
 
 

Prediction of project cash flow using time-depended 
evolutionary LS-SVM inference model 

 
Min-Yuan Cheng, Nhat-Duc Hoang *, and Yu-Wei Wu  

 
Department of Construction Engineering, National Taiwan University of Science and 

Technology, Taipei, Taiwan 
* Corresponding author (ducxd85@yahoo.com) 

 
Purpose The ability to predict cash demand is crucial for the operation of construction companies. Reliable cash flow 
prediction during the execution phase can help managers to avoid cash shortages and to control project cash flow effectively. 
Method This paper presents a new inference model, CF-ELSIMT, for cash flow forecasting. The developed CF-ELSIMT 
utilizes weighted Least Squares Support Vector Machine (wLSSVM) as a supervised learning technique to generalize the 
mapping function between input and output of cash flow time series. A novel dynamic time function (TF) is employed to 
determine the weighting values associated with data in different time periods. The dynamic TF allows the model to deal with 
distinct characteristics in cash flow time series. To optimize the model’s tuning parameters, the new inference model 
incorporates Differential Evolution (DE) as the search engine. In addition, a machine-learning-based interval estimation 
(MLIE) approach is used to arrive at the prediction interval of forecasted cash demand. Results & Discussion The CF-
ELSIMT provides construction planners with a point estimate coupled with the lower and upper prediction intervals. 
Experimental results and comparisons have demonstrated that the newly established model has enhanced the forecasting 
accuracy. 
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INTRODUCTION 
In construction industry, cash is a critical factor that 
imposes influence on project profitability1. Poor cash 
flow control  can lead to project failure for contractors 
due to liquidity shortage for supporting their daily 
activities2. Hence, reliable prediction of cash flow time 
series over the course of a construction project is 
beneficial since it puts the project manager in a better 
position to identify potential problems and to develop 
appropriate strategies to mitigate the negative effects 
of such on overall project success.  
Due to the importance of the problem at hand, various 
models have been proposed to predict the project 
cash flow. Boussabaine and Kaka employed neural 
networks in cash flow forecasting and control3. In 
addition, fuzzy logic based techniques have also been 
applied to increase the effectiveness of cash flow 
analysis conducted under uncertain conditions4, 5. Park 
et al. proposed a forecasting model for construction 
projects that considered both variable cost weights 
and time lag6. However, most of previous models were 
developed to assist manager in the pre-tendering or 
planning stage of a project, few researches have 
addressed the dynamic and time-depended nature of 
the cash flow prediction problem. 

Additionally, prediction of cash flow is often stated in 
the form of a point forecast7, 8. However, in practice, 
project managers require not only accurate forecasts 
of cash flow but also the uncertainty associated with 
the predictions. Interval estimation includes the upper 
and lower limits between which a predicted variable is 
expected to lie with a certain level of confidence. The 
range restricted by those limits is known as prediction 
interval (PI) (see Fig. 1). Thus, incorporating prediction 
uncertainty expressed by prediction interval can help 
improve the reliability and the credibility of the model 
outputs.9 

 
Fig. 1 Prediction Interval 

Recently, a new framework for achieving prediction 
interval (PI) which is based on machine learning 



 
 

technique has been established by Thresha and 
Solomatine9. The proposed machine learning based 
interval estimation (MLIE) does not require any 
assumption and prior knowledge of input data or 
model error distribution. In their research work [9], the 
superiority of the MLIE over existing methods is 
exhibited. Thus, it is beneficial to incorporate this 
approach into a forecasting model to obtain the 
interval estimation. 
Proposed by Suykens et al.10, 11, WLS-SVM is an 
advanced machine learning technique which 
possesses many advanced features. In WLS-SVM’s 
training process, a least squares cost function is 
proposed to obtain a linear set of equations in the dual 
space. Consequently, it is required to deal with a set of 
linear system which can be efficiently solved by 
iterative methods such as conjugate gradient12. 
Furthermore, in this approach, a weighting value is 
assigned to each error variable13. This feature allows 
each training data point to contribute differently to the 
establishment of the regression function and facilitate 
WLS-SVM to better deal with time series problems 
such as cash flow prediction.  
Another issue in the field of AI is the mechanism for 
setting models’ control parameters. In practice, 
identifying model’s parameters often requires time-
consuming trial-and-error processes. Thus, hybridizing 
the machine learning techniques with an evolutionary 
algorithm (EA) is a prevalent research direction14. 
Among EA techniques, Differential Evolution (DE) [15] 
is a population-based stochastic search engine, which 
is efficient and effective for global optimization in the 
continuous domain. Superior performance of DE over 
other algorithms has been verified in many reported 
research works. 15, 16 

Therefore, purpose of this study is to hybridize 
WLS-SVM, MLIE, APLF, and DE to establish a new 
inference model for predicting time-cost curve of 
construction projects. Since the cash flow data are 
time-dependent, the integrated model employs WLS-
SVM to infer the mapping between past and future 
instances of the time-cost curve. Moreover, APLF is 
used to determine the weighting values associated 
with each data. In order to automatically identify the 
tuning parameters, the new inference model utilizes 
DE. Additionally, MLIE approach is deployed to 
calculate prediction intervals of forecasted outputs.  

The second section of this paper reviews related 
literature on WLS-SVM, MLIE, and DE. In the third 
section, detail of the proposed adaptive time function 
is introduced. The framework of the proposed model 
CF-ELSIMT is depicted in the forth section. The fifth 
section demonstrates the experimental results. 

Conclusion on our study is mentioned in the final 
section. 

 
LITERATURE REVIEW 

 
Weighted Least Squares Support Vector 
Machine (WLS-SVM) 
This section reviews the formulation of WLS-LSVM, 
proposed by Suykens et al.13. Consider the following 
model, which describes the mapping relationship 
between a response variable and independent 
variables:  

bxwxy T  )()(      (1) 

where nRx , Ry , and nhn RRx :)( is the 

mapping to the high dimensional feature space. The 
formulation of WLS-SVM, given a training dataset
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where Rek   are error variables; 0 denotes a 

regularization constant; ]1,0[ks  is a weighting value 

associated with an error variable. 
The above optimization problem stated in (2) can be 
solved by constructing the Lagrangian and deriving the 
following dual problem. 10 
The Lagrangian is given by: 
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where k  are Lagrange multipliers. The conditions for 

optimality are given by: 
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After elimination of e and w, the following linear 
system is obtained: 
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And the kernel function is applied as follow: 
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The resulting LS-SVM model for function estimation 
is expressed as: 
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where k and b are the solution to the linear system 

(5). The kernel function that is often utilized is Radial 
Basis Function (RBF) kernel. Description of RBF 
kernel is given as follow: 
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where   denotes the kernel function parameter. 

 
Machine-learning Based Interval Estimation  
This section reviews the machine learning based 
interval estimation (MLIE), which was proposed by 
Thresha and Solomatine.9  The MLIE approach9 is 
described in Fig. 2. At first, the point estimation 
process is carried out. A regression model is 
implemented to infer the mapping function between 
input data and the corresponding outputs. The input 
data points are then separated into different clusters 
that have similar historical residuals, which are 
obtained from point estimation process, using fuzzy c-
means clustering (FCMC) [18]. When applying FCMC, 
the number of clusters is commonly selected so that it 
results in a minimum value of Xie-Beni index. 19 

 
Fig. 2 Machine learning based interval estimation (MLIE) 

 
Fig. 3 Calculating Prediction Interval for each cluster 

In the second step, the lower and upper prediction 
intervals (PIs) for each cluster are computed. Given a 
certain level of confidence (e.g. 95% or   is 5%), the 

PIs for each cluster are calculated from empirical 
distributions of the corresponding historical residuals 
(e). To construct )%100(  prediction interval (PI), the 

100)2/(   and 100))2/(1(    percentile values 

are taken from empirical distribution of residuals for 
lower and upper prediction intervals, respectively (see 
Figure 3).The mathematical expression for calculating 

lower and upper PIs for cluster i (
L
ciPI  and 

U
ciPI ) is 

given as follows: 
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where j is the index of the sorted data point that 
satisfies the corresponding inequalities. ej denotes 

historical residuals of sorted data point j. And ji,  is 

membership grade of data point j to cluster i. 
The third step is to calculate the PI for each training 
data point using the weighted mean of PIs of each 
cluster: 
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where 
L
jPI and

U
jPI  are lower and upper PIs for data 

point  j. 
Prediction limits (PLs) for each data point are 
computed as follows: 
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where 
L
jPL  and 

U
jPL  are lower and upper PLs of 

predicted output j. 
In the final step, a machine learning (ML) technique 
(e.g. LS-SVM) can be deployed to learn the mapping 
functions between the input data and the computed 
PLs for training data. PLs for testing data can be 
inferred using those underlying functions.  

 
Differential Evolution 
Differential evolution (DE) is an Evolutionary Algorithm 
which is designed for real parameter optimization.15 
DE algorithm is based on the implementation of a 
novel crossover-mutation operator, based on the linear 
combination of three different individuals and one 
subject-to-replacement parent (or target vector). 20 The 
crossover-mutation operator yields a trial vector (or 
child vector) which will compete with its parent in the 
selection operator. The selection process is performed 
via selection between the parent and the 
corresponding offspring.21 The algorithm of differential 
evolution is shown in Fig. 4. In this figure, it is noted 
that NP represents the size of the population; Xj,i is the 
jth decision variable of the ith individual in the 
population; g is the current generation; and D denotes 
the number of decision variables. randj(0,1) is a 
uniform random number lying between 0 and 1; and 
rnb(i) is a randomly chosen index ranging between 1 
and NP.  
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Fig. 4 Differential Evolution optimization algorithm 
 

In the selection process, the trial vector is compared to 
the target vector (or the parent).16 If the trial vector can 
yield a lower objective function value than its parent, 
then the trial vector replaces the target vector. The 
selection operator is expressed as follow: 
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where Xi,g represents the  parent vector at generation g. 

Ui,g denotes the trial vector at generation g. Xi,g+1 is the 
chosen individual which survives to the next 
generation (g+1). 
The optimization process iterates until the stopping 
criterion is satisfied. The user can set the type of this 
stopping condition. Commonly, maximum generation 
(Gmax) or maximum number of function evaluations 
(NFE) can be applied as the stopping condition. When 
the optimization process terminates, the final optimal 
solution is available for the user assessment. 

 
ADAPTIVE PIECEWISE LINEAR FUNCTION FOR 

WEIGHTING TIME SERIES DATA 
Real-world time series data are often unbalanced due 
to the fact that recent data can provide more relevant 
information than distance ones. Therefore, time series 
data should to be weighted differently. Instead of using 
fixed time functions, this study proposes an adaptive 
piecewise linear function (APLF) for weighting data.  
The role of the APLF is to determine a weighting value 
to each data point in the training process. The time 
function assigns small weighting values for data points 
at the initial phase of a project. Meanwhile, data points 
recorded at the later phase are coupled with greater 
weighting values (see Fig. 5). Using the proposed 
APLF, the time horizon of a completed project is 
divided into several domains. Each domain is 
characterized by a linear time function described as 
follow: 
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where
k
is denote the weight value for data point i in the 

kth domain. so, varying between 0 and 1, is the initial 
value of the time function in the first domain. ak 
represents the slope value of the time function in the 
kth domain. Rk is the set of time periods in the kth 
domain. And, nk is the index of the last time period in 
the kth domain. For instance, if a domain j contains four 
time periods: 3, 4, 5, and 6, the corresponding nj is 6. 
The Eq. (20) and (21) calculate the weighting value for 
each time period. The Eq. (22), (23), and (24) control 
the magnitude of the slope parameters so that every 



 
 

weighting value is of the range [0, 1]. 

Fig. 5 APLF for weighting time series data 
 

For the first domain, the time function has two free 
parameters: the initial value (so) and the slope (a1). 
The time function for other domain only needs the 
slope parameter to specify its shape. Consider the 
case in which each project has M completion periods, 
the project duration is separated into n domains. 
Hence, there are n+1 tuning parameters that needed 
to be specified. When the APLF is integrated into the 
overall model, its tuning parameters are automatically 
optimized by the search engine. 

 
CASH FLOW PREDICTION USING TIME-DEPENDED 

EVOLUTIONARY LS-SVM INFERENCE MODEL (CF-
ELSIMT) 
This section dedicates in describing the proposed 
prediction model, named as CF-ELSIMT, in detail. The 
establishment of the model (see Fig. 6) is 
accomplished by a fusion of various prevalent AI 
techniques. CF-ELSIMT employs WLS-SVM as the 
supervised learning algorithm for mining the implicit 
patterns in the series. Moreover, the new forecasting 
model incorporates the MLIE for achieving interval 
prediction. Finally, DE, an evolutionary optimization 
algorithm, is utilized to automatically identify the 
optimal values of tuning parameters. 

 
Fig. 6 Cash Flow Forecasting Using Time-depended 
Evolutionary Least Squares Support Vector Machine 
Inference Model (CF-ELSIMT) 

The database used in the paper, collected from a 
construction contractor in Taipei, was generated in the 
process of executing high rise projects between 1996 
and 2006. This database contains percentage of 
expenditure cash flow taken from 13 completed 
construction projects reported in. 22 Table 1 illustrates 
the cash flow data for one project in the database.  
The CF-ELSIMT utilizes 8 projects as training set, 2 
projects as validating set, and 3 projects as testing set.  
Standard cumulative cost-time curves were employed 
to model cash flow prediction. 
 (1) Input data: The model CF-ELSIMT takes the cash 
flow time series as its input. There are 17 cases 
inherent in a completed project from the first set (1, 2, 
3) to the final set (17, 18, 19). Prediction results are 
represented by the cumulated cash flow ratio of the 4th 
through the 20th periods.  
 
Table 1. Example of expenditure cash flow for one 
construction project 

Case 

Input pattern Output 

1 2 3 

1st period 2nd period 3rd period 4th period 

1 0.2 2.7 5.1 9.7 

2 2.7 5.1 9.7 12.2 

3 5.1 9.7 12.2 15.3 

… … … … … 

16 75.5 83.5 87.6 92.3 

17 83.5 87.6 92.3 100.0 

 



 
 

(2) Tuning parameter initialization: The construction of 
the prediction model is dependent on a set of tuning 
parameters (see Table 2). The parameters of APLF 
consist of the initial value (so) and the slope value (ak), 
which are needed for weighting data. The 
regularization parameter (γ) and the kernel function 
parameter (σ) are required for the WLS-SVM. The 
number of clusters (C) is needed to be specified for 
the fuzzy c-means clustering process.  
 
Table 2. Ranges of model’s tuning parameters 

Tuning parameter 
Lower 
bound 

Upper 
bound 

Initial value of APLF so 0 1 

Slope value of APLF ak 0 1

Regularization parameter γ 0.001 10000 

Kernel function 
parameter 

σ 0.001 1000 

Number of cluster C 2 10 

 
 (3) Adaptive piecewise linear function (APLF) for 
weighting data: Each training data point is weighted 
according to the APLF. It is noted that the weights 
computed from the APLF ranges from a relatively 
small starting value so to 1. Hence, the most recent 
data point is treated as the most important and thus, 
received the highest value of 1.  Meanwhile, the most 
distant data point is considered as the least important 
and given the smallest value of so. 
(4) WLS-SVM for point estimation: In this step, LS-
SVM is deployed to learn the mapping function 
between the input (X) and the output (Y) derived at the 
previous step. The training process requires the two 
parameters γ and σ that are acquired from the DE 
searching. These parameters play an important role in 
determining the model’s prediction accuracy. 
(5) DE searching: At each generation, the optimizer 
carries out the mutation, crossover, and selection 
processes to guide the population to the optimal 
solution.  
(6) Interval estimation: This step employs the MLIE 
approach established by Thresha and Solomatine [9]. 
In the fuzzy clustering process, the search engine is 
employed to find the number of cluster (C). After the 
prediction limits for each training data point are 
computed, two LS-SVM models are employed to learn 
the regression function between input data and the two 
PLs. The tuning parameters of LS-SVM for interval 
estimation are identical to that of LS-SVM for point 
estimation, which are automatically identified by the 
search engine. 

(7) Fitness evaluation: In ELSIM, in order to determine 
the optimal set of tuning parameters, the following 
objective function is used in the step of fitness function 
evaluation:  

SEEF vatrfitness     (25) 

In Eq. (16), α, β, and θ are weighting coefficients.
 trE

and vaE  denotes the training error and validating error, 

respectively. The training and validating errors herein 
are Root Mean Squared Error (RMSE). S represents 
the Xie-Beni index [19], which is calculated as followed: 
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where Xj denotes the data point j. Vi is the center of 
cluster i. And, n is the number of data points. (8) 
Stopping condition: The DE’s optimization process 
terminates when the maximum number of generation 
is achieved. 
(9) Optimal prediction model: When the program 
terminates, the optimal set of tuning parameters has 
been successfully identified. The CF-ELSIMT is ready 
to carry out forecasting tasks. 
 
EXPERIMENTAL RESULT 
This section validates the performance of the 
proposed prediction model. To illustrate that CF-
ELSIMT is capable of delivering accurate and 
reliable results, the outcome of the proposed model 
is benchmarked with Evolutionary Support Vector 
Machine Inference Model (ESIM).14 In order to 
evaluate the accuracy of EAC point estimation, 
RMSE is employed (see Table 3). RMSE of CF-
ELSIMT for training is 0.013. Moreover, it is noticed 
that CF-ELSIMT utilized the APLF for weighting data; 
the optimal shape of the weighting function is shown 
in Fig. 7. Meanwhile, RMSE for testing projects 1, 2, 
and 3 are 0.020, 0.041 and 0.024, respectively. It is 
observable that the new model outperformed the 
benchmark approach in prediction accuracy since 
the prediction error of ESIM for two testing projects 
are 0.036, 0.048, and 0.052.  
  
Table 3. Result comparison 

Model 
Training 
RMSE 

Testing 
project 1 
RMSE 

Testing 
project 2 
RMSE 

Testing 
project 3 
RMSE 

ESIM 0.045 0.036 0.048 0.052 
CF-ELSIMT 0.013 0.020 0.041 0.024 
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Fig. 7 Optimal APLF 

Table 4. Results of interval estimation using CF-ELSIMT 

Interval  
prediction  

using  
CF-ELSIMT 

LOC (%) PICP (%) MPI  

90 90 0.09 

95 96 0.13 
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Fig. 8 Prediction result of testing project 1 using CF-
ELSIMT (95% LOC) 

Furthermore, to assess performance of the 
constructed prediction interval, Prediction Interval 
Coverage Probability (PICP) and Mean Width of 
Prediction Interval (MPI) are utilized (see Table 4). 
When the level of confidence (LOC) is 90%, the 
PICP and the MPI of the proposed model for the two 
testing projects are 90% and 0.09, respectively. 
Those two values are calculated to be 96% and 0.13 
in the case of 95% LOC. Fig. 8 illustrate the result of 
interval prediction of CF-ELSIMT for one testing 
project with 95% LOC. Observably, the proposed 
model is accurate in interval forecast of project cash 
flow. It has achieved acceptable values of PICP 
value corresponding to relatively small values of MPI. 

 
CONCLUSION 
This paper has presented a new prediction model, 
named as CF-ELSIMT, to assist construction 
managers in dealing with forecasting of project cash 
flow. The proposed model was developed by a fusion 
of various advanced AI techniques, namely: WLS-SVM, 
APLF, MLIE, and DE. The WLS-SVM is utilized to infer 
the input/output mapping function of cash flow data. 
The APLF helps the model to be more appropriate in 
coping with real-world time-dependent data. 
Meanwhile, to address the uncertainty of prediction 
results, the model integrates the MLIE approach. 
Using MLIE, the prediction interval is constructed by 
evaluating the uncertainty inherent in the data set, 
without any assumption or prior knowledge of model’s 
error. Moreover, DE searching algorithm is utilized to 
identify the most appropriate set of tuning parameters 
without the need of experience or trial-and-error 
process in parameter setting. 
Consequently, the model’s output consists of the point 
estimation coupled with the lower and upper prediction 
intervals, given a certain level of confidence, to 
emphasize the forecasting uncertainty.  Furthermore, 
the newly developed model has the ability to operate 
automatically without human intervention and domain 
knowledge. Simulation result and performance 
comparison have proved the strong potential of CF-
ELSIMT as an alternative for cash flow forecasting.  
Currently, CF-ELSIMT has a limitation is that the model 
is built using the database collected from one 
construction contractor in Taipei. Although the data are 
quiet homogeneous and capable of facilitating cash 
flow estimation effectively, more historical cases from 
different contractors should be incorporated to 
enhance the generalization of the prediction model. On 
the other hand, all of recorded projects are high-rise 
buildings; hence, construction projects of other types, 
such as highway or steel structures can be worth 
investigated. It is because other project types may 
possess different characteristics. Nevertheless, the 
processes of collecting new data cases are of great 
effort and time-consuming. Hence, we would like to 
consider these to be promising future research 
directions. 
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