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Purpose   A new method for the design of experiments (DOE) or sampling technique is proposed, using a distance 
weight function and the k-means theory. The radial basis function neural network metamodelling approach1 is used to 
evaluate the performance of the proposed DOE by using an n-degree of test function, applied to the complex nonlinear 
problem of spatial distribution of air pollutants. A comparison study is included to analyse the performance of the pro-
posed technique against available methods such as the n-level full fractional design method and the Latin Hypercube 
Design method.  Method   For one design objective and n number of input design variables, a set of input-output training 
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maximum number of the data points. Each data point has its own unique weight obtained from the distance factors be-
tween point pi and a common reference point c, by using the Euclidean distance measure (i.e. 

),( cpd i
i

). The weights 

represent the distinct patterns between each data point. A neighbour can be clustered as a group where the data point is 
taken as a candidate. To generalise the solution, the pairs of the input and output data points are combined to become 
the design space, given as { }YXS ;=

.The solution can be simplified further if we set a common reference centre at the 

coordinate origin by firstly normalising the design space to [ ] 11,1ˆ +−= nS
. A list of distance weight values, 

{ }midddD i ,...,2,1|,..., 21 ==
, is then sorted and clustered by using an available clustering algorithm. In this work, the k-

means algorithm based on the Voronoi iteration2 is used due to its fast computation especially in the 1-dimensional case. 
Here, the initial points are replicated randomly, to expectedly result in a global minimum solution. The maximum number 
of k corresponds to the number data points that will be sampled.  Results & Discussion  To initially validate the accu-
racy of the scheme, a known test function called as “Hock–Schittkowski Problem 100” is used in which this nonlinear 
problem involving of 7 variables, 1 objective, and 4 constraints. A prepared dataset which generated randomly, are sam-
pled at different sample size N, and then mapped using RBFNN metamodel.  
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INTRODUCTION 
Nowadays, simulation modelling becomes a popular 
tool for the analysis of complex systems’ behaviour. 
Its popularity is due to the flexibility in the implemen-
tation and the ability to model a real world physical 
system to a certain detail. A deterministic type model 
has shown good performance in its estimation, but 
encounters difficulties in the development and highly 
computational cost in the execution. Thus, meta-
models (or surrogate models) have been suggested 
to be an approximate model that can adequately 
represent the intrinsically non-linear and complex 
relationship between the system’s input and output. 
 
Before executing the function approximation in 
metamodelling, it is important to select the design 

points in the domain which is generally termed as 
sampling, experimental design, or design of experi-
ment (DOE). The aim of any sampling method is to 
effectively cover the design space and to gather the 
essential information of the design space character-
istics. These sets of independent design variable 
values from the data points are utilised to produce 
the values of dependent variables (i.e. responses), in 
a process known as computer experiments. Various 
sampling approaches appeared in the literature such 
as the full factorial design technique, stratified ran-
dom sampling, Latin square sampling and Latin Hy-
percube sampling1.  
This paper presents a new strategy for a metamodel 
DOE, based on the distance measure and clustering 
process, referred to as the weighted clustering de-
sign (WCD) throughout this paper. Here we employ 



the proposed sampling method to develop a radial 
basis function neural network (RBFNN) metamodel 
as a function approximator. We first test the scheme 
validity with a known nonlinear function. The air pol-
lutant estimation problem is then tackled by using the 
improved metamodel.  
The rest of this paper is arranged as follows. An 
overview on experimental design is discussed after 
the introduction. The following section describes in 
detail the methodology which covers the proposed 
sampling scheme, the implementation of RBFNN as 
a metamodel, and the performance measure to vali-
date the model. The next section presents the results 
together with a discussion on the underlying simula-
tion problem, followed by some concluding remarks 
given in the final section. 
 
OVERVIEW OF SAMPLING SCHEME 
The primitive experimental design involves the selec-
tion of few data points located at the bounds of the 
design space, and is called the full factorial array. 
This is a physical trial method in which the effective-
ness of using these points remains very poor. In the 
computers' era, the experimentation became less 
costly and the space filling experimental designs 
started to be used. The full factorial design (FFD) is 
the simplest sampling approach which is the most 
general and standard DOE used over the years for 
the function approximation purpose1,2. In FFD, the 
bounds of all the design variables are firstly identified 
and then discretised into equal intervals within the 
design space. For example, for n-level FFD, the total 
n points selected for each design variable v are 
equally spaced over the range. It means the number 
of design points will be nv. This approach is also 
known as the rectangular grid point sampling.  
 
Another space-filling method called the Plain Monte 
Carlo sampling involves using a random number 
generator to select the points to reduce the number 
of points in a trial set. While being computationally-
efficient, Monte Carlo sampling provides no robust-
ness in finding a space filling set of points3. 
The Latin Hypercube Design (LHD), proposed by 
McKay et al.4, is a more sophisticated sampling 
scheme and continuously being researched. Instead 
of using all equally-spaced points in the allowable 
design space, these points are effectively scattered, 
spanning the whole domain. For selection of n num-
ber of sample points, the range of each design vari-
able is divided into the same number of non-
overlapping regions based on the type of probability 
distribution function (PDF) specified, which can be 
either normal or uniform PDF. One segment is cho-
sen from each region at random to form each trial 
point. As there is no guarantee for a balanced set to 
be obtained from the points, many researchers have 

extended the McKay method into optimal LHD5, 
inherited LHD6, and hybrid LHD7. 
 
METHODOLOGY 
Metamodelling research has been a major research 
field during the last decade8,9. Basically, metamodels 
are constructed in three stages, i.e. preparing the 
data and choosing the modelling approach; parame-
ter estimation and training; and model validation1 
and testing. In neural network based metamodelling, 
the data sampling is necessary to reduce the compu-
tational burden especially when dealing with a large 
dataset. The methodology of the proposed sampling 
scheme is described in the following subsection. 
 
The proposed sampling scheme 
Here, a dataset are normally divided into two, one for 
the training (trial) and another one for the testing. If 
we have a set of input-output training dataset de-
noted by x and y, a mapping solution is given as 
follows: 

 { }mixfyx iii ,...,2,1)( )()()( ==→ , (1) 
where m is the maximum number of the data points. 
For the case of one design objective and n number 
of input design variables, the input and output are 
given as in the following equations, 
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For a 3-dimensional problem, the distribution of four 
data points is illustrated in Fig.1. Each data point has 
its own unique weight by measuring the distance 
weight factors from a common reference point c. By 
using the Euclidean distance measure, the distance 
between point p1 and c is mathematically written as, 
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or generally, the weight for all data points of the n-
dimensional problem is given as follows: 
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Fig.1. A distribution of data points in 3-dimensional 
space. 
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The weights could represent the distinct patterns 
between each data point, and some neighbour points 
may have about similar weight that could be clus-
tered as a group and one point is taken as a candi-
date.  

To generalise the solution, the pairs of the input and 
output data points are combined to become the de-
sign space S in this evaluation, which is given as 

  { }YXS ;= . (5) 
Hence, the dimension of distance measures for one 
targeted output now becomes (n+1)×m. The solution 
(4) can be simplified further if we set a common 
reference centre at the origin 0 by firstly normalising 
the design space S to the minimum of -1 and to the 
maximum of 1, i.e. 

  [ ] mnS ×+−= )1(1,1' , (6) 
as shown in Fig.1. Thus, solution (4) now becomes 
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where jx̂  is the normalised values of the design 

space S which has been incorporated by the output 
variable. 

A list of distance weight values  

  { }midddD i ,...,2,1|,..., 21 ==  (8) 
is then sorted and clustered by using available clus-
tering algorithm. In this work, a well-known k-means 
algorithm based on Voronoi iterations10 is used due 
to its fast computation especially for the 1-dimension 
case. It uses a two-phase iterative algorithm to 
minimise the sum of point-to-centroid distances, 
summed over all k clusters. There are several meth-
ods to choose the initial k-means points. In this 
evaluation, we replicate them randomly, which typi-
cally results in a solution that is a global minimum11. 
The maximum number of cluster k corresponds to 
the number data points to be sampled. The determi-
nation of an appropriate k value for this scheme is 
demonstrated in this work.  

Radial basis function network as metamodel 
There are a number of metamodelling techniques 
that have been researched such as polynomial re-
gression, splines, neural networks, Kriging and sup-
port vector machine8,12. A few attempts have been 
made to employ radial basis function neural net-
works as the metamodelling technique (see e.g. by 
Liu et al.13 and Ma et al.14). 

The RBFNN is a special type of feed forward neural 
network architecture which consists of an input layer, 
a hidden layer and an output layer. The neurons in 
the hidden layer work are the processing elements to 
perform a non-linear transformation of the input data 

to approximate the output data. The RBFNN’s q 
outputs corresponding to the input vector lx ℜ∈  is 
mathematically represented as follows: 
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where ( )⋅φ  is a basis function, 
2
⋅  denotes the 

Euclidean norm, wki  are the weights in the output 
layer, n is the number of neurons (and centres) in the 
hidden layer and n

kc ℜ∈  are the RBF centres in the 

input vector space. 

In practice, several forms of the basis function φ  are 
used for RBF models, and Gaussian is probably the 
most popular one because it has attractive mathe-
matical properties of universal and best approxima-
tion, and its bell shape is easy to control with the 
spread parameter σ . In this work, a generalised 
radial basis function neural network (RBFNN) ap-
proach is considered, in which fixed biases b  are 
added at the outputs to solve the ill-posed problem 
relating to singularity (e.g. an approach to regularise 
the network)15. For a Gaussian GRBFNN, equation 
(9) becomes 
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At the hidden and output layer, the position of the 
radial basis centres, the variance (spread) and the 
associated linear weights are all unknown parame-
ters that have to be updated. A supervised learning 
process using a forward selection procedure16 is 
implemented to select the position of the centres and 
a linear least square method is used to train the 
weights and biases of the output layer. 

Metamodel validation 
The accuracy of the estimation via metamodelling is 
evaluated to ensure that the metamodel reflects the 
actual model. In this evaluation, some statistical in-
dexes will be used for the residual errors, including 
the root mean square error (RMSE), the mean abso-
lute error (MAE) and the determination coefficient 
( 2R ), and to use the index of agreement, 2d , a 
measure expressing the degree to which predictions 
are error-free17. 
 
TEST RESULTS AND ANALYSIS 
To evaluate the effectiveness of the proposed ap-
proach, we first use a benchmark test problem, 
namely, the Problem 100 from Hock–Schittkowski18, 
and then apply it to the problem of estimating the 
spatial distribution of the ozone concentration in air 
pollution modelling. For each problem considered, 
different sample sizes and fitting design methods 
including weighted clustering design (WCD), n-level 
full factorial design (n-FFD) and Latin Hypercube 
design (LHD), are considered. Some of the perform-



ance measures, the size of RBFNN metamodel and 
the total execution time for the simulations are re-
corded. 

Benchmark Test: Multidimensional function 
The Hock–Schittkowski Problem 100 is a test prob-
lem consisting of seven variables, one objective, and 
four constraints19. In this analysis, we consider only 
the objective function without constraints. The design 
domain for this function is given by  
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where  1010 ≤≤− ix . To prepare a full large dataset, 

a series of input-output data points are randomly 
generated (e.g. using ‘randn’ code in Matlab) within 
the design space in which the maximum number of 
data points is set to 4000.  

By using three experimental design methods, the 
prepared data are sampled at a different sample 
size, N. Each set of the sampled data is then 
mapped using the RBFNN metamodel by setting the 
spread parameter as 4 and the prescribed mse goal 
as 0.001 for all the testings.  

Table 1 shows the results for three types of analysis 
which involve the performance indexes, the number 
of hidden neurons used to construct the neural net-
work and also the total simulation time. For the pro-
posed sampling scheme, the performance based on 

2R  and 2d  is increased with the increment corre-
sponding to N, which approaches 1 for the possible 
best performance. However, to compromise between 
the performance and the complexity of the approxi-
mate model, for a large dataset, the sample size N 
may be selected at between 25% and 30% from the 
full dataset. The reason is that no significant im-
provement on the performance is expected for N 
greater than this value, due to saturation. Notably, 
the produced RMSE and the MAE values are rela-
tively small (about ±4% errors) as compared to the 
maximum output value for the test problem.  

Next, the other two design methods are executed by 
using the same metamodel configurations. For the n-
level FFD method, each design variable is assigned 
with a different number of levels as to generate the 
different sampling sizes. For example, the [2 3 3 2 3 
3 3] configuration will give 972 sampling points’ loca-
tion, which is the product of the number of levels for 
each dimension. This design approach is in a uni-
form fashion, by means of a rectangular grid of 
points. For the LHD technique, a ‘maximin’ metric, 
introduced by Johnson et al.20, is considered in this 
study. This approach yields a randomised sampling 
plan with projections uniformly-spread onto the axes. 

As compared to the n-level FFD, at the same sample 
size, the proposed scheme (i.e. WCD) shows a cer-
tain improvement in the size of constructed neural 
networks, and produces nearly similar performance 
on the error indications. In the other comparison, the 
LHD requires about similar network size as WCD, 
however exhibiting poor performance. Thus, in gen-
eral, by compromising between the computational 
cost (i.e. execution time and the network size) and 
the performance of the model, the WCD method 
offers a better sampling solution. An example of the 
estimated output for the case when the sample size 
is 30 percent of the full dataset is shown in Fig. 2. 
Therein, the constructed metamodel is able to accu-

Table 1. Metamodel comparison results for Test 1 problem. (Note: full dataset number, Nfull=4000, sp=4, mse=0.001) 

No. Design 
name Details Sample 

size, N 
% 

of N 
Performance measure Network 

size Simulation 
time (s) RMSE MAE R2 d2  

1. WCD  400 10 1.79E06 1.23E06 0.443 0.861 298 42 
2.   600 15 1.09E06 7.39E05 0.793 0.948 329 57 
3.   1000 25 4.84E05 3.39E05 0.960 0.990 330 93 
4.   1400 35 4.18E05 2.98E05 0.971 0.993 333 126 
5.   1800 45 3.69E05 2.68E05 0.976 0.994 333 173 
6.   2200 55 3.46E05 2.58E05 0.980 0.995 337 250 
7.   2800 70 3.14E05 2.32E05 0.983 0.996 341 389 
8.   3400 85 3.26E05  2.40E05 0.982 0.995 342 495 
9. n-FFD [2 3 3 2 3 3 3] 972 24 4.66E05  3.27E05 0.962 0.991 351 99 

10. ‘n-levels’ [2 3 3 3 3 3 3] 1458 36 3.70E05  2.66E06 0.976  0.994 349 143 
11. LHD with ‘maximin’ 

criterion 
1000 25 5.74E05  3.93E05 0.943  0.986 334  89 

12.  1400 35 5.02E05  3.38E05 0.956  0.989 334  127 
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Fig.2. The estimation output for 100 test data using 
N=1000 (i.e. case no. 3 in Table. 1) 
 



rately approximate the true values at most of the 
points, except for the lower parts (i.e. less than 0 
level). 
 
Application: Spatial distribution of air pollutant 
level 
Protecting air quality is essential for the benefits to 
the public as well as the environment. The air pollu-
tion may cause many health problems such as lung 
disease, asthma and also associated with cancer for 
some pollutants. It is also affecting the environment 
by causing some harmful influence to soil, crops, 
forest, water and wildlife. Thus, authorities are re-
sponsible to determine a suitable management pol-
icy to protect the air quality. One effective approach 
is by using data measurement from various monitor-
ing stations across the region. Unfortunately, this is 
limited to the location of interest. Spatial distribution 
estimation is an alternative solution to overcome this 
issue. 

In this work, the proposed method of experimental 
design is applied to spatial estimation for the surface 
ozone (O3), recognised as an air pollutant in the 
tropospheric layer of the atmosphere, of an urban 
area. This is a very nonlinear and complex estima-
tion task that requires expensive computation. Typi-
cally, the dispersion models are used to handle this 
task, however, they need special software and re-
quire a long time in the computational execution. 
Therefore, a metamodel approach based on neural 
networks17 can be used to avoid this complexity as 
well as to reduce the simulation time. 
 
 

Spatial estimation model 
The functional form of the input-output relationship is 
not known explicitly because the simulation is a 
black box. However, from the initial result of a dis-
persion model, it is suggested that the spatially-
distributed ozone levels across the region under 
consideration is a function of the grid coordinate, 
topographical information, solar radiation and the 
ozone’s precursor emission, as illustrated in Fig. 3. 
The background of the problem’s design variables 
will not be discussed in details here (i.e. it is de-
scribed comprehensively in another parallel work), 
as this work concerns on the assessment of the 
sampling designs' performance. 

The x-y coordinates represent the cells' location (in 
km) in x and y directions. To improve the estimation, 
topography information is added, consisting of the 
height information above the sea level (in m) at each 
domain cell. Here, ambient temperature data are 
used to represent, at each cell, the solar radiation 
level, which represents a good indicator for proxy 
variables to the formation of ozone. Basically, there 
are two important classes of precursors involved in 
the formation of ozone: volatile organic compounds 
(VOCs) and Nitrogen Oxides (NOx), however, only 
NOx is to be considered in the modelling as VOCs’ 
concentrations apparently cannot be measured. The 
NOx emission rates are added from two sources: the 
gridded inventory emission rate data, extracted from 
a photochemical dispersion model (deterministic 
model), and the calculated emission rates to be con-
verted from the measured data by using the Gaus-
sian dispersion function21 incorporating the wind 
speed and the wind direction factors. The network 
output consists of daily n-hour averaged maximum of 
the ozone concentration (in part per billion, ppb), 
which is extracted from a deterministic model simula-
tion output. Of interest, 1-hour, 4-hour and 8-hour 
averages are normally selected in the air quality 
analysis. 

Performance analysis 
The methodology has been applied to the Sydney 
basin in New South Wales, Australia. For preparing 
the dataset, we use the historical data of NOx that 
were collected at the monitoring stations around 
Sydney basin by the Department of Environment in 
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Fig.3. The input-output mapping of the metamodel 
for spatial estimation of the surface ozone. 
 

Table 2. Metamodel comparison results for Test 2 problem. (Note: Nfull=21000, sp=0.1, mse=0.005) 

No. Design 
name Details Sample 

size, N 
% 

of N 
Performance measure Network 

size Simulation 
time (s) RMSE MAE R2 d2  

1. WCD 525*6 3150 15 8.195 6.256 0.776 0.944 135 70 
2.  875*6 5250 25 7.953 6.121 0.789 0.947 147 175 
3.  1225*6 7350 35 7.814 6.011 0.797 0.949 145 320 
4. n-FFD [3 4 4 4 5 ]*6 5760 27 12.275 8.844 0.498 0.875 115 162 
5. ‘n-levels’ [4 4 4 4 5 ]*6 7680 37 10.711 7.973 0.618 0.904 121 143 
6. LHD with ‘maximin’ 

criterion 
5250 25 15.021 10.828 0.248 0.812 114 134 

7.  7350 35 10.684 7.922 0.620 0.905 132 287 
 



New South Wales. The rests of the input-output data 
are extracted from the simulation output of The Air 
Pollution Model and Chemical Transport Model 
(TAPM-CTM)22, a pollution model software devel-
oped and used in Australia. For demonstration, the 
8-hour averaged concentration was used in this 
work. For each day, the number of datasets corre-
sponding to the number of cells in the studied do-
main is equal to 3500 (based on a 2km×2km grid 
cell). Six episode days are selected to train the 
metamodel, thus the full input-output dataset con-
sists of 21000 data points. 

By using the same steps as for Test 1, the prepared 
dataset are sampled at different sample size, N. 
Using the RBFNN metamodel with the spread pa-
rameter of 0.1 and the mse goal of 0.005, the per-
formance of each design method is evaluated. The 
comparison results are shown in Table 2. To prepare 
the training dataset, full data points for each day are 
sampled at N size and summed together.  As per the 
performance indexes shown in the table, the pro-
posed sampling method outperforms the other two 
methods in terms of error criteria. Both n-FFD and 
LHD method require slightly less computation and 
smaller network size, however, the produced error 
indications are very poor (about  half of WCD 
achievement), e.g. in terms of R2 value. Overall, by 
compromising the performance and the computa-
tional cost, by using the same metamodel design 
criteria, the proposed approach provides more gen-
eralised approximation for air quality modelling. 

The surface graphs of the test function and the cor-
responding error functions using different DOE 

methods are shown in Fig. 4. The spatially distrib-
uted ozone results are obtained for one test day over 
full cell grids of the domain (i.e. Nfull=3500 cells). 
Ideally, the surface graphs of the errors should be 
flat and near zero. The surface graph of the error 
function based on the WCD sampling method shows 
minimal errors when compared with the other two 
methods. More fluctuated points appear at the left 
region (i.e. in the west area of Sydney) by using n-
level FFD and LHD methods.   
 
CONCLUSION 
A new method for the sampling design for a neural 
network metamodel has been presented in this pa-
per. The validity and reliability of the proposed ap-
proach has been evaluated in several ways. By us-
ing the radial basis function neural network meta-
model, the performance of proposed approach was 
compared with two well-known sampling design 
strategies; the n-level full factorial design and the 
Latin hypercube design. First, a known non-linear 
test function, namely, The Hock–Schittkowski Prob-
lem 100 was used in the evaluation to validate the 
effectiveness of the proposed scheme. Next, it has 
been applied to the air quality problem for the esti-
mation of spatial distribution of the ozone concentra-
tion. Using historical meteorological data collected at 
Sydney's monitoring sites with calibrated input-
output dataset from a photochemical dispersion 
model, the proposed metamodel is capable of pre-
dicting the spatially distributed ozone concentration 
in the interest domain with a fair accuracy. It is also 
noted that the proposed sampling method outper-
forms the other two evaluated methods in terms the 
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Fig.4 Error analysis of the spatial distribution of the surface ozone concentration 



network size and the simulation time, for both the 
test problem and the air quality modelling applica-
tion.  
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