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Abstract: In this paper, a general parallel flow shops problem with the objective of
minimizing total earliness and tardiness has been addressed. In view of the intractable nature
of the problem, a Genetic Algorithms (GAs) based approach is proposed to solve the
problem. This algorithm has been tested on some randomly generated test problems.
Computational results show the proposed approach is quite heartening.
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1. INTRODUCTION

Parallel machine and flow shop scheduling
problems have been studied intensively, and some
valuable results have been reported in the research
literature [1-4]. However, as an extension of above the
problem, the problem of scheduling jobs on parallel
processing systems where the systems are flow shops
called Parallel flow shops has received little attention.
This problem is a special case of general multi-stage
multi-machine problem known as Hybrid flow shop.
Sundararaghavan et al. [5] addressed a simple version
of the parallel flow shops scheduling problem, and
proposed heuristic algorithm for the ,objective of
minimizing makespan. In their paper, the problem
researched is limited to two flow shops where each
flow shop include only two machines, and a situation
that processing time of jobs on corresponding
machines belong to different flow shops are
proportional to each other is considered.

In this paper, we consider a more complex
criterion and situation : there are several flow shops
where each flow shop consist of the same number of
machines in series, and processing time of different
flow shops are unrelated . The objective is to minimize
total earliness and tardiness . This problem can be find
in some industrial environment. A practical example in
construction is given in next section. The rest of this
paper is organized as follows: In section 3, the problem
description and formulation are given. Section 4
present an implementation of the GAs, and Section 5
discusses the experimental results following
conclusions of this research in Section 6.

2. PARALLEL FLOW SHOP : A RACTICAL
EXAMPLE IN CONSTRUCTION

A typical construction engineering involves some
sub-projects such as main body, subsidiary devices
installation and decoration etc. In each sub-project,
there are many processes or stages which interlink each
other in time and space to form a very complex
network. There are some key processes or stages in the
network, from view of the whole, the whole
construction process is composed of these key stages
successively.

Consider a construction firm which include a
management department and several units in charge of
construction called teams. The team can complete any
project independently, because it consists of variety
kinds of employee and construction equipment which
have been classified based on different type of work
clearly. When a certain stage of a project is finished,
the employee and machines in this stage can turn to
corresponding work in other project. The duty of the
management department are to sign construction
engineering contracts, assign the contracts to each
team and supervise the engineering progress.

Assuming that there are n projects at a certain
start time. The problem is to assign the projects to the
teams and sequence them to utilize resources
efficiently, satisfy the due date and pursue maximum
benefit (or minimum cost). Minimization of total
earliness /tardiness objective function is often used to
ensure the objective of the firm. At each stage j,
different time is needed to accomplish the work for
different team, because the employee and equipment
included in different teams are different. So, if we
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looked the contract as a job, looked the team and key
stage as a flow shop and machine respectively, the
situation can be viewed as a unrelated processing time
parallel flow shop. Fig. I presents a schematic diagram
of this scheduling situation with three stages.
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Figure 1. Three Stage Parallel Flow Shop

3. THE PROBLEM DESCRIPTION AND
FORMULATION

Parallel Flow shops scheduling problem can be
stated as follows: there are K flow shops where each
flow shop consists of M machines in series, N different
jobs where each job must be processed by the M
machines of any flow shop in the same order. All jobs
are available at time t=0, and there is no job passing.
Each job is assigned to just one flow shop, which
means the job has to be processed in the same flow
shop, once the assignment is made. The objective is to
minimize total earliness and tardiness cost.

The mathematical model, adequately describing the
problem, is given bellow. The notation of all the
variables and parameters used are defined firstly, and
then the model is presented in the form of an objective
function and its associated constraints.
Notation
i, j= index of jobs, i, j= 1, 2, ..., N.
k= index of flow shops, k=1, 2, ..., K.
m= index of machines in a flow shop, m= 1, 2, ..., M.
Pike, = processing time for m-th operation (on m-th

machine) of job i in flow shop k.
Cihn= completion time for m-th operation of job i in

flow shop k.
S = a big positive number.
d; = due date of job i.

a; = earliness penalty of job i per unit time early.

= tardiness penalty of job i per unit time tardy.

E = earliness of job i.

Ti = tardiness of job i.

X;k = I if job i is processed in flow shop k, and 0

otherwise

Yiik,n = 1 if job i precedes job j on machine m in flow

shop k, and 0 otherwise.
The problem can be formulated ad follows:

N
minimize Z (a;Ei +[3,Ti)

i=1

subject to:
K N

Y_
C
C

L,Xik =N
k=fi=1

K
Y- Xik = I i =1,2 ... N

k=1

(1)

(2)

(3)

C in -Cikm +(3-Xik -Xik -_Yiikm )-S> Pikm

i j=12 •••N;k=1,2 ... K;In -1,2 ...M (4)

Cikm - Cikm + (2- Xik Xik r Yiakm). S > Pikm

i,j=1,2 -N;k=1,2... K,in = 1,2 ... M (5)
K

(Xik (Cikm+I -Cikm-PiW11)>0
k=1

i=1,2•••N ; m= 1,2•••M-1 (6)
K

E; = max{di -I X,kCik?,1,0}
i=1

K

Ti = max{Y-XikCikM -- di,0;
i=1

Xik = 0,1

Yiikn, - 0,1

(7)

The model is formulated as a mixed integer

programming model. The objective function focuses on

minimizing total earliness and tardiness cost.

Constraint (2) demonstrate all jobs must be processed

in the flow shops. Constraint (3) describe that each job

can only be assigned to just one flow shop. The

requirement that no two operations of two different

jobs can be processed on the same machine at a time

are guaranteed by Constraints (4) and (5). They state

that if the nt-th operation for job i in flow shop k

preceded the m-th operation for job j, then the m-th

operation for job j can only start after the n1-th

operation for job i, and vice versa. Constraint (6)

describe that each job must be processed on M

machines successively. Constraints(7) and (8) allow

that the objective function value can be calculate.

This problem is quite intractable, because the
objective function is non-regular. Even the simplest
model that involve the earliness and tardiness has been
proved to NP_complete[6]. Genetic algorithms, which
are developed based on the mechanisms of evolution,
demonstrated their potential for solving hard
intractable optimization problems[7,8]. Therefore, an
approach based genetic algorithms is developed to
solve the problem.

4. GENETIC ALGORITHMS

Genetic algorithms are probabilistic search
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techniques developed based on the mechanism of
evolution. The search procedure in GAs, combined
with reproduction and recombination. In GAs the
solution space is generally represented by a population
of structures, where each structure called chromosome,
in general, is a possible solution to the problem. From
the concept of genetics that better parents produce
better offspring, new chromosomes (offspring) are
generated by applying genetic operators such as
crossover, mutation, and inversion to the potential
(parent) chromosomes selected from the existing
population. The members with higher fitness values in
the current population will have higher probability of
being selected as parents. In every generation, the
existing population of parent solutions is replaced with
newly generated population of offspring solutions. This
procedure is repeated to perform an adaptive search,
the algorithms converge to the best chromosome,
which hopefully represents the optimal or near optimal
solutions. Let P(t) be the parents and C(t) be the
offspring in the current generation t, the overall
procedure of genetic algorithm is show as follows:

procedure: genetic algorithms
begin

t< -o
initialize P(t)
evaluate P(t)
while (not termination condition) do

recombine P(t) to yield C(t)
evaluate C(t)
select P(t+l) from C(t)
t<-t+1

end do
end

4.1 Representation

There are two essential issues to be dealt for
parallel flow shops scheduling problems:

• partition jobs to flow shops
• sequence jobs for each flow shop

The representation designed to encode these two
things into a chromosome consists of a job symbol list
and a partitioning symbol list , in which integers are
used to represent all possible permutation of jobs (or
sequence of jobs ) and asterisks X are used to
designate the partition of jobs to flow shops. Let us
consider a simple example of the problem with 9 jobs
and 3 flow shops . The chromosome can be represented
asfollows:[256 X314 X978]

This chromosome stands for job 2, 5 and 6 are.
assigned to flow shopl , and processing sequence is
2-a5-^6. Generally , for an n -job k-flow shop problem,
a legal chromosome contains n job symbols and k-1
partitioning symbols, resulting in total size of (n+k-1).

4.2 Genetic operators

Crossover and mutation are two genetic operators
commonly used in the genetic algorithms. Usually, the
crossover is used as main genetic operator and the
performance of a genetic system depends, to a great
extent, on the performance of the crossover operator

used ; while the mutation is used as a background
operator, which produces spontaneous random
changes in various chromosomes.

As mentioned, the essential issue of parallel flow
shops scheduling problem is the partition and
permutation of the jobs in flow shops. Both crossover
and mutation operators are designed to handle the job
partition and job permutation.
Crossover

We have designed a subschedule preservation
crossover operator because we consider subschecule
to be the natural building blocks. The subschedule here
means a complete schedule for one flow shop. The
proposed crossover perform with main three steps:
(1) Obtain asterisk positions (overall partitioning

structure) from one parent.
(2) Obtain a randomly selected subschedule from the

same parent.
(3) Obtain remaining jobs from the other parent by

making a left-to right scan.
The operation of crossover is illustrated in Figure

2. We can know that the proposed crossover can
adjust job partition and job order simultaneously from
Figure 2.

P1:235 X 764 X 189

01:319 X764 X258 02:3574 26 189

P2:3419X26 X587

Figure 2. Illustration of Crossover Operator

Mutation
The swapping mutation, which select two random

positions and then swap their genes, is used here. The
randomly swapped genes may be either job or asterisk.
The possible combinations of job and asterisk result in
four basic types of mutation.
(1) If both genes are job, and these two selected jobs

are processed by the same flow shop. In such
case the mutation alters the job order for the flow
shop.

(2) If both genes are job, and these two selected jobs

(3)

(4)
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are processed by different flow shops. In such
case the mutation alters both job order and job
partition to flow shops for chromosome.
If both genes are asterisk, the mutation alter job
partition only.
If one gene is asterisk and another is job, the
mutation alters both jobs order and jobs partition
to flow shops for the chromosome.



Mutation is the only genetic operation which can
alter the position of asterisks. Without mutation,
genetic starch will be confined by initial population (or
initial position of asterisks). So mutation plays a vital
role in our genetic algorithm implementation.

4.3 Evaluation and selection

The objective function value for each chromosome
must convert into the fitness value because the
objective is minimization . Let F; and f1 is the fitness

and objective function value of chromosome i

respectively , f is the average function value of all
chromosomes, the procedure can be simply done by

the following equation : F; _ (f / f1) 2 • f .

We use roulette wheel as . the selection mechanism

to reproduce the next generation , combined with the

elitist way . The fitter chromosome has a large chance

to be reproduced in to next generation , and the best

chromosome can be put into next generation directly.

5. COMPUTATIONAL RE, SULTS

The proposed GAs has been test on problems with

nE{10,20}, kE{2,3} and mn{5,7} generated

randomly. For each test problem, an integer processing

time Pik,,,from the uniform distribution [1 , 20] was

generated for each job i and each machine for each
flow shop. The due date of each job was generated

N M
from the uniform distribution [ 1, 0.6 mkax{E ZtPik,,,}

To simplify, we assume a1 = p; =1.

In general, the performance of the GAs depend on
the parameters setting to a large extent. Therefor, the
suitable parameters for the problems will be
determined. First, we investigated suitable population
size for each dimension of the problem. Fix the
max_gen as 300, and Pm and P, as 0.1. Under the

condition of lower ratio of crossover and mutation, the
population size becomes one of the leading factor for
GAs. Figure 3 show the relative results under different
population size for some test problems, where relative
results are ratio of result obtained to the best result.
From the results we can see that the factor of
population size is relative to the dimension of problem,
especially the number of flow shops closely.

We further studied performance of the algorithm

under the different parameters of Pm and Pc . Take the

population size as suitable value determined above.

Run the algorithm only with crossover (Pm =0, and P,

from 0.1 to 0.9) or mutation (P, =0, P,,, from 0.1 to

0.9 ). In this case, the genetic operator used become
the only factor to affect the performance of the

algorithm. In Figure 4, the relative objective value of

some test problem are potted as a function of the

parameter Por P, .

n N=10,K=2,M=5
N=20 , K=2,M=5

N M=5K=3N=10Cro
,,

-0
0 \, N° N=20.K=3,M=5

• Q^

b
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Population size

Figure 3. Results with Different Population Size

n N=10,K=2,M=5, P, used

N=10,K=3,M=5, P, used

^,•^ o N=l0,K=2,M=5, Pm used
0 N=10 ,K=3M=5 , PO used

-, N \ 1i0

0.1 0.3 0.5 0.7 0.9 P,(Pm)

Figure 4. Results with Different P, or P

For all test problem, the parameter of algorithm
are set suitable value according to the experiments
mentioned above, terminal criterion of the algorithm is
maximum generation = 300. We run the algorithm for
10 times on each problem, and corresponding
computational results are given in table I .

Table 1: Computational results

N X K X M Best
solution

Average
deviation

Cup
time s

10X2X5 98 10.5 3.18

1OX3X5 75 8.2 4.33

10X2X7 116 11.3 3.56

10X3X7 104 5.8 4.86

20X2X5 163 12.7 3.77

20 X 3 X 5 141 9.6 5.12

20 X 2 X 7 168 13.4 4.54

20X3X7 172 15.2 5.78

6. CONCLUSION

In this paper, a general parallel flow shops problem
with the objective of minimizing total earliness and

tardiness has been formulated. A genetic algorithms
based approach has been developed. Extensive
computational experiments on some randomly

generated test problems have been performed, and the
results are encouraging.
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