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OPTIMUM DESIGN BASIS
OF DIGGING EQUIPMENT OF EARTH MOVING MACHINES

ON EXAMPLE OF A BACKHOE ATTACHMENT

Dr. Eugeniusz BUDNY

Institute of Building Mechanization and Rock Mining, WARSAW

SUMMARY

A method of optimization in the design of earth moving
equipment is presented in this paper, using the example of a
backhoe digging equipment. Its working capacity has been described
with the use of geometric concepts deriving from the mechanics of
a discrete set of points. Expressions depicting the magnitude and
shape of a hodograph of potential digging forces have been taken
as the objective function. A computer implementation of the
presented method has also been developed in form of STAKOP system
of calculations supporting equipment design.
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1. INTRODUCTION

Work has been conducted in the Institute of Building
Mechanization and Rock Mining in Warsaw, to develop computer -
assisted design of working attachments to earth moving machinery.
Backhoe attachments belong to the most complex equipment in this
category. The reason to start this work was a view that the
methods of designing used at present are not effective (cf
references [1], [2], [4] and [5]), and that the equipment designed
by employing these methods is far from being optimal. What is
essential in the design of this equipment is the interdependence
between its geometry and strength parameters on one hand, and the
working capacity of the whole machine on the other. As may be
inferred from the analysis of literature available, the equipment
design problem used to be approached by numerous authors
fragmentarily. Such an approach, in view of the necessity of a
multi-criterial analysis of a function of many variables, makes
the optimization problem a relatively complex and slowly
convergent one. The method suggested by the present author allows
to construct a suitable, discrete mathematical model of equipment,
forming an accurate, tensor representation of all essential
phenomena occurring during operation, including among others the
geometry, statics and kinematics of the system.

The purpose of this paper is to introduce the Reader to the
analysis of equipment geometry and statics, and to the
optimization of digging forces in the machine working area. A
STAKOP computer software developed from this research is now
available in the Institute. It is used in formulating and solving
various optimization problems of working equipment analysis and

design.
The following initial assumptions have been made:

1) components connected by articulated joints are regarded as
rigid bodies, and the number of segments (degrees of freedom) is

unlimited,
2) friction forces in equipment joints are ignored as negligibly
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3) the potential capacity of the equipment and basic machine are
analyzed without regard for the physical/mechanical properties of

soil,
4. the programme takes account of dynamic effects of acceleration
of masses, neglecting impact and vibrations.

The third from the above assumptions is in conformity with
general practice in design, where the type of soil for a
considered machine is usually assumed leaving out the ground
faults, intrusions or offsets. It seems, as a consequence that the
quality of equipment is decided by the largest digging forces it
is able to transmit. This ability is named "loading capacity" in
what follows [3].

A discret mathematical model of equipment has been chosen

for this analysis, allowing to make use of such concepts as base,

metric, vector field and a parallel transfer of vector in a flat

metric space. The machine digging attachment is replaced by a
lattice structure, with nodes representing the attachment

characteristic points (articulated and other joints, points of
force application etc.). All external forces, such as forces in
hydraulic cylinders, reactions, gravity and digging forces are
concentrated at the lattice nodes (Fig. 1) . As it appears, the
discrete point model of equipment does not introduce any errors

into the statics (i.e. forces calculated using this model are the
same as the ones taking account of mass being distributed

continuously) . Since the force distribution depends on attachment

configuration in the working area which in turn is a function of

extension of hydraulic cylinders, the analysis has been carried

out with cylinder stroke divided into rn equal parts. Consequently,

the working area is divided into n different configurations

(testing points), where:
k - number of hydraulic cylinders in the attachment.

Other notation used in this paper:
- number of lattice model segment on a parametric line;

RA, RB - normal reactions of supports of basic machine;

Rst - tangential reaction of supports of basic machine;

ii - force in hydraulic cylinder i;

K - vector of digging force;
kK - configuration (one of the npossible);

g - equipment geometry (set of numbers defining equipment
component dimensions);

pM - distribution of mass in equipment;
H1 - part of digging forces hodograph, essential for practical

reasons (Fig. 2);

S(x) - surface area of flat set H

L(x) - circumference of flat set H1;

d - controlling parameter, d E <1, 2);
opc - user options, e.g. a fourth hydraulic cylinder;
w - equipment operation mechanism;
T - set of utilized hydraulic cylinders in equipment control.

2. EQUIPMENT WORKING AREA, STATICS, KINEMATICS AND LOADING

CAPACITY

Working area is defined as a flat metric surface enclosed by
the nath of the Pxnavat_nrs bckee . fnr al 1 nnssi hl P PCn] i nmPnt-
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configuration.
Both the arm and bucket are usually employed during a digging

operation. There is also a combination of these two movements, as
a possibility. The force applied to the end of bucket blade,
balancing the forces of active cylinders and the reactions of
ground will be called a digging force K. There is no possibility
of universal determination of the magnitude and direction of the
ground reaction on the bucket, due to variation of ground
properties and it's non-uniformity.

The analysis of excavators statics during operation yields a
system of three equations relating 5 unknowns, in the form:

FV xC + FH • yC + RB • xB - EM AG = 0

RH - FH = 0

R + R + F EG = 0
A A A

(1)

(2)

(3)

One of the limitations in digging force value is the loss of

stability by rotation about support A. In this instance RB < 0 and

eq. (1) assumes the form:

FV • xC + FH • yC - EM AG ' 0 (4)

The above inequality is defining a half-plane containing the
digging force vector, whereas a straight line described by the

equation

FV • xC + FH • yC - EM AG = 0 (5)

is called a hodograph of the limit digging force causing the loss
of stability by rotation about support A. Other limitations
associated with rotation about support B, excavator slip, limited
pressure, etc. can be defined analogously. As a result, a
hodograph of limit forces is obtained, named a hodograph of
potential digging forces. The actual digging force vector is
contained inside this polygon and may be of any direction, sense
and value (Fig. 2). Within the hodograph one may distinguish a
zone of forces concurrent with the normal direction of equipment
effort, with the vector of actual digging force usually inside the

zone.
The loading capacity of an excavator is the maximum loads

generated during operation, which are statically permissible for
the machine to carry. The term has been borrowed from the theory
of limit load capacity for rigid/plastic bodies. The instance of
stability loss due to forces in hydraulic cylinders being exceeded
is the analogon of plastic flow in the original theory. By
developing the equipment weight into characteristic points of the
multisegmental model and by writing down equilibrium equations
about points 5, 4, 3 and 1, a set of seven linear equations with
nine unknowns may be written to describe the backhoe excavator
statics. The set in matrix form is as follows:
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a13 0 0 0 0 0 0

s

n

T4
b1

a23 a24
0 0 0 0 0

T3
b2

0 0 a35 0 0 0 0
T2

b3

0 0 0 a46 0 0 0
T1

b4 (6)

0 0 0 0 0 a58 0 RA b5

0 0 0 0
a67 a68 0

RB b6

0 0 0 0 0 0 1
R st b7 1

It follows that by using equipment geometry to describe the

location of all equipment nodal points (joints), one obtains a set

of linear equations of matrix A(K, g, w), which is dependent on
configuration, geometry, and mechanism of operation. The vector of

the right-hand sides b([C, g, pM) is dependent on configuration,

geometry and mass distribution.

where: T

vector x = [s, n, -E k' ..., T2' i1, RA, RB, Rst]

is the vector of unknown forces.
Two additional equations should be arbitrarily imposed in

order to solve the above set. Here it will be the equations
defining forces in the two hydraulic cylinders of the arm and
bucket, as the maximum ones (determined by the by-pass valve
setting). Such an additional assumption will be called the
selection of mechanism of operation w. What is important as a
conclusion for further analysis, resulting from the linearity of
set (7) , is the existence of a certain set S in the space of
digging forces, which is contained within the hodograph of
potential digging forces Hw(FK). The latter is a locus of all

digging forces which do not cause the loss of excavator stability
or forces beyond permissible in hydraulic cylinders. The set in
question is a convex polygon (a hexagon at most).

As boundary conditions of the equations of statics one will
have only those external forces, which cause the digging force to
remain inside the hodograph of potential digging forces (see
Fig. 2). While considering the set S for different configurations
it may be inferred that equipment geometry. That the usability and
operational properties of not only the attachment but also of the
entire excavator unit may be almost fully described by the
equipment geometry, its variation and the singularities of the set
S. For example the surface area and shape of set S (say, close to
a semi-circle) could constitute useful parameters in the machine
evaluation, and could render themselves for optimization (see

Fig. 3).
ThP PX1tPP of set S of actual forces signifies that the
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full working capacity is not reached in some configurations. In
this case, the digging force will cross the boundary of hodograph
Hw(g) if maximum allowable forces are applied at some of the

hydraulic cylinders.
This cannot happen in actual operation, since it would cause

the loss of excavator stability, or else the activation of
cylinder safety valves. It means that the set of equations (6) and
(7) becomes useless as far as examination of the distribution of
internal forces on the equipment individual components is
concerned. The following hypothesis is introduced in order to

solve this problem:
The actual digging force K (constituting one of boundary

conditions in equipment internal forces calculation) is such that
its vector is a vector fully contained in hodograph HW(g), closest

to the vector calculated from set of equations (7) in the meaning
of Euclidean metric. Fig. 3 includes an illustration of this

hypothesis.
The hypothesis is effected mathematically as a solution of

the optimization problem:

(Ko K1)2 + (K* 20 - K2 )2 = min ( (K1 - K1)2 + (KZ - K2 ) 2

10 [K1,K2]EHW(g)

(8)

A calculation of force K0 is followed by computation of

forces and stresses in the equipment, with the use of STAKOP
software. In addition, dynamic correction are calculated for
static forces, resulting from acceleration of masses concentrated
at nodes of the multi-segment model [3].

It may be shown that regarding individual units of the
attachment as triangles, the correction for inertia forces is:

F = F - 6•M- ( b2 + h2•sin -2a - b•h•ctga ) •at(w) (9)

where: F' - load calculated from set (7) and (8);
M - total mass of equipment units;
b, h, and a - dimensions of a triangle, substituted for

equipment units;

w - vector of angular velocity of equipment units.
In conclusion one may state, that a two-dimensional

mechanical system composed of triangular plates may represented by
a lattice discrete segmental model.

3. OPTIMIZATION OF ATTACHMENTS

As mentioned in the introduction, the purpose of this
research was develop a professional computer software for analysis
of equipment parameters as formulation and solving of optimization
problems in earth moving attachments design. It was assumed for
the STAKOP programme, that the data defining the dimensions of the
bucket and linked are established. Other parameters describing the
geometry of the multisegmental model (12) are variables, subject
to optimization (Fig. 1) . Additional constraints have also been
imposed, requiring the resulting equipment working area to always

-- l „rA- rortannl o D r1Af i no r1 hw t-ho mash i no ii--Pr an r a 1 cn an
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appropriate height of discharge to be preserved. Both of these
limitations are effected through the mechanism of penalty

function, allowing to reject those sets of data which cause

irregularities.
It is assumed that initial data are determined by the

following magnitudes:
M - total mass of excavators with attachment;
ho - height of the highest point of working area over ground

level;
a - distance between excavators axis of rotation and working
0

area;
ABCD0- trapezoid describing the part of working area where digging

forces are practically important.
An illustration of these magnitudes is offered in Fig. 4. We

may note, that from practical viewpoint only the digging forces
occurring when the bucket is being filled is important. Hence, if
s denotes a vector tangent to bucket path, the part of hodograph
where s•K product has negative value is of no importance.
Therefore, it is worthwhile to introduce an auxiliary concept of
an effective hodograph of forces H1.

H (g) = Hw (g) n (K: K- s>_0 ) (10)

Before moving on to objective function, another definition
should be introduced of a certain subset of all possible
configurations of equipment geometry G. .It is obvious that the
height of discharge h, distance a, as well as the relation of
trapezoid ABCD being contained in the equipment working area Pef'

are functions of equipment geometry g. The subset G is defined by

the equation:

G = {g: ho < h(g) ; ao = a(g) ; ABCD c P(g) ) (11)

Using the above notation, the objective function takes the

following form:

F ( g , PM, T,opc) = S-1 (Pef) P F S(H1(K)) L d(H1(K) )

ef

S(H1(K)).L_' (H fK))

(12)

S(Pef)

This is a mean value of function

f (g,PM,r,opc) = S(H1) .L d(H1)

on set Pef' which is the most important part of working area from

the viewpoint of digging. Integrand f is the ratio of the surface
area of the essential part of forces hodograph H to its

r-i rr-iimfPrAnrA i n nnwo-r d
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Hence, the larger the length L, the more flattered the H1

part of hodograph becomes. Parameter d has been introduce to
enable balancing of the proportion between the numerator and
denominator of the objective function. Three examples of
hodograph H1 are shown in Fig. 5. Among them example a) should be

regarded as most desirable, because a relatively large digging
force is obtained for a wide range of directions. Example b)
carries a threat of loss of stability, whereas in example c) a too
small digging force parallel to the direction of bucket tip
movement was assumed.

Finally, the optimization problem for backhoe excavator may
be mathematically described in the following manner:

To find such

n 0 E (3, 4), t 0 E T, g 0 E G, and p 0 M such that Ep 0 M = M,

that

F(go, PO M, -C or no) = max F(g, PM, t, n)

on conditions that

g E G, T E T, n E {3, 4), EpM = M.

One should also notice that function F is complicated
algorithm relating the equipment geometric parameters to a
desirable distribution of forces in the effective excavator
working area.

Rosenbrock method has been employed in solving of the
optimization problem, because the objective function is not known
explicitly, and that in may include discontinuities. In order to
satisfy the constraints h and Pef' a penalty function has been

brought in, with its zero value for all decision vectors not
meeting the constrains.

The calculation programme STAKOP takes, in source form, a

total of over 400 kB and about 15000 code lines, meaning over 200

pages of listing. The system has reached, at present, the level of

professional software. It allows a designer to effectively employ

it in equipment design, even without any special training in

information technology.
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Fig. 1. Backhoe static diagram and multisegmental model of working
attachment structure.

F
H

Fia• 2. Hodoaraph of potential diqqinq forces.
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L_
Fig. 3. Finding the actual forces distribution closest to the

actually allowable one.

Y

a

Fig. 4. Working area P showing the optimization parameters h, a,
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a) b) C)

Fig. 5. Various possible shapes of the hodograph of potential
forces.
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Fig. 6. An example of optimization of forces in the working area
of K 408 backhoe excavator (OPTK - after optimization -
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