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Abstract 
Automated recognition and modeling of 3D objects located in a construction work environment that are 

difficult to characterize or are constantly changing is critical for autonomous heavy equipment operation. 
Such automation allows for accurate, efficient, and autonomous operation of heavy equipment in a broad 
range of construction tasks by providing interactive background information. This paper presents 3D object 
recognition and modeling system from range data obtained from flash LADAR, with the goal of rapid and 
effective representation of the construction workspace. The proposed system consists of four steps: data 
acquisition, pre-processing, object segmentation on range images, and 3D model generation. During the 
object segmentation process, the split-and-merge algorithm, which separates a set of objects in a range image 
into individual objects, is applied to range images for the segmentation of objects. The whole process is 
automatic and is performed in nearly real time with an acceptable level of accuracy. The system was validated 
in outdoor experiments, and the results show that the proposed 3D object recognition and modeling system 
achieves a good balance between speed and accuracy, and hence could be used to enhance efficiency and 
productivity in the autonomous operation of heavy equipment. 
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1. Introduction 

In recent years, with fundamental advances in sensor technology, it is becoming ever more feasible to 
automate construction equipment in ways that would help improve efficiency and safety of equipment 
operations on construction sites. While automation of heavy equipment has the potential to make an 
important contribution to productivity improvement, what is needed is an efficient way to represent a 
workspace in 3D and incorporate that representation into control of equipment operations. There are 
requirements that 3D modeling methods for use in construction automation have to satisfy; data acquisition 
speed, level of intricacy, versatility, and automated data processing. 

Recently, 3D modeling methods have been investigated to represent construction workspace for several 
applications such as as-built drawings, visual feedback to equipment operators, and construction materials 
tracking. Most research on 3D modeling in the construction industry have employed large and expensive 3D 
laser scanner to produce dense point clouds. While 3D laser scanning can produce very detailed models of 
the scanned scenes, which are useful for obtaining as-built drawings of existing structures, extensive 
processing of the received point clouds is needed in order to construct the 3D model, thereby processing the 
entire 3D scanning process too laborious and time-consuming for the intended applications. The burdens 
imposed by a 3D laser scanner in terms of processing time generally preclude the use such technology for 
real-time decision-making. 

An alternative method is based on the use of flash LADAR which encompasses a new generation of 
scannerless LADAR devices. A flash LADAR device produces an image of the observed scene in which each 
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pixel value represents the intensity and range of the corresponding image area (Uijt de Haag et al. 2008). 
When compared to a 3D laser scanner, a scannerless flash LADAR device is smaller in size, lighter in weight, 
and lower in cost and has advantage of acquiring data in real-time (Stone and Juberts 2002; Habbit et al. 
2003). With the capability of capturing range data at high speed, flash LADAR produces a 3D image an 
entire scene in a single data acquisition step; moreover, it can capture moving objects, and hence can provide 
both static and dynamic information (Habbit et al. 2003). As a result, flash LADAR is beneficial for real-time 
applications such as obstacle detection, equipment navigation and object recognition (Price et al. 2007). 
Although flash LADAR has brought a new means of achieving real-time 3D model generation from range 
data, few research studies on this technology have been undertaken in the construction industry (Teizer et al. 
2007; Gong and Caldas 2008; Kim et al. 2008). Much more work needs to be done in order to achieve 
automated recognition and modeling of objects on a construction site from range data and reconstruction of 
useful 3D model in near-real-time. 

The aim of this research is to develop a system for 3D object recognition and modeling using range data 
from flash LADAR, with the goal of rapidly and effectively representing construction workspaces. To 
achieve this purpose, a system is proposed, consisting of algorithms that recognize the objects in the scene, 
together with methods for automatically extracting feature points related to those objects and generating 
bounded 3D models of each object. And outdoor experiments have been performed to test the performance 
of the proposed method. 

2. Framework for 3D Object Modeling for Use in Heavy Equipment Operation 

In this section, an overview of the framework for the proposed automatic 3D object recognition and 
modeling system using range image is presented. The process used in the 3D object recognition and 
modeling system proposed herein is outlined in the flowchart in Figure 1. 

Acquire Range Image 
from Flash LADAR

Reduce Noise in the Range Image

Segment Objects

Subtract Ground Data

Are Different Locations
Used for Data Acquisition?

Merge Data
from Different Locations

3D Workspace Model

Create Bonding Object

No

Yes

 
Figure 1 Proposed Process for 3D Workspace Modeling 

 
The first step of the 3D object recognition and modeling process is to acquire the 3D data that 

adequately covers the 3D scene. As mentioned earlier, workspace models are required to express dynamic 
work environment of a construction site effectively and in near-real-time for construction automation 
applications (Kim et al. 2006). For this reason, not only high frequency of updated of 3D data acquisition 
but also an acceptable level of accuracy are needed for reliable and successful 3D object modeling. Thus, in 
this study, the 3D data of the objects were acquired by using a SwissRanger SR-3000 flash LADAR, since it 
provides the most adapted trade-off between the data acquisition speed and the accuracy of the 3D data in 
case of real-time applications (Bosche et al. 2005). 

Once the range image acquired, the range image acquired from high speed range scanner such as flash 
LADAR contains noise of considerable level (Frome et al. 2004). If the noise is not reduced, it may affect a 
negative effect on object recognition; therefore, pre-processing is needed. For this, data filtering method is 
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while object regions were preserved. 
However, in this case, there is the large part of the points corresponding to the ground floor which 

makes difficult to segment the objects. Thus, the next step undertaken in the object modeling is removal of 
data corresponding to the ground floor of the scene. In cases where the sensor is located on a rigid body, 
and the height and vertical angles are known, ground plane detection is pretty straightforward. After the data 
are subjected to an appropriate coordinate rotation, the ground data can be extracted using a threshold value 
(Bostelman et al. 2006). The result of such an approach used for removal of ground data in this research is 
shown in Figure 3(b). After the pre-processing step, about the 65% (16,431 points) of the raw data points 
were filtered and removed. 

  
Figure 3 (a) Result of Data Filtering Process, (b) Filtering Out of Ground Floor Related Data Points 

3.2. Object Segmentation 
In the pre-processing stage, range values for the unwanted regions are effectively extracted. Once that is 

accomplished, a process of decomposition of the resulting image into separated objects is undertaken. 
Various methods for object segmentation, which are classified as boundary-based approaches and region-
based approaches, have been developed (Xiang and Wang 2004). Boundary-based approaches identify the 
edges based on discontinuities (pixel differences) and link up edges to produce closed boundaries for 
individual objects (Lin and Talbot 2001). However, their applicability is limited by the fact that it is difficult 
to find complete boundary information for an object, especially in a noisy image (Ikeuchi 1987). Region-
based approaches take a noisy image and distinguish coherent regions that satisfy a predefined homogeneity 
condition, and then use those coherent regions to identify the objects of interest (Kelkar and Gupta 2008). 
In this study, split-and-merge segmentation, which is one of the main methods used in region-based 
approaches, was adopted (Lin and Talbot 2001). This method has the advantage of simplicity of use as well 
as computational efficiency by a combination of splitting and merging of regions in the image (Salih and 
Ramli 2001; Sun and Du 2004). 

The object segmentation process based on split-and-merge algorithm comprises following two steps: 
splitting and merging. At the first split operation, the splitting process starts with the complete range image 
Figure 3(b) as a single region R . If R  is inhomogeneous, it is split into four subregions—in particular, four 
rectangular blocks of equal size. This process is repeated recursively until all subregions are homogeneous. 
Since the splitting process might have split up homogeneous regions, a merging process is then used to test 
the homogeneity of adjacent regions and merge them into a single region if their union is homogeneous. 
Through the object segmentation process, four objects were successfully separated as shown in Figure 4. 

 
Figure 4 Result of the Object Segmentation Process 
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near-real-time. Adoption of such a method could facilitate the safe and efficient operation of heavy 
equipment, since it not only provides a 3D graphical representation of the scene but also enables spatial 
analysis of the current set of conditions on a construction site. 
Although the proposed modeling method has been applied in this research to the modeling of static objects 
only, we see no reason why it could not be extended to the modeling of dynamic objects. Also, the proposed 
method would seem to lend itself to use in control systems for heavy construction equipment, where it could 
be used, for example, as part of an obstacle avoidance system. 
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