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Purpose Recently, various applications of robotic systems to construction sites have been tried. In this research, a 
mobile platform-based serial manipulator, the so called ‘mobile manipulator’, is employed for construction tasks 
such as material handling, beam assembly, welding, and so on. Generally, a serial manipulator has 6 DOF (de-
grees of freedom). The mobile manipulator suggested in this paper adds 2 or 3 DOF, so that there are a total of 8 
or 9 DOF. In 3-dimensional space, the minimum DOF for manipulation is 6. A manipulator that has more DOF than 
6 is called a manipulator with ‘redundancy’. While a manipulator with redundancy like the proposed mobile ma-
nipulator has several advantages such as large flexibility, singularity avoidance, easy obstacle avoidance, and so 
on, the redundancy resolution for optimal manipulation is not easy. In this research, modeling of the mobile manip-
ulator for redundancy resolution is studied. Method Since the suggested mobile manipulator is a MIMO(multi-input 
multi-output) robot system with 8 or 9 links, a state-space model is derived for redundancy resolution. Analysis of 
kinematics and dynamics for a serial manipulator and a mobile platform is performed. An integration of the serial 
manipulator and the mobile platform is used. Results & Discussion In this research, a state-space model for the 
proposed mobile manipulator is derived. This model enables redundancy resolution for optimal solution of 8 or 9 
DOF-robot system. In order to solve the redundancy resolution problem, a linear quadratic method, which is one of 
the conventional optimal control methods, or a reinforcement learning method can be used.  
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INTRODUCTION AND PRELIMINARIES 
Modern robot systems have broadened their working 
capacity and application areas by fully or partially 
automating industrial systems, especially manufac-
turing, assembly, palletizing, and so on, or cooperat-
ing such tasks with laborers. So far, robotic systems 
have been dominated by serial-typed manipulators 
with a fixed platform. However, as working process 
and configuration had been complicated and the 
types of tasks had significantly increased, conven-
tional manipulatory process which had been per-
formed on a fixed base encountered a marginal situ-
ation in aspect of cost and productivity. Recently, a 
novel manipulatory alternative has appeared, whose 
name is mobile manipulator which combines a robot-
ic manipulator with a mobile platform. It contains a 
mobile capacity so that it moves several working 
sites and extends the working space of the manipu-
lator infinitely. Palletizing process of huge elements 
such as Flat Panel Display (FPD) is one of the rep-
resentative applications of the mobile manipulator, 
where a serial manipulator for panel handling is 
combined with a longitudinal mobile cart for transfer-
ring the manipulator and the panel. Highway crack 
inspecting and sealing robot is another example of 
the mobile manipulator. It has a gantry-typed Carte-
sian manipulator with end-effectors for inspection 

and crack sealing, and a wheeled mobile platform 
which transports the manipulator. An unmanned 
excavator is also a mobile manipulator which is be-
ing largely used in construction fields. It joins a hy-
draulic serial manipulator with a caterpillar or tracked 
mobile base. 
This research deals with a wheeled mobile manipu-
lator (WMM) which combines a serial manipulator 
with a wheeled mobile platform. Generally, a serial 
manipulator which is operated in a 3-dimmensional 
space has 6 degrees of freedom (DOF). A wheeled 
mobile platform has 3 DOF since it can generate a 
translational and rotational motion in a plane. There-
fore a general mobile manipulator which combines 
two devices listed above comes to have total 9 DOF. 
However in a 3-dimentional space, only 6 DOF are 
required to uniquely and perfectly define a motion or 
a pose of an object. The general mobile manipulator 
which has 9 DOF contains 3 surplus DOF in aspect 
of generating 3-dimensional motion. It is called so-to-
speak a manipulator with redundancy or a redundant 
manipulator1-3. 
A system with redundancy such as the WMM has 
several advantages. First of all, it has a large flexibil-
ity to generate a desired motion of an end-effector 
since it has a variety of candidates of solution for a 
motion or a pose. It is advantageous to avoid obsta-



cles with the surplus DOF. It is possible to evade a 
singularity which makes the manipulation unstable. 
Generating a desired motion by operating a 9 DOF 
system in 3-dimentional space, where only 6 DOF 
are need to define a motion, there exist not a unique 
solution but an infinite number of solutions due to the 
surplus DOF4,5. To choose or find one solution which 
is optimal to performance requirements among infi-
nite solutions which exist in a redundant system 
problem is called redundancy resolution6,7. 
In this paper, a state-space modeling of a WMM is 
performed, which is a preliminary work to redundan-
cy resolution of the WMM. Due to complexity prob-
lem, instead of the general 9 DOF WMM, a reduced 
manipulator which consists of a differentially driven 
wheeled mobile platform with two wheels and a re-
duced serial manipulator with two links and two revo-
lute joints. It is quite straightforward and tedious to 
expend the reduced WMM to the general system. 
Firstly, in this paper, a kinematic modeling of the 
WMM is conducted, which considers only the motion 
of the system. Then, a dynamic model of the WMM 
is derived, which deals with both the motion and 
force of the system. Finally, concluding remarks and 
further research topics are mentioned. 
 
KINEMATIC MODELING OF WMM 
Fig.1 shows a schematic diagram of a WMM which 
is the target system of this research. A body fixed 
frame { }xy  attached on the mobile platform is a local 
coordinate system whose origin is located on the 
center of mobile platform mass and represented by 
R  in terms of a global coordinate system{ }XY . The 

mobile platform is transported by two independently 
driven wheels attached on both sides. The distance 
between the center of mobile platform mass and 
each wheel along the wheel axis direction is defined 
as a . The perpendicular distance from the center of 
mobile platform mass to the wheel axis is b . Con-
sidering only the mobile platform, the system can be 
expressed by the following generalized coordinates 
with five variables. 
 

[ ]T
r r r R Lx y θ φ φ=q  (1) 

 
where ( , )r rx y  is an absolute position of the center of 

mass, θ  is an absolute rotation angle of the mobile 
platform, and Rφ  and Lφ  are angular displacements 
of the right and left wheels. Assuming that the mobile 
platform is a nonholonomic system, there exist three 
constraints caused by non-slip condition of the 
wheels. The first constraint is that the lateral direc-
tion velocity of the wheels is confined to be zero (Eq. 
(2)). The second and third constraints are originated 
from an assumption that no slip happens during 
forward or backward rolling motion of the wheels 

(Eqs. (3) and (4)). These constraints can be formu-
lated as three equations explaining a wheel’s behav-
ior and a velocity relationship between the mobile 
platform and wheels like follows. 
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Fig.1. Schematic diagram of the WMM kinematics  
 

cos sinr r Rx y a rθ θ θ φ+ + =    (3) 
 

cos sinr r Lx y a rθ θ θ φ+ − =    (4) 
 
where r is a radius of the wheel. 
As shown in Fig.1, the WMM is configured by a 
combination of a serial manipulator with two links 
and two revolute joints and a mobile platform. It is 
assumed that the attached manipulator generates 
only 2-dimensional planar motion. In Fig.1, 1l  and 2l  

are lengths of link 1 and link 2, 1cl  and 2cl  are posi-

tions of center of mass of link 1 and link 2, and 1φ  

and 2φ  are absolute link angles with respect to the 

global coordinate system { }XY . The full set of ex-

tended generalized coordinates which add the serial 
manipulator configuration variables to the mobile 
platform configuration variables is represented by 
following vector. 
 

1 2[ ]T
r r R Lx y θ φ φ φ φ=q  (5) 

 
Not only the position and velocity kinematic equa-
tions of the WMM but also the dynamic equation is 
derived with above extended generalized coordi-
nates. Three nonholonomic constraints derived 
above are rearranged like follows.  
 

( ) 0=C q q  (6) 
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( 3)u =  is the number of constraints and ( 7)v =  is the 

number of extended generalized coordinates. From 
above relationship, a proper null-space matrix T  
which satisfies 0=CT  can be obtained. In the 
meanwhile, a velocity vector of the extended gener-
alized coordinates is expressed as a vector with 

( )w u v= −  independent velocities like follows.  
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where 
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With respect to the global coordinate system, as-
suming a planar coordinate of the end-effector is a 
task-space position Z , a Jacobian matrix J  which 
relates the joint velocity q  of the WMM to the task-
space velocity Z  is defined by Eq.(9). 
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s  is the number of coordinates of the planar position 
of the end-effector. Substituting Eq.(7) to Eq.(9), a 
transformed Jacobian *

s w×J  is obtained, which relates 
the task-space of the end-effector to the independent 
joint velocities by Eq.(10) 
 

*
1 1s w× ×= =Z JTα J α   (10) 

 
DYNAMIC MODELING OF WMM 
In order to derive a governing equation for dynamic 
analysis for the WMM, Lagrangian formulation is 

utilized. The WMM is composed of five distinct rigid 
bodies, mobile platform, right wheel, left wheel, ma-
nipulator link 1 and manipulator link 2. It is assumed 
that two wheels of the mobile platform and two revo-
lute joints of the serial manipulator have ideal linear 
damping. These four elements are actuators to gen-
erate motion and their torques are produced by ideal  
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Fig.2. Schematic diagram of the WMM dynamics  
 
Table 1. Dynamic parameters of WMM 

 
torque-controlled motors. The end-effector attached 
to the end of the manipulator is connected to the 
external environment with a pin-joint. Therefore, the 
interaction between the end-effector and the envi-
ronment doesn’t cause torque but force with x-y 
components. With the help of aforementioned condi-
tions and Fig.2, the dynamic equation of motion of 
the WMM is derived like follows.  
 

Parameters Description 

wI  Wheel inertia 
,L Rc c  Wheel damping 

wm  Wheel mass 

cm  Base mass 

cI  Base inertia 

1I  Link1 inertia 

2I  Link2 inertia 

1m  Link1 mass 

2m  Link2 mass 

1 2,d d  Joint damping at points  aR   and  1R  

,R Lτ τ  Wheel input torque 

1 2,τ τ  Motor torque at points  aR   and  1R  

,x yF F  Environmental force at the end-effector 



1 2( ) ( , )
0
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where M  is a u v×  inertia matrix expressed by the 
extended generalized coordinates, ( , )K q q  repre-
sents Coriolis, centrifugal and gravitational forces, 

1 2( [ ] )T
R Lτ τ τ τ=τ  means actuator input torques that 

drive two wheels and two link joints and 
( [ ] )T

x yF F=F  is an external force which is trans-

ferred to the end-effector. 1G matrix maps the active 

input torques to joint-space and 2G  matrix maps the 

task-space end-effector force F  to joint-space. λ  is 
a Lagrangian multiplier. Dynamic parameters are 
given in Table1 and detailed information of matrix M , 
K , 1G , and 2G  is like follows. 
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CONCLUDING REMARKS 
In this research, kinematic and dynamic modeling of 
the WMM was performed which is a preliminary work 
for redundancy resolution. Generalized coordinates 
were defined on joint-space and a position kinematic 
equation was derived, which relates the joint varia-
bles of the robotic system to task-space variables for 
an end-effector position. Based on these derivations, 
a Jacobian that is a velocity relationship of the two 
spaces was obtained. Finally a dynamic equation of 
motion was derived, which is a correlation between 
an external force to the end-effector in terms of task-
space and an internal torque of the robot joints in 
terms of joint-space. Above governing equations 
were calculated based on three non-slip constraints 
that are given under an assumption that the WMM is 
a nonholonomic system. For further research, de-
tailed optimal selection issues with various redun-
dancy resolution methodologies will be performed 
using kinematic and dynamic equations obtained by 
this paper. In addition, to derive some governing 
equations for omni-directional mobile manipulator 
(OMM), which is another alternative to replace the 
nonholomic WMM with, will be studied. 
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