any feasible schedule. In the same

fashion, if we have more than once TOGETHER in the frame, triads

formed from their Cartesian product will take part in a single

constraint. Therefore, the frame :

291

JOB SET : {3,4}

CONSIDER-MEMBERS-OF-JOB-SET : TOGETHER

TIME SET : {5,6}

CONSIDER-MEMBERS-OF-TIME-SET : TOGETHER

RESOURCE SET : {7,8}

CONS IDER MEMBRS OF RESOURCE SET : SEPARATELY

TYPE-OF-CONSTRAINT : EQUAL

CONSTRAINT CONSTANT : 1

indicates that exactly one of the four triads below is to be in

any feasible schedule :

[3, 5, 7] , [3, 6, 7] , [4, 5, 7 1 4, 6, 7

as well as from the following four ones :

[3, 5, 8] , [3, 6, 8] , [4, 5, 8 1 , [4, 6, 8] .

To sum up, we can list the triads of constraints we considered

up to now with the following convention: form the Cartesian

product of all the sets with TOGETHER feature value, and let this

set be denoted by X. Denote by Y the Certesian product of the

sets with SEPARATELY feature value. Then we have I Y I

constraints. (1.1 stands for the cardinality of the concerned

set, or its number of members. If the set is empty 1.1 is defined

as one - not zero as is usual in mathematics.) In each constraint

we have 1 X I triads, while each triad is a member in the Cartesian

product X x Y. The question is whether the triad set of any

constraint appearing in construction scheduling can be obtained

in such a way. This will be discussed in the following section.

292

3. THE PROPERTY OF DECOMPOSABILITY AND IMPLICATIVE CONSTRAINTS.

A very small example demonstrates that the way we constructed

the triad sets does not always work. Consider :

(1, 2, 3] [4, 5, 6 1.

It is clearly impossible to write this set as a Cartesian product

of JOB SET, TIME-SET and RESOURCE_SET. Hence, it is necessary to

define the property which enables the construction of the last

section, which we refer to as the property of decomposability.

A triad set has the property of decomposability if it can be

written as a Cartesian product of three sets, one containing the

jobs, one - the times and one - the resources. The operation of

the actual decomposation into job, time and resource sets will be

termed factorization, while the three sets will be called the

factors.

We have seen that there are instances having this property,

but the frames we have studied meant essentially the following

a given number of triads from the set should or should not be

present in any feasible schedule. Not all the constraints are of

this type, which will be referred as the enumerative kind. Let us

think about a job (say # 7) which can start at any time but needs

three resources (say # 1,2,3). We can formulate it as follows :

293

[7, t, 1] in schedule => (7, t, 2] in schedule for each t=1..T

[7, t, 1] in schedule => [7, t, 3] in schedule for each t=1..T

Here => means implication . We shall also say that the presence of

(or satisfying a constraint) triggered another constraint.

Thus , we need constraints describing implications when the

parameter is in some TIME_SET. Basing the formulation on the

examples of the previous section, we shall picture an implication

as one between two enumerative constraints . The only link between

the two are the time parameter or the constraint parameter (or

both), which are interpreted in the following meaning . Whatever

values of the time parameter , t or the constraint parameter, c

take in one triad set , they must take the same value in the other

one as well . However, we allow a constant displacement , d in the

time parameter of the second constraint. Thus , [., t, .] in the

first has counterpart [., t+d, .] in the second constraint.

This interpretation means that CONSIDER MEMBERS OF_TIME_SET's

value is SEPARATELY in implications.

294

The general form of the implicative constraint frame is as

follows :

JOB-SET-1

CONSIDER-MEMBERS-OF-JOB-SET-1

TIME-SET-1

CONSIDER-MEMBERS-OF-TIME-SET-1

RESOURCE-SET-1

CONSIDER MEMBRS_OF_RESOURCE_SET_1

TYPE_OF_CONSTRAINT_1

CONSTRAINT-CONSTANT-1

JOB-SET-2

CONSIDER-MEMBERS-OF-JOB-SET-2

TIME-SET-2

CONSIDER-MEMBERS-OF-TIME-SET-2

RESOURCE-SET-2

CONSIDER MEMBRS_OF_RESOURCE_SET_2

TYPE-OF-CONSTRAINT-2

CONSTRAINT-CONSTANT-2

TIME DISPLACEMENT

CONSTRAINT-PARAMETER-RANGE

Here enumerative constraint number 1 (the implicator) implies

number 2 (the implicand) and the CONSTRAINT_CONSTANT's value may

be besides a constant in the usual mathematical meaning also a

function of a single parameter, c in the

CONSTANT-PARAMETER-RANGE. For example, in the case of three jobs

needing three resources at one time, the first implication can be

written as the following frame:

295

JOB-SET-1 {7}

CONS IDER MEMBERS OF JOB SET 1 NO MATTER

TIME-SET-1 {1..T}

CONSIDER-MEMBERS-OF-TIME-SET-1 SEPARATELY

RESOURCE-SET-1 {1}

CONS IDER MEMBRS OF RESOURCE SET 1 NO MATTER

TYPE-OF-CONSTRAINT-1 EQUAL

CONSTRAINT-CONSTANT-1 c

JOB-SET-2 {7}

CONSIDER-MEMBERS-OF-JOB-SET-2 NO MATTER

TIME-SET-2 {1..T}

CONSIDER-MEMBERS-OF-TIME-SET-2 SEPARATELY

RESOURCE-SET-2 {2}

CONS IDER MEMBRS OF RESOURCE SET 2 NO MATTER

TYPE-OF-CONSTRAINT-2 GRATER-THAN-OR-EQUAL

CONSTRAINT-CONSTANT-2 c

TIME DISPLACEMENT 0

CONSTRAINT-PARAMETER-RANGE (0,1)

The frame means that the presence (if c=1) of resource # 1 with

job # 7 requires the presence of resource # 2 as well, but not

necessarily conversely.

We claim that any construction scheduling knowledge base can

be described by the two kinds of frames discussed above.

Unfortunately, we do not have the space to demonstrate it with

examples, but the reader can hopefully convince himself or

herself that our claim holds. In case of difficulty please,

contact the writer. The advantage of two fixed form of frames is

not only the parsimony itself, but rather as being the starting

point of further possibilities, that are impossible to attain

with general frames. They are the topic of the remaining

sections.

296

4. CONSISTENCY AND REDUCTION OF ENUMERATIVE FRAMES.

In real life applications the number of frames can be numerous

and their consistency are to be checked, i.e. to ascertain that

no two frames are in contradiction. It is also possible that one

frame implies the other or two frames can be combined to one; in

this case we can reduce the knowledge base. We shall discuss here

checking two frames for these reasons. (We shall not attempt to

check contradictions or implications resulting from more than two

frames.) This and the following section introduce the tests for

this purpose.

Clearly, two frames can be compared only if they are of the

same kind: either both enumerative or both implicative. First

consider enumerative frames. Denote by X(i) the Cartesian product

of sets with TOGETHER value, and by Y(i) those with SEPARATELY

value for frames # (i=) 1 and 2. For the discussion for the rest

of the paper NO MATTER will be given the SEPARATELY value.

297

Consider the following example of two frames :

JOB SET : (1,2)

CONSIDER-MEMBERS-OF-JOB-SET : SEPARATELY

TIME SET : {1,..,T}

CONSIDER-MEMBERS-OF-TIME-SET : SEPARATELY

RESOURCE SET : {5}

CONS IDER MEMBRS OF RESOURCE SET : NO MATTER

TYPE-OF-CONSTRAINT : LESS-THAN-OR-EQUAL

CONSTRAINT CONSTANT : 1

JOB SET : {7,9}

CONSIDER-MEMBERS-OF-JOB-SET : SEPARATELY

TIME SET : {1,..,T}

CONSIDER-MEMBERS-OF-TIME-SET : SEPARATELY

RESOURCE SET : {5}

CONS IDER MEMBRS OF RESOURCE SET : NO MATTER

TYPE-OF-CONSTRAINT : LESS-THAN-OR-EQUAL

CONSTRAINT CONSTANT : 1

Here X(1) and X(2) are both empty (NO MATTER is considered

always as SEPARATELY), Y(1) and Y(2) are the Cartesian product

of all the three sets in each frame and the constraints are the

same in both. Note that the following single frame represents the

above two :

298

JOB-SET : {1,2}

CONSIDER-MEMBERS-OF-JOB-SET : SEPARATELY

TIME SET : {6}

CONSIDER-MEMBERS-OF-TIME-SET : NO MATTER

RESOURCE SET : {1,2,3,4,5}

CONS IDER MEMBRS OF RESOURCE SET : TOGETHER

TYPE-OF-CONSTRAINT : LESS THAN

CONSTRAINT CONSTANT : 3

JOB SET : {2,5}

CONSIDER-MEMBERS-OF-JOB-SET : SEPARATELY

TIME SET : {1,2,3,4,5,6}

CONSIDER-MEMBERS-OF-TIME-SET : SEPARATELY

RESOURCE SET : {2,3,4,5}

CONS IDER MEMBRS OF RESOURCE SET : TOGETHER

TYPE-OF-CONSTRAINT : EQUAL

CONSTRAINT CONSTANT : 4

since the second requires among other things that all the four

triads .

[2, 6, 2], [2, 6, 3], [2, 6, 4], [2, 6, 5]

are in a feasible schedule while the first frame implies that at

most two only may appear.

This can be generalised by:

Test [2) Two frames contradict each other if the intersection of

their Y sets is not empty and fall into one of the four

cases in the following table (where TYPE =

TYPE-OF-CONSTRAINT, CONSTANT = CONSTRAINT CONSTANT, EQ =

equal, GE = greater or equal, LE = less than or equal)

Strictly greater or less type of constraints are not

discussed because they can be rewritten as GE or LE

types since the sets are discrete. The indicated set

inclusions are not strict, they also hold if the sets

are equal.

300

TYPE (l) TYPE(2) X(1)... CONSTANT(1) is ...

EQ LE includes ... greater than ...

GE LE includes ... greater than ...

EQ GE includes ... less than ...

EQ EQ is equal to ... not equal to ...

X(2) CONSTANT(2)

Finally, compare the following two frames :

JOB SET : {2,5}

CONSIDER-MEMBERS-OF-JOB-SET : SEPARATELY

TIME SET : {1,2,3,4,5,6}

CONSIDER-MEMBERS-OF-TIME-SET : SEPARATELY

RESOURCE SET : {1,2,3,4,5,6}

CONS IDER MEMBRS OF RESOURCE SET : TOGETHER

TYPE-OF-CONSTRAINT : LESS-THAN-OR-EQUAL

CONSTRAINT-CONSTANT

JOB-SET

CONSIDER-MEMBERS-OF-JOB-SET

TIME-SET

CONSIDER-MEMBERS-OF-TIME-SET

RESOURCE-SET

: 2

{2}

SEPARATELY

{l,3,5,6}

SEPARATELY

{2,3,4,5}

CONS IDER MEMBRS OF RESOURCE SET : TOGETHER

TYPE-OF-CONSTRAINT : LESS-THAN-OR-EQUAL

CONSTRAINT CONSTANT : 3

Here Y of the first includes Y of the second and about the X set

the opposite holds. A typical constraint of the second is that at

most three of the following triad set can appear in any feasible

schedule

301

[2, t, 2 1, [2, t, 3 1, [2, t, 4 1, [2, t, 5]

for t=1,3,5,6, while from the first frame it is known that at

most two triad can turn up from the set

[2, t, 1), [2, t, 2] , [2, t, 3], [2, t, 4], [2, t, 53, [2, t, 6]

for t=1,2,3,4 , 5,6. It is obvious that the first frame implies the

second.

This can be extended by:

Test [3] Frame # 1 is implied by (or follows from) frame # 2

(and therefore may be deleted) if Y(1) is included in

Y(2) and fall into one of the five cases in the

following table . (Notations and conventions of the

previous table apply also here.)

TYPE (1) TYPE (2) X(1) ... CONSTANT(1) is

LE LE is included in GE to ...

GE GE includes LE to ...

EQ EQ includes EQ to ...

LE EQ includes GE to ...

GE EQ includes LE to ...

X(2) CONSTANT(2)

5. CONSISTENCY AND REDUCTION OF IMPLICATIVE FRAMES.

Now consider the implicative frames. Here we have a pair X and

Y sets in each frame, so denote by X-1 (i) and Y-1(i) of the sets

in the implacator part and by X_2(i) and Y-2 (i) of those in the

implicand part, where i =l or 2 stands for the frame. The

analogous cases are based on the results of the previous

section.

302

We shall examine this kind of frames without examples. At

first we shall discuss when combination is possible . It may be

shown that the following holds:

Test [4] If in two frames all the corresponding values

concerning the CONSTRAINT values are the same as well

as X-1 (1) = X 1(2), X-2(l) = X 2(2), Y_k(l) = Y -k(2)

(where k = 1 or 2) and the relation between Y m(1) and

Y-m(2) is as under [1] (where m = 3 k) then they may

be combined, while the m-part of the combined frame is

formed as in [1].

Test [5] If the implicator part of frame # 1 follows from the

implicator part of frame # 2 for some t and c in the

sense of (3] and the implicand parts are in

contradiction for the same values of t and c in the

sense of [2], then frames # 1 and # 2 themselves are in

contradiction as well.

Test (6] If the implicator part of Frame # 1 follows from the

implicator part of frame # 2 in the sense of [3] for

each c and the implicand part of frame # 2 follows from

the implicand part of frame # 1 for each c in the sense

of [3] as well, then frame # 1 may be deleted since it

is implied by frame # 2.

The successive application of the six tests establishes the

consistency of the knowledge base as well as can reduce it to the

most compact size . However , even the reduced knowledge base can

be of considerable proportions . In the next section we shall see

that more drastic reduction is possible.

303

5. COMPRESSING THE FRAMES.

The two predefined frames allow us to represent them in a much

more compact fashion than in conventional general purpose

knowledge bases . The idea is to carry only the factors of the

triad sets. Since the factors are simple sets, they can be

represented in the memory as bit-strings, when 0 at position i

stands for the fact that member # i is not in.the set, while 1 at

position i signifies belonging. (This is the usual compilation

procedure for sets in the Pascal language, see [3].)

The space needed for a frame can be calculated from the

following table, supposing that J, T, R are each not over 255

maximum set size in most Pascal implementations) and that the

factors are represented as sets :

Feature Possible values Number of bits

for each feature

Frame-type Enumerative, 1

implicative

_SET Set J or T or R

CONSIDER SEPARATELY, TOGETHER 1

TYPE-OF- LE,GE,EQ 2

CONSTRAINT

CONSTRAINT Integer in enumerative 8

CONSTANT String in implicative varying

TIME- byte

DISPLACEMENT

PARAMETER- 2 integers 2x8

RANGE

A few notes are here in order. NO MATTER will be treated as

SEPARATELY, as previously, LE, GE, EQ stand for less than or

equal, greater than or equal and equal, respectively as was used

above in. As we observed there, strict inequalities can be

304

rewritten as LE or GE.

For 200 jobs, 100 days and 50 resources we need 362 bits in

a numerative and 740 bits (or somewhat more if the strings are

longer than one byte) in implicative constraint. This is 46 and

93 bytes, respectively. For comparison, only the feature names

take 166 and 377 bytes respectively, so we have an advantage over

a lisp-machine or similar workstation for an AI undertaking,

based on an interpreter, but the real gain is in the speed of

table-lookup. Before turning to this topic let finish with the

present example, by assuming 300 rules, half of which is

implicative. The memory requirement of such an application is

below 21 K bytes!

Now let us review the scanning of the knowledge base as

defined above. The basic problem is constraint checking, i.e., to

ascertain that a given triad does not violate a rule or triggers

a new one. The common wisdom in general purpose expert system is

pattern matching which is a necessarily lengthy procedure even

for Lisp machines. In our specific application this task can be

performed simply and efficiently as follows.

The basic problem boils down to the settling the two

subsequent questions : given a triad , [1] in which frames does it

turn up, and [2] does it couse in those frames a violation or a

triggering . It is relatively little work to answer question #2 if

we have a candidate list from question #1, which is the time

consuming part. This is the point that our set representation

comes handy . It is easy to see that a frame involves triad

[j, t, r]

if and only if all the folowing three conditions are satisfied

j belongs to its JOB-SET, t belongs to its TIME_SET and r belongs

to its RESOURCE SET.

305

However, checking this is easy with the above bit string

representation : all we have to do is to check bit # j in the

string of JOB_SET, bit # t in the string of TIME_SET and bit # t

in the string of RESOURCE_SET. The answer to question (1] is

affirmative only if all these three bits are 1. In Pascal, such a

check is language primitive, but it can be performed by any

language permitting AND operation between two strings. In the

case under discussion, one string is the SET and the other is a

sting of zeroes except at position # j or t or r. If at least one

AND operation results all 0, the answer to (1] is negative.

The last observation can save even more work: the lack of

relevance of a frame can be established by an AND operation

resulting 0 with any one _SET. Therefore it is worthwhile to

perform this operation in a certain order depending on the

knowledge base. We propose here such an ordering.

Consider the 0-1 string of each JOB_SET as J elements of a

row in a matrix where the rows come from either the enumerative

frames or the implicator part of the implicative ones. Let call

the fraction of ones in the matrix as J-density, while T-density

and R-density is similarly defined. Supposing that the units are

randomly distributed (which is of course a rough approximation

only), the the probability of obtaining a 0 by the AND operation

is given by the density. Since the ANDing with a single bit at

position n is equivalent with finding whether 0 or 1 is in this

position, which is a random-access operation, the property of the

sets for ANDing operation is irrelevant. Therefore the best is to

check the strings in order of increasing density.

306

7. CONCLUSIONS

We described in this paper an approach for storing the

knowledge base of a construction scheduling in the main memory of

a personal computer which is compact and efficient to scan. To

continue this research the further steps should be :

- to demonstrate on a few real-life scheduling problems that

the claim that the two kinds of frames are sufficient,

- to write a code incorporating the frame compression and

scanning techniques described above and

- to apply the code in actual scheduling problems evaluating

its usefulness and efficincy.

We plan to continue the research in these directions in the

future. Any contribution , suggestion or collaboration advancing

this plan will be thankfully acknowledged.

307

REFERENCES

[1] Avron, B. and Feigenbaum, E. A. (eds), Handbook of Artificial

Intelligence , William Kaufman , Los Altos, 1982.

[2] Bobrow, D . G. and Winograd, T., An Overview of KRL, a

Knowledge Representation Language,. Cognitive Science, Vol.

1, pp. 3-46 (1977).

[3] Boreland International, Turbo Pascal Version 3 . 0, 1985

[4] Karaa , F. A. and A . Y. Nasr, Resource Management in

Construction, Journal of Construction Engineering and

Management , Vol 112 , pp 346 -357 (1986)

(5] McGartland , M. R. and C. T. Hendrickson, Expert Systems for

Construction Project Monitoring , Journal of Construction

Engineering and Management , Vol 111, pp 293 -307 (1985)

[6] Minsky, M ., A Framework for Representing Knowledge, in P.

Winston (ed.) : The Psychology of Computers with vision,

McGraw Hill , N.Y., 1975.

308

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

